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1 Introduction and preliminaries
Suppose that A is a complex Banach *-algebra. A ℂ-linear mapping δ : D(δ) → A is

said to be a derivation on A if δ(ab) = δ(a)+ b + aδ(b) for all a, b ∈ A, where D(δ) is a

domain of δ and D(δ) is dense in A. If δ satisfies the additional condition δ(a*) = δ(a)*

for all a ∈ A, then δ is called a *-derivation on A. It is well known that if A is a C*-

algebra and D(δ) is A, then the derivation δ is bounded.

A C*-dynamical system is a triple (A, G, a) consisting of a C*-algebra A, a locally

compact group G, and a pointwise norm continuous homomorphism a of G into the

group Aut(A) of *-automorphisms of A. Every bounded *-derivation δ arises as an infi-

nitesimal generator of a dynamical system for ℝ. In fact, if δ is a bounded *-derivation

of A on a Hilbert space H, then there exists an element h in the enveloping von Neu-

mann algebra A′′ such that

δ(x) = adih(x)

for all x ∈ A.

If, for each t Î ℝ, at is defined by at(x) = eith xe-ith for all x ∈ A, then at is a

*-automorphism of A induced by unitaries Ut = eith for each t Î ℝ. The action

α : R → Aut(A), t ® at, is a strongly continuous one-parameter group of *-auto-

morphisms of A. For several reasons, the theory of bounded derivations of C*-algebras

is important in the quantumn mechanics (see [1-3]).

A functional equation is called stable if any function satisfying the functional equa-

tion “approximately” is near to a true solution of the functional equation. We say that

a functional equation is superstable if every approximate solution is an exact solution

of it (see [4]).

In 1940, Ulam [5] proposed the following question concerning stability of group

homomorphisms: under what condition does there exist an additive mapping near an

approximately additive mapping? Hyers [6] answered the problem of Ulam for the
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case where G1 and G2 are Banach spaces. A generalized version of the theorem of

Hyers for an approximately linear mapping was given by Rassias [7]. Since then, the

stability problems of various functional equations have been extensively investigated by

a number of authors (see [8-19]). In particular, those of the important functional equa-

tions are the following functional equations

f (x + y) = f (x) + f (y), (1:1)

2f
( x + y

2

)
= f (x) + f (y), (1:2)

which are called the Cauchy functional equation and the Jensen functional equation,

respectively. The function f(x) = bx is a solution of these functional equations. Every

solution of the functional equations (1.1) and (1.2) is said to be an additive mapping.

In this paper, we introduce functional equations of *-derivations and of quadratic

*-derivations. we prove the stability of *-derivations associated with the Cauchy func-

tional equation and the Jensen functional equation and of quadratic *-derivations on

Banach *-algebra. We moreover prove the superstability of *-derivations and of quadra-

tic *-derivations on C*-algebras.

2 Stability of *-derivations on Banach *-algebras
In this section, let A be a Banach *-algebra. We prove the stability of *-derivations on

A.

Theorem 2.1 Suppose that f : A → Ais a mapping with f(0) = 0 for which there

exists a function ϕ : A4 → [0,∞)such that

ϕ̃(a, b, c, d) :=
∞∑
n=0

1
2n+1

ϕ (2na, 2nb, 2nc, 2nd) < ∞, (2:1)

‖ f (λa + b + cd) − λf (a) − f (b) − f (c)d − cf (d) ‖ ≤ ϕ(a, b, c, d), (2:2)

‖ f (a∗) − f (a)∗ ‖ ≤ ϕ(a, a, a, a) (2:3)

for all λ ∈ T := {λ ∈ C : |λ| = 1} and all a, b, c, d ∈ A. Then there exists a unique

*-derivation δ on A satisfying

‖ f (a) − δ(a) ‖ ≤ ϕ̃(a, a, 0, 0), (2:4)

for all a ∈ A.

