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1. Introduction
Definition 1.1 Let S;, S,, ... be an L sequence of random variables. Assume that for
j=1,2, ..

E{(Sjis1 — S$))f(S1,....S)} = 0 (1.1)

for all componentwise nondecreasing functions f such that the expectation is defined.
Then {S;, j 2 1} is called a demimartingale. If in addition the function fis assumed to
be nonnegative, the sequence {S; j > 1} is called a demisubmartingale.

Remark. If the function fis not required to be nondecreasing, then the condition
(1.1) is equivalent to the condition that {S;, j > 1} is a martingale with the natural
choice of o-algebras. If the function fis assumed to be nonnegative and not necessarily
nondecreasing, then the condition (1.1) is equivalent to the condition that {S;, j > 1} is
a submartingale with the natural choice of ¢ -algebras. A martingale with the natural
choice of o-algebras is a demimartingale. It can be checked that a submartingale is a
demisubmartingale (cf. [[1], Proposition 1]). However, there are stochastic processes
that are demimartingales but not martingales with the natural choice of c-algebras (cf.
[[1], example A], [[2], p. 10]). Definition 1.1 is due to Newman and Wright [3].

Relevant to the notion of demimartingales is the notion of positive dependence. To
that end, we have the following definition.

Definition 1.2 A finite collection of random variables X;, X,, ..., X, is said to be
associated if

COV{f(Xl,XZ, .o -,Xm),g(XIIXZ/ Y /Xm)} 2 0

for any two componentwise nondecreasing functions f, g on R” such that the covariance
is defined. An infinite collection is associated if every finite subcollection is associated.

Remark. Associated random variables were introduced by Esary et al. [4] and have
been found many applications especially in reliability theory. Proposition 2 of Newman
and Wright [3] shows that the partial sum of a sequence of mean zero associated ran-
dom variables is a demimartingale.
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The connection between demimartingales and martingales pointed out in the previous
remark raises the question whether certain results and especially maximal inequalities
valid for martingales are also valid for demimartingales. Newman and Wright [3] have
extended various results including Doob’s maximal inequality and Doob’s upcrossing
inequality to the case of demimartingales. Christofides [5] showed that Chow’s maximal
inequality for (sub)martingales can be extended to the case of demi(sub)martingales. Pra-
kasa Rao [6] derived a Whittle-type inequality for demisubmartingales. Wang [7] obtained
Doob’s type inequality for more general demimartingales. Prakasa Rao [8] established
some maximal inequalities for demisubmartingales. Wang et al. [9] established some max-
imal inequalities for demimartingales that generalize the results of Wang [7]. In this
paper, we establish some maximal ¢-inequalities for demimartingales that generalize the
results of Wang [7] and Wang et al. [9], and improve Doob’s type inequality for demimar-
tingales in some cases.

2. Demimartingales inequalities
Let C denote the class of Orlicz functions, that is, unbounded, nondecreasing convex

functions ¢ : [0, + o) —> [0, +o0) with ¢(0) = 0. Let C’ denote the set of ¢ € C such

that ¢'(x) is integrable at 0. Given ¢ € C and a > 0, define
X

D, (x) =// ¢/£T) drds, x> 0.

Denote @ (x) = Dy(x), x >0.

We now prove a maximal ¢-inequality for demimartingales.

Theorem 2.1. Let Sy, S5, ... be a demimartingale and g(.) be a nonnegative convex
function such that g(0) = 0. Let ¢ € C' and {c, k = 1} be a nonincreasing sequence of

positive numbers, define Sy = lfgkaf k8(Sk). Then
<RkR<n

1
p 1

n p
Elos)] < [E] Yot — s 0 | | @Eesina,

=1

(2.1)

1
where + =1 p >1.
p g 7

Proof. By Fubini theorem and Theorem 2.1 in [7] we have

El6(5)] = f ¢ (OP(S: > 1)dt

0
< / ¢’£f)1~: |:ch(8(51') —g(S,-l))X(S:Z”} dt
j=1
0 S: / n
-t /d)t(t) 2 6(8(5)) — 8(Sj-1))de
0 j=1