Proof. Setting a = b, c = d = 0 and l = 1 in (2.2), we have

‖ f (2a) − 2f (a) ‖ ≤ ϕ(a, a, 0, 0)

for all a ∈ A. One can use induction to show that∥∥∥∥ f (2na)2n
− f (2ma)

2m

∥∥∥∥ =
n−1∑
k=m

1
2k+1

ϕ(2ka, 2ka, 0, 0) (2:5)

for all n >m ≥ 0 and all a ∈ A. It follows from (2.5) and (2.1) that the sequence

{ f (2na)2n } is Cauchy. Due to the completeness of A, this sequence is convergent. Define
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δ(a) := lim
n→∞

f (2na)
2n

(2:6)

for all a ∈ A. Then, we have

δ

(
1
2k

a
)
= lim

n→∞
1
2k

f (2n−ka)
2n−k

=
1
2k

δ(a) (2:7)

for each k Î N. Putting c = d = 0 and replacing a and b by 2na and 2nb, respectively,

in (2.2), we get∥∥∥∥ 1
2n

f (2n(λa + b)) − λ
1
2n

f (2na) − 1
2n

f (2nb)

∥∥∥∥ ≤ 1
2n

ϕ(2na, 2nb, 0, 0).

Taking the limit as n ® ∞, we obtain

δ(λa + b) = λδ(a) + δ(b) (2:8)

for all a, b ∈ A and all λ ∈ T. Putting a = b = 0 and replacing c and d by 2nc and 2nd,

respectively, in (2.2), we get∥∥∥∥ 1
22n

f (22ncd) − 1
22n

f (2nc)(2nd) − 1
22n

(2nc)f (2nd)

∥∥∥∥
≤ 1

22n
ϕ(0, 0, 2nc, 2nd) ≤ 1

2n
ϕ(0, 0, 2nc, 2nd).

Taking the limit as n ® ∞, we obtain

δ(cd) = δ(c)d + cδ(d) (2:9)

for all c, d ∈ A.

Next, let l = l1 +il2 Î ℂ where l1, l2, Î ℝ. Let g1 = l1 - [l1] and g2 = l2 - [l2],
where [l] denotes the integer part of l. Then, 0 ≤ g1 < 1(1 ≤ i ≤ 2). One can represent

gi as γi =
λi,1+λi,2

2 such that λi,j ∈ T (1 ≤ i, j ≤ 2). From (2.7) and (2.8), it follows that

δ(λa) = δ(λ1a) + iδ(λ2a)

= ([λ1]δ(a) + δ(γ1a)) + i([λ2]δ(a) + δ(γ2a))

=
(
[λ1]δ(a) +

1
2

δ(λ1,1a + λ1,2a)
)
+ i

(
[λ2]δ(a) +

1
2

δ(λ2,1a + λ2,2a)
)

=
(
[λ1]δ(a) +

1
2

λ1,1δ(a) +
1
2

λ1,2δ(a)
)
+ i

(
[λ2]δ(a) +

1
2

λ2,1δ(a) +
1
2

λ2,2δ(a)
)

= λ1δ(a) + iλ2δ(a) = λδ(a)

for all a ∈ A. Hence, δ is ℂ-linear, and so it is a derivation on A. Moreover, it fol-

lows from (2.5) with m = 0 and (2.6) that ‖ δ(a) − f (a) ‖ ≤ ϕ̃(a, a, 0, 0) for all a ∈ A.

It is well known that the additive mapping δ satisfying (2.4) is unique (see [3] or [19]).

Replacing a and a* by 2na and 2na*, respectively, in (2.3), we get∥∥∥∥ 1
2n

f (2na∗) − 1
2n

f (2na)∗
∥∥∥∥ ≤ 1

2n
ϕ(2na, 2na, 2na, 2na).

Passing to the limit as n ® ∞, we get the δ(a*) = δ(a)* for all a ∈ A. So δ is a *-deri-

vation on A, as desired. □
Corollary 2.2 Let ε, p be positive real numbers with p < 1. Suppose that f : A → Ais

a mapping satisfying

Jang and Park Journal of Inequalities and Applications 2011, 2011:55
http://www.journalofinequalitiesandapplications.com/content/2011/1/55

Page 3 of 13



‖ f (λa + b + cd) − λf (a) − f (b) − cf (d) − f (c)d ‖ ≤ ε(‖ a‖p+ ‖ b‖p+ ‖ c‖p+ ‖ d‖p), (2:10)

‖ f (a∗) − f (a)∗ ‖ ≤ 4ε ‖ a‖p (2:11)

for all λ ∈ Tand all a, b, c, d ∈ A. Then there exists a unique *-derivation δ on

‖ f (a) − δ(a) ‖ ≤ 2ε

2 − 2p
‖ a‖psatisfying

‖ f (a) − δ(a) ‖ ≤ 2ε

2 − 2p
‖ a‖p

for all a ∈ A.

Proof. Putting �(a, b, c, d) = ε(||a||p + ||b|| p + ||c|| p + ||d| p) in Theorem 2.1, we

get the desired result. □
Similarly, we can obtain the following. We will omit the proof.

Theorem 2.3 Suppose that f : A → Ais a mapping with f (0) = 0 for which there

exists a function ϕ : A4 → [0,∞)satisfying (2.2), (2.3) and

∞∑
n=1

22n−1ϕ

(
a
2n

,
b
2n

,
c
2n

,
d
2n

)
< ∞

for all a, b, c, d ∈ A. Then there exists a unique *-derivation δ on Asatisfying

‖ f (a) − δ(a) ‖ ≤ ϕ̃(a, a, 0, 0),

for all a ∈ A, where

ϕ̃(a, b, c, d) :=
∞∑
n=1

2n−1ϕ

(
a
2n

,
b
2n

,
c
2n

,
d
2n

)
.

Corollary 2.4 Let ε, p be positive real numbers with p > 2. Suppose that f : A → Ais

a mapping satisfying (2.10) and (2.11). Then there exists a unique *-derivation δ on

‖ f (a) − δ(a) ‖ ≤ 2ε

2p − 2
‖ a‖psatisfying

‖ f (a) − δ(a) ‖ ≤ 2ε

2p − 2
‖ a‖p

for all a ∈ A.

Proof. Putting �(a, b, c, d) = ε(||a||p + ||b|| p + ||c|| p + ||d| p) in Theorem 2.3, we

get the desired result. □

3 Stability of *-derivations associated with the Jensen functional equation
The stability of the Jensen functional equation has been studied first by Kominek and

then by several other mathematicians (see [11,20]).

In this section, we study the stability of *-derivation associated with the Jensen func-

tional equation in a Banach *-algebra A.

Theorem 3.1 Let Abe a Banach *-algebra. Suppose that f : A → Ais a mapping

with f (0) = 0 for which there exists a function ϕ : A × A → [0,∞)such that

ϕ̃(a, b) :=
∞∑
n=0

1
3n

ϕ (3na, 3nb) < ∞, (3:1)

Jang and Park Journal of Inequalities and Applications 2011, 2011:55
http://www.journalofinequalitiesandapplications.com/content/2011/1/55

Page 4 of 13



∥∥∥∥2f
(

λa + λb
2

)
− λf (a) − λf (b)

∥∥∥∥ ≤ ϕ(a, b), (3:2)

‖ f (a∗) − f (a)∗ ‖ ≤ ϕ(a, a), (3:3)

‖ f (ab) − af (b) − f (a)b ‖ ≤ ϕ(a, b) (3:4)

for all a, b ∈ Aand all λ ∈ T. Then there exists a unique *-derivation δ on Asatisfying

‖ f (a) − δ(a) ‖ ≤ 1
3
(ϕ̃(a,−a) + ϕ̃(−a, 3a)) (3:5)

for all a ∈ A.