-E |:Z ci(g(S) — S(Sjl))q>/(52):|

j=1

1
n P\ P 1
< (E[ch(g(sj) —3(51—1))} ) (EI(@(Sp))D -

=1
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The last inequality follows from the Hélder’s inequality.

p
Remark. Let ¢(x) = »”, p >1 in Theorem 2.1, then ®(x) = px r Hence

5 1
n p 1
p

T LE 2 ats) —stsia) | ] @)D

E[(S3)) = 5
j=1

Let E[(S})P] < +o0. We get

n

p
p
A= () B Xotes) —ss0) |

j=1
which is the inequality (2.1) of Theorem 2.1 in [9].
Let ¢(x) = (x - 1) = max{0, x - 1} in Theorem 2.1. Then ¢(x) = f: Xis>1yds. Hence

d'(x) = [y ¢ £T) dr. Therefore

B[S, — 1] < EIS; — 1]

n

S
X{r=>
<k | Yotes) - s [ 7Nar
0

j=1

n

=E| | Y cg(S) —8(Si-1)) | In* 85|,

j=1
which is the inequality (2.6) in [9]. By the inequality
aln"b<aln* a+be’, a>0 b>0,

we have

Bsil=,° (1 +E [(Zc,-(g(sj) —g(sj-l))) LY (Z 5(8(5)) —g(s,-_l)))D . (22
j=1 j=1

which is the inequality (2.2) of Theorem 2.1 in [9]. Let ¢; = 1, j 2 1 in inequality
(2.2), the inequality (2.10) in [9] is obtained immediately. Let g(x) = |x| in inequality
(2.2) we have

E[gg Ck|5k|i| = ef 1 (1 +E {(; G(ISil = |S,-1|)) In* (;:Cj(lsjl - Sjll))D . (23)

which is the inequality (2.10) in [7]. Let ¢; = 1, j > 1 in inequality (2.3) we have

e +
E[g}glskl] <, (1+E[ISulIn* [S,l]), (2.4)
which is the inequality (2.11) in [9].
Corollary 2.1. Let Sy, S5, ... be a demimartingale with Sy = 0 and g(.) be a nonnega-
tive convex function such that g(0) = 0. Let ¢ € C". Then
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1

oo (e s0) | eweor? (o (s [ ).

1 1
Where + =1p >1.
p q
Proof. Let ¢, = 1, k> 1 in Theorem 2.1 we get (2.5) immediately.

P
Remark. Let ¢(x) = »°, p >1 in Corollary 2.1, then ®(x) = px X Hence

p p . p ,14
p
E[g}gix g(Sk)} =, L EL8(SI) (E[f?;;_“ﬁ, g(Sk)] ) :
Let E[Im}jix 8(SK)PP < +oc e get
<k<n

[ max sts0] < (7 ) ey

which is the inequality (2.9) in [9]. Let g(x) = |x| in the above inequality we get

p po\ ,
E[E}gwkq < (p_ 1) E[ISal]",

which is the inequality (2.11) in [9].
Corollary 2.2. Let Sy, S, ... be a demimartingale with So = 0 and {c;, k > 1} be a non-

increasing sequence of positive numbers. Let ¢ € C'. Then

1

E [db (@g Ck|sk|>] < (E |:i G(1Sj] — ISjll)T) ” (E[tb’ (g}g Ck|sk|>]q> q/ (2.6)

j=1

1 1
Where + =1 p>1.
p 4

Proof. Let g(x) = |x| in Theorem 2.1, inequality (2.6) is obtained immediately.

P
Remark. Let ¢(x) = »%, p >1 in Corollary 2.2, then ®(x) = px 1 Hence

1
n N L

E S p< p E S S E S "\
max alsid| < 7 > G(ISi = 1S5-11) max S|

1
Let El max ¢|Sk|]P < +00 e get
1<k<n

p
P n
E[;n}gx ck|sk|} <dE| Y g8 — ISi-11) |

j=1

which is the inequality (2.9) in [7].

We now prove some other maximal ¢-inequalities for demimartingales following the
techniques in [8].

Theorem 2.2 Let S}, S,, ... be a demimartingale with Sy = 0 and g(.) be a nonnegative
convex function such that g(0) = 0. Let {c;, kK = 1} be a nonincreasing sequence of

Page 4 of 10
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positive numbers and ¢ € C. Then

A +00 n
P(lr;%l g(5e) = t) = (- /P ; 6i(8(Sj) — 8(Sj-1)) > As | ds
ﬁ:ci(g(sj) —g(Sj,l)) (2-7)
j=1
(1 - )\)t A

forall » > 1, £t >0 and 0 < A <1. Furthermore,

E [qﬁ (g}g C}eg(sk)>] <o)+ i)\ f N #ZICj(g(Sj)A_ 8(Si-1))

13 6(8(5)-8(5,-1))>2b)
(2.8)
6i(8(Sj) — &(Sj-1))

—v||ar

’ j:l
—0u(0) — @/a(t) ,

forn>1,a>0,b>0and 0 <A <1.
Proof. Let ¢t >0 and 0 < A <1. Theorem 2.1 in [7] implies

IA

P (max agts =)

1<k<n

1 n

E [Z 6((5)) — (51 ))x<;<n,(a<x”ckg(s,l)zu}

=1 -
n

3 6(5(5) — 8(Si-1))dP

{ max ¢, g(Sk)=t} j=1
1=k=n

1
t

! [P (gl;ixn ag(Si) = 6 ) G(8(S) — &(S;-1) > S) ds

t p
0 =1

IA

1<k<n
At

At +00 n
1 /P(max ag(Sk) = t> ds+ 1 /P(ch(g(Sj) —8(Sj-1)) > s)ds
0 j=1

= AP <1r2g1 ag(Sk) = t> + ’: / P (Z G(g(S) — &(Si-1)) > ,\s) ds.

' j=1

Rearranging the last inequality, we get that

n

P(lrggi crg(Sk) = t) < (1 j)\)t /P > 6(8(S) —8(Sj-1)) > As | ds
> 6((S) — £(5-1))

- el !
(1— ) A

+

—t

forallm>1,¢t>0and 0 < A <1.
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Let b >0. By inequality (2.7), then

E |:¢ (lmkax ckg(Sk)>] = /(,b’(t)P (lmkax cx8(Se) > t) dt
=k=n 5 =k=n
b +00
= / #' ()P (f?;% g(Sk) = t) de+ / #'(1)P (g}ixn g(Sr) = t) de
0 T b o

< ¢(b) + / ¢'(H)P <1rn;ax crg(Sk) > t) dt

b

ORI [ [ (_Z (5(5) - (5-1) > xs) ds} a
b t

j=1

=p(b) + 1 ik / / ¢ t(t) dtP (Z ¢i(8(Sj) — 8(Sj=1)) > )Ls) ds
b

b j=1

ORI ICHORE RO (ch(g(sj) - g(51)) > xs) ds
b =1

> 6(8(8) - 8(5-1))
=¢(b)+1fA / o, | N

n

(26(8(S)—8(Sj-1))>Ab}

i1

-

36 (8(S) - 8(5,-1))
j=1

—®,(b) — @', (b) —b]||dr

A

forn=>1,a >0,b >0,t>0and 0 < A <1.
Corollary 2.3. Let Sy, S5, ... be a demimartingale with Sy = 0 and g(.) be a nonnega-
tive convex function such that g(0) = 0. Let ¢ € C. Then

p (gka; 8(Sk) > t) < (1 _Ak)t +/OOP(g(Sn) > As)ds = (a _Ak)tE<g(i") - t>+

t

forall » > 1, £t >0 and 0 < A <1. Furthermore,

elo(max sts0) | <o, 2 [ (00 () - 0w - enw (457 -v) e

(8(Sn)>2D}

forallm>1,a >0,b >0 and 0 < 4 <1.