Proof. Letting l = 1 and b = -a in (3.2), we get

‖ −f (a) − f (−a) ‖ ≤ ϕ(a,−a)

for all a ∈ A. Letting l = 1 and replacing a and b by -a and 3a, respectively, in (3.2),

we get

‖ 2f (a) − f (−a) − f (3a) ‖ ≤ ϕ(−a, 3a)

for all a ∈ A. Thus,∥∥∥∥f (a) − 1
3
f (3a)

∥∥∥∥ ≤ 1
3

(‖ f (a) + f (−a) ‖ + ‖ 2f (a) − f (−a) − f (3a) ‖)
≤ 1

3

(
ϕ(a,−a) + ϕ(−a, 3a)

)
for all a ∈ A. So∥∥∥∥ 1

3n
f (3na) − 1

3m
f (3ma)

∥∥∥∥ ≤
n−1∑
j=m

∥∥∥∥ 1
3j
f (3ja) − 1

3j+1
f (3j+1a)

∥∥∥∥
≤ 1

3

n−1∑
j=m

1
3j

(
ϕ(3ja,−3ja) + ϕ(−3ja, 3j+1a)

) (3:6)

for all nonnegative integers n, m with n >m and all a ∈ A. It follows from (3.6) that

the sequence { 1
3n f (3

na)} is a Cauchy sequence for all a ∈ A. Since A is complete, the

sequence { 1
3n f (3

na)} is convergent. So one can define the mapping δ : A → A by

δ(a) = lim
n→∞

1
3n

f (3na)

for all a ∈ A. By (3.2),∥∥∥∥2δ

(
a + b
2

)
− δ(a) − δ(b)

∥∥∥∥ = lim
n→∞

1
3n

∥∥∥∥2f
(
3n

a + b
2

)
− f (3na) − f (3nb)

∥∥∥∥
≤ lim

n→∞
1
3n

ϕ(3na, 3nb) = 0

for all a, b ∈ A. Thus

2δ

(
a + b
2

)
= δ(a) + δ(b) (3:7)
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for all a, b ∈ A. Since f(0) = 0, we have δ(0) = 0. Putting b = 0 in (3.7), we get

2δ( a2) = δ(a) for all a ∈ A and therefore δ(a) + δ(b) = 2δ
(
a+b
2

)
= δ(a + b) for all

a, b ∈ A. Moreover, letting m = 0 and passing the limit n ® ∞ in (3.6), we get (3.5).

Replacing both a and b in (3.2) by 3na and then dividing both sides of the obtained

inequality by 3n, we get∥∥∥∥ 1
3n

f (λ3na) − λ

3n
f (3na)

∥∥∥∥ ≤ 1
3n

ϕ(3na, 3na).

Passing the limit as n ® ∞, we get δ(la) = lδ(a) for all λ ∈ T. Thus we can get δ(la)
= lδ(a) for all l Î ℂ by the similar discussion in the proof of Theorem 2.1.

Replacing a in (3.3) by 3na and then dividing the both sides of the obtained inequal-

ity by 3n, we get∥∥∥∥ 1
3n

f (3na∗) − 1
3n

f (3na)∗
∥∥∥∥ ≤ 1

3n
ϕ(3na, 3na).

Passing the limit as n tends to infinity, we get δ(a*) = δ(a)*.

Similarly, replacing a and b in (3.4) by 3na and 3nb, respectively, we get∥∥∥∥∥ f (3
2nab)
32n

− 3naf (3nb)
32n

− f (3na)(3nb)
32n

∥∥∥∥∥ ≤ 1
32n

ϕ(3na, 3nb) ≤ 1
3n

ϕ(3na, 3nb),

which tends to zero, as n tends to ∞. So we get δ(ab) = δ(a)d + aδ(b) for all a, b ∈ A.

Hence, δ is a *-derivation on A.

Corollary 3.2 Let ε, p be positive real numbers with p < 1. Suppose that f : A → Ais

a mapping satisfying∥∥∥∥2f
(

λa + λb
2

)
− λf (a) − λf (b)

∥∥∥∥ ≤ ε(‖ a‖p+ ‖ b‖p), (3:8)

‖ f (a∗) − f (a)∗ ‖ ≤ 2ε ‖ a‖p, (3:9)

‖ f (ab) − af (b) − f (a)b ‖ ≤ ε(‖ a‖p+ ‖ b‖p) (3:10)

for all λ ∈ Tand all a, b ∈ A. Then there exists a unique *-derivation δ on Asatisfying

‖ f (a) − δ(a) ‖ ≤ 3 + 3p

3 − 3p
ε ‖ a‖p

for all a ∈ A.