Proof. Let ¢, = 1, k 2 1 in Theorem 2.2, Corollary 2.3 follows.

As a special case of Corollary 2.3 is the following corollary.

Corollary 2.4. Let S;, S,, ... be a demimartingale with Sy = 0 and ¢ € C. Then

+00
A A S *
P max [S] >t) < /P(|s,,| > As)ds = E 1Sl —t
1<k<n (1 —)\)t (1 —)\)t A

t
forall #» > 1, ¢t >0 and 0 < A <1. Furthermore,
A |Sal , [Sul
elo(maxisu) | <owe " [ (e () o -ouw (5 -0 )ar
{1l >1b}

forallm>1,a >0, b >0 and 0 < A <1.
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Remark. Theorem 3.1 in [8] is generalized in the case of demimartingales.

As a special case of Theorem 2.2 is the following theorem.

Theorem 2.3 Let S;, S,, ... be a demimartingale with Sy = 0 and g(.) be a nonnegative
convex function such that g(0) = 0. Let {¢;, kK = 1} be a nonincreasing sequence of posi-
tive numbers and ¢ € C. Then

3 6(8(S) — 8(51-1))

E [¢> (gg ckg(sk)ﬂ <9(a)+, * JEfed | . (2.9)

forallm>1,a >0and 0 < A <1. Let A = ; in (2.9). Then

E |:¢ (E;%l ckg(Sk))i| <p(a)+E| 0, [ 2D g(s(S) — 8(Sj-1))
<k< j=1

fora >0, n = 1.

Proof. Theorem 2.3 follows from Choosing b = 4 in (2.8) and observing that
d,(a) = Pl (a) =0.

Let ¢, = 1, k 2 1 in Theorem 2.3 we have the following corollary.

Corollary 2.5. Let S3, S5, ... be a demimartingale with S = 0 and g(.) be a nonnega-
tive convex function such that g(0) = 0. Let ¢ € C. Then

E [qs (g}g g(sk))] <o)+ B [% (g(i"))]

forallm>1,a >0,0 < A <1 and
o (max 50| < o+ Boug(5.0)

fora >0, n = 1.
As a special case of Corollary 2.5 is the following Corollary.
Corollary 2.6. Let S5, S5, ... be a demimartingale with Sy = 0 and ¢ € C. Then

E_¢(max|S |)—<¢(a)+ » E[CD ('S’”)}
L 1<k<n k 17 1—A ¢ A )

forallm>1,a >0,0 < A <1 and

Elo (max |sk|)- < p(a) + E[@a(21S,)].

1<k<n

fora >0, n > 1.

Remark. Theorem 3.2 in [8] is generalized in the case of demimartingales.

Theorem 2.4 Let S;, Sy, ... be a demimartingale with Sp = 0 and g(.) be a nonnegative
convex function such that g(0) = 0. Let {¢;, kK > 1} be a nonincreasing sequence of posi-
tive numbers. Then
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1<ksn - -
j=1 j=1

E max agts] <o+, " (E {(Z (&(5)) —g(sm)) In’ (Z 9(5(5) —g(sjl)))}

(2.10)

E|:ch(8(5j) —8(Si-1)) — l:l ) , b>1,n>1.

j=1

Proof. Let ¢(x) = x in Theorem 2.2. Then ®,(x) = x In x - x + 1, & (x) = Inx. Hence