Proof. Putting �(a, b) = ε(||a||p + ||b||p) in Theorem 3.1, we get the desired result. □
Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3 Let Abe a Banach *-algebra. Suppose that f : A → Ais a mapping

with f(0) = 0 for which there exists a function ‖ f (a) − δ(a) ‖ ≤ 2ε

2p − 2
‖ a‖psatisfying

(3.2), (3.3), (3.4) and

∞∑
n=1

32nϕ
(

a
3n

,
b
3n

)
< ∞
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for all a, b ∈ A. Then there exists a unique *-derivation δ on Asatisfying

‖ f (a) − δ(a) ‖ ≤ 1
3
(ϕ̃(a,−a) + ϕ̃(−a, 3a))

for all a ∈ A, where

ϕ̃(a, b) :=
∞∑
n=1

3nϕ
(

a
3n

,
b
3n

)
.

Corollary 3.4 Let ε, p be positive real numbers with p > 2. Suppose that f : A → Ais

a mapping satisfying (3.8), (3.9) and (3.10). Then there exists a unique *-derivation δ

on Asatisfying

‖ f (a) − δ(a) ‖ ≤ 3p + 3
3p − 3

ε ‖ a‖p

for all a ∈ A.

Proof. Putting �(a, b) = ε(||a||p + ||b||p) in Theorem 3.3, we get the desired result. □

4 Stability of quadratic *-derivations on Banach *-algebras
In this section, we prove the stability of quadratic *-derivations on a Banach *-algebra

A.

Definition 4.1 Let Abe a *-normed algebra. A mapping δ : A → Ais a quadratic

*-derivation on Aif δ satisfies the following properties:

(1) δ is a quadratic mapping,

(2) δ is quadratic homogeneous, that is, δ(la) = l2δ(a) for all a ∈ Aand all l Î ℂ,

(3) δ(a b) = δ(a)b2 + a2δ(b) for all a, b ∈ A,

(4) δ(a*) = δ(a)* for all a ∈ A.

Theorem 4.2 Suppose that f : A → Ais a mapping with f(0) = 0 for which there

exists a function ϕ : A4 → [0,∞)such that

ϕ̃(a, b, c, d) :=
∞∑
k=0

1
4k

ϕ (2ka, 2kb, 2kc, 2kd) < ∞,

‖ f (λa + λb + cd) + f (λa − λb + cd) − 2λ2f (a) − 2λ2f (b) − 2f (c)d2 − 2c2f (d) ‖
≤ ϕ(a, b, c, d),

(4:1)

‖ f (a∗) − f (a)∗ ‖ ≤ ϕ(a, a, a, a) (4:2)

for all a, b, c, d ∈ Aand all λ ∈ T. Also, if for each fixed a ∈ Athe mapping t ® f(ta)

from ℝ to Ais continuous, then there exists a unique quadratic *-derivation δ on

‖ f (a) − δ(a) ‖ ≤ 1
4

ϕ̃(a, a, 0, 0)satisfying

‖ f (a) − δ(a) ‖ ≤ 1
4

ϕ̃(a, a, 0, 0)

for all a ∈ A.
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Proof. Putting a = b, c = d = 0, , and l = 1 in (4.1), we have

‖ f (2a) − 4f (a) ‖ ≤ ϕ(a, a, 0, 0)

for all a ∈ A. One can use induction to show that∥∥∥∥ f (2na)4n
− f (2ma)

4m

∥∥∥∥ ≤ 1
4

n−1∑
k=m

ϕ(2ka, 2ka, 0, 0)
4k

(4:3)

for all n >m ≥ 0 and all a ∈ A. It follows from (4.3) that the sequence { f (2
na)

4n
} is

Cauchy. Since A is complete, this sequence is convergent. Define

δ(a) := lim
n→∞

f (2na)
4n

.

Since f(0) = 0, we have δ(0) = 0. Replacing a and b by 2na and 2nb, c = d = 0, respec-

tively, in (4.1), we get∥∥∥∥ f (2n(λa + λb))
4n

+
f (2n(λa − λb))

4n
− 2λ2 f (2

na)
4n

− 2λ2 f (2
nb)

4n

∥∥∥∥ ≤ ϕ(2na, 2nb, 0, 0)
4n

.

Taking the limit as n ® ∞, we obtain

δ(λa + λb) + δ(λa − λb) = 2λ2δ(a) + 2λ2δ(b) (4:4)

for all a, b ∈ A and all λ ∈ T. Putting l = 1 in (4.4), we obtain that δ is a quadratic

mapping. Setting b: = a in (4.4), we get

δ(2λa) = 4λ2δ(a)

for all a ∈ A and all λ ∈ T. Hence,

δ(λa) = λ2δ(a)

for all a ∈ A and all λ ∈ T. Under the assumption that f(ta) is continuous in t Î ℝ

for each fixed a ∈ A, by the same reasoning as in the proof of [10], we obtain that

δ(la) = l2δ(a) for all a ∈ A and all l Î ℝ. Hence,

δ(λa) = δ

(
λ

|λ| |λ|a
)
=

λ2

|λ|2 δ(|λ|a) = λ2

|λ|2 |λ|2δ(a) = λ2δ(a)

for all a ∈ A and all l Î ℂ (l ≠ 0). This means that δ is quadratic homogeneous.

Replacing c and d by 2nc and 2nd, respectively, and putting a = b = 0 in (4.1), we get∥∥∥∥∥ f (2
nc · 2nd)
42n

+
f (2nc · 2nd)

42n
− 2

22nc2f (2nd)
42n

− 2
f (2nc)22nd2

42n

∥∥∥∥∥
=

∥∥∥∥∥ f (2
2ncd)
42n

+
f (22ncd)

42n
− 2

22nc2

22n
f (2nd)
4n

− 2
f (2nc)
4n

22nd2

22n

∥∥∥∥∥
≤ ϕ(0, 0, 2nc, 2nd)

42n
≤ ϕ(0, 0, 2nc, 2nd)

4n

for all c, d ∈ A.
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Hence, we have

‖ δ(cd) − c2δ(d) − δ(c)d2 ‖≤ lim
n→∞

ϕ(0, 0, 2nc, 2nd)
4n

= 0.

Thus, δ is a quadratic *-derivation on A.

The rest of the proof is similar to the proof of Theorem 2.1. □
Corollary 4.3 Let ε, p be positive real numbers with p < 2. Suppose that f : A → Ais

a mapping such that

‖ f (λa + λb + cd) + f (λa − λb + cd) − 2λ2f (a) − 2λ2f (b) − 2c2f (d) − 2f (c)d2 ‖
≤ ε(‖ a‖p+ ‖ b‖p+ ‖ c‖p+ ‖ d‖p) (4:5)

for all a, b, c, d ∈ Aand all λ ∈ T. Also, if for each fixed a ∈ Athe mapping t ® f(ta) is

continuous, then there exists a unique derivation δ on Asatisfying

‖ f (a) − δ(a) ‖≤ 2ε

4 − 2p
‖ a‖p

for all a ∈ A.

Proof. Putting �(a, b, c, d) = ε(||a||p + ||b||p + ||c||p + ||d||p) in Theorem 4.2, we get

the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 4.4 Suppose that f : A → Ais a mapping with f(0) = 0 for which there

exists a function ϕ : A4 → [0,∞)satisfying (4.1), (4.2) and

∞∑
k=1

42kϕ
(

a

2k
,
b

2k
,
c

2k
,
d

2k

)
< ∞

for all a, b, c, d ∈ A. Also, if for each fixed a ∈ Athe mapping t ® f(ta) from ℝ to Ais

continuous, then there exists a unique quadratic *-derivation δ on Asatisfying

‖ f (a) − δ(a) ‖ ≤ 1
4

ϕ̃(a, a, 0, 0)

for all a ∈ A, where

ϕ̃(a, b, c, d) :=
∞∑
k=1

4kϕ
(

a

2k
,
b

2k
,
c

2k
,
d

2k

)