N , 151'(8(50 —8(Sj-1))
E [lrg;gl ckg(Sk)i| <b+ 1— / N

«ilcy(s(s,)—g(s,ﬂ)mm

S68(8) ~8(5-1)  36(8(5) —8(5-1)
j=1 j=1
x In N — N +1
2 6(8(8) — &(Si-1))
—blnb+b—1-"" | Inb+blInb) | dp

n n

e ((Z (8(5) — (51 ))) In (Z 5(8(5) - g(s“)))

n j=1 j=1
(X 6(8(8)—8(Sj-1))>2b}
j1

- (Xn:c,-(g(si) —g(Sil))> (Inx+Inb+1) +Ab) dp

j=1

foralln>1,b>0and 0 <A <1l Leth>1, 1= }1) Therefore

Bl max ages| <o+, ' ((Zq(g(&-) g(sj-l)))

n j=1
(Zl 6i(8(S7)—8(Sj-1))>1}
fa

j=1 j=1

xIn (ch(g(sj) —Z(sjl))) =2 _6(8(8) ~8(S-1)) + 1) P 911)

max(3 6(8(8)—8(S-1)).1)
]:I
=b+ b E / In xdx

1

for all b >1 and n > 1. Since

X
/lnydy=x Inf x—(x—1),x>1,

1
the inequality (2.11) can be rewritten in the form

E [f;‘fg‘n ckg(sk)} <ve ! (E {(Z 6(3(5)) 8(5/'1))) In* (Z 6(8(5)) g(s,-l))ﬂ

1 1

_E|:ch(g(5j) —8&(S-1)) — 1:| ) b>1n>1.

j=1

Corollary 2.7. Let Sy, S5, ... be a demimartingale with Sy = 0 and g(.) be a nonnega-
tive convex function such that g(0) = 0. Let {¢;, kK = 1} be a nonincreasing sequence of

Page 8 of 10
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positive numbers. Then
1+E

E[

xE ( 6(8(S)) — 8(Sj—1 ))) In” (Z G(8(S)) — g(Sj—l)))} :
=1 j=1

j=

1

> 6(s() ~8(5-1)) - 1}
Blma )=

3

—

6(8(5) — 8(S-1)) — 1} (2.12)

n

Proof. Let b = E|:Z ci(8(S;) — &(Sj-1)) — 1:| +1in (2.10). Then we get (2.12).

j=1

Corollary 2.8. Let Sy, S,, ... be a demimartingale with Sy = 0 and g(.) be a nonnega-
tive convex function such that g(0) = 0. Let {¢;, kK = 1} be a nonincreasing sequence of
positive numbers. Then

E [m; ckg(sk)] <es © (E [(ch(g(sj) g(sjl))) In* (Z 6(8(5) g(sjl)))}

j=1 j=1

—E[fo(g(sj)—g(sjl)) - 1} ) n>1.

j=1

(2.13)

Proof. Let b = e in (2.10). Then we get (2.13).
Remark. Inequality (2.13) is a sharper inequality than inequality (2.2) in [9] when

+
n

E[ > 6(g(S) —8(Si1)) —1| =e—2.

j=1

Corollary 2.9. Let Sy, S, ... be a demimartingale with So = 0 and {c;, k > 1} be a non-
increasing sequence of positive numbers. Then

E [Im,ax ck|sk|] <e+ ef . (E [(chusn - |s,-_1|)) In* (Zc,us]w - |sj_1|)ﬂ

j=1 j=1

—E[ch(lsj| —18j11) — 1} ) :
j=1

Proof. Let g(x) = |x| in (2.13). Then we get (2.14).
Remark. Inequality (2.14) is a sharper inequality than inequality (2.10) in [7] when

(2.14)

+

n
E[ Y US| = 181D —1] ze—2.
j=1

Corollary 2.10. Let Sy, Sy, ... be a demimartingale with Sy = 0. Then

E[max |sk|] <b+ . b l(E[|Sn|1n+ ISl] = E[ISul = 11*), b>1, n>1. (2.15)

1<k<n

Proof. Let ¢; = 1, j > 1 and g(x) = |x| in Theorem 2.4. We get inequality (2.15).
Remark. The inequality (3.22) in [8] is generalized in the case of demimartingales.

Page 9 of 10
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