Corollary 4.5 Let ε, p be positive real numbers with p > 4. Suppose that f : A → Ais

a mapping satisfying (4.5). Also, if for each fixed a ∈ Athe mapping t ® f(ta) is contin-

uous, then there exists a unique derivation δ on Asatisfying

‖ f (a) − δ(a) ‖ ≤ 2ε

2p − 4
‖ a‖p

for all a ∈ A.

Proof. Putting �(a, b, c, d) = ε(||a||p + ||b||p + ||c||p + ||d||p) in Theorem 4.4, we get

the desired result. □
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5 Superstability of *-derivations and of quadratic *-derivations On C*-
algebras
We prove the superstability of *-derivations and of quadratic *-derivations on C*-alge-

bras. More precisely, we introduce the concept of (ψ, ε) -approximate *-derivations and

of (ψ, ε)-approximate quadratic *-derivations on C*-algebras and show that every (ψ,

ε)-approximate *-derivation is a *-derivation and that every (ψ, ε)-approximate quadra-

tic *-derivation is a quadratic *-derivation. Thus, we extend the results of [21].

Definition 5.1 Suppose that Ais a *-normed algebra and s Î{1, -1}. Let δ : A → Abe

a mapping for which there exist a mapping ε : A → A, and a function ψ : A × A → R
satisfying

lim
n→∞ n−sψ(nsa, b) = lim

n→∞ n−sψ(a,nsb) = 0(a, b ∈ A) (5:1)

such that

‖ aδ(b) − ε(a)b ‖ ≤ ψ(a, b)

‖ ε(a)cd − a(δ(c)d − cδ(d)) ‖ ≤ ψ(a, cd)

‖ aδ(b)∗ − ε(a)b∗ ‖ ≤ ψ(a, b)

for all a, b, c, d ∈ A. Then δ is called a (ψ, ε)-approximate *-derivation on A.

Theorem 5.2 Let Abe a C*-algebra. Then any (ψ, ε)-approximate *-derivation δ on

Ais a *-derivation.

Proof. We assume that (5.1) holds. Let a, b ∈ A and l Î ℂ. We have

‖ b(δ(λa) − λδ(a)) ‖ ≤ n−s ‖ nsbδ(λa) − λnsbδ(a) ‖
≤ n−s ‖ nsbδ(λa) − ε(nsb)λa ‖ +n−s ‖ ε(nsb)λa − λnsbδ(a) ‖
≤ n−sψ(nsb,λa) + n−s|λ|ψ(nsb, a),

which tends to zero as n ® ∞, and so b(δ(la) - lδ(a)) = 0 for all b ∈ A. Let {ei}iÎI be

an approximate unit of A. If we replace b with {ei}, then we have

‖ ei(δ(λa) − λδ(a)) ‖ = 0

for all i Î I. So we conclude that δ(la) = lδ(a) for all a ∈ A and l Î ℂ.

The additivity of δ follows from

‖ c(δ(a + b) − δ(a) − δ(b)) ‖
≤ n−s ‖ nscδ(a + b) − ε(nsc)(a + b) ‖ +n−s ‖ nscδ(a) − ε(nsc)a) ‖ +n−s ‖ nscδ(b) − ε(nsc)b)

≤ n−sψ(nsc, a + b) + n−sψ(nsc, a) + n−sψ(nsc, b).

By the same process, using the approximate unit of A, we have that δ(a + b) - δ(a)

-δ(b) for all a, b ∈ A.

The following computation

‖ z(δ(ab) − δ(a)b − aδ(b)) ‖
≤ n−s ‖ nszδ(ab) − ε(nsz)(ab) ‖ +n−s ‖ ε(nsz)ab − nsz(δ(a)b + aδ(b)) ‖
≤ n−sψ(nsz, ab) + n−sψ(nsz, ab)

yields that δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A.
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Finally, on the involution, we have that

‖ z(δ(a∗) − δ(a)∗) ‖ ≤ n−s ‖ nszδ(a∗) − ε(nsz)a∗ ‖
+ n−s ‖ ε(nsz)a∗ − nszδ(a)∗ ‖

≤ n−sψ(n−sz, a∗) + n−sψ(nsz, a).

Thus, δ(a)* = δ(a) * for all a ∈ A. □
Therefore, δ is a *-derivation on A.

Corollary 5.3 Suppose that Ais a C*-algebra and that δ : A → Ais a mapping for

which there exist nonnegative real numbers a, b and positive real numbers p1, p2, q1,

q2 with p1, p2, q1, q2 < 1 such that

‖ aδ(b) − ε(a)b ‖ ≤ α(‖ a‖p1+ ‖ b‖p2 ) + β ‖ a‖q1 ‖ b‖q2 ,
‖ ε(a)cd − a(δ(c)d − cδ(d)) ‖ ≤ α(‖ a‖p1+ ‖ cd‖p2 ) + β ‖ a‖q1 ‖ cd‖q2 ,
‖ aδ(b)∗ − ε(a)b∗ ‖ ≤ α(‖ a‖p1+ ‖ b‖p2 ) + β ‖ a‖q1 ‖ b‖q2

for all a, b, c, d ∈ A. Then δ is a *-derivation of A.

Next, we prove the superstability of quadratic *-derivations on C*-algebras.

Definition 5.4 Suppose that Ais a *-normed algebra and s Î{-1, 1}. Let δ : A → Abe

a mapping for which there exist a function ψ : A × A → [0,∞)and a mapping

lim
n→∞ n−2sψ(nsa, b) = lim

n→∞ n−2sψ(a,nsb) = 0(a, b ∈ A)satisfying

lim
n→∞ n−2sψ(nsa, b) = lim

n→∞ n−2sψ(a,nsb) = 0(a, b ∈ A) (5:2)

such that

‖ a2δ(b) − ε(a)b2 ‖ ≤ ψ(a, b)

‖ ε(a)(cd)2 − a2(δ(c)d2 − c2δ(d)) ‖ ≤ ψ(a, cd)

‖ a2δ(b∗) − ε(a)(b2)∗ ‖ ≤ ψ(a, b)

for all a,b,c,d Î A. Then δ is called a (ψ, ε)-approximate quadratic *-derivation on A.

Theorem 5.5 Suppose that Ais a C*-algebra and s Î{-1, 1}. Let δ : A → Abe a (ψ,

ε)-approximate quadratic *-derivation on A. Then δ is a quadratic *-derivation on A.

Proof. We assume that (5.2) holds. We first show that δ is quadratic homogeneous.

To do this, pick l Î ℂ and a, b ∈ A. Then, we have

‖ b2(δ(λa) − λ2δ(a)) ‖ = n−2s ‖ n2sb2δ(λa) − λ2n2sb2δ(a) ‖
≤ n−2s ‖ n2sb2δ(λa) − ε(nsb)(λa)2 ‖ +n−2s ‖ λ2ε(nsb)a2 − λ2n2sb2δ(a) ‖
≤ n−2sψ(nsb,λa) + n−2s|λ|2ψ(nsb, a).

So

‖ b2(δ(λa) − λ2δ(a)) ‖ ≤ n−2sψ(nsb,λa) + |λ|2n−2sψ(nsb, a),

which tends to 0 as n ® ∞. Let {ei}iÎI be an approximate unit of A. Then, {f(ei)|i Î I}

is also an approximate unit of A for every polynomial f. Considering ei instead of b in

the above inequality, we conclude that δ(la) = l2δ(a) for all l Î ℂ.
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The quadraticity of δ follows from

‖ d2(δ(a + b) + δ(a − b) − 2δ(a) − 2δ(b)) ‖
= n−2s ‖ n2sd2δ(a + b) + n2sd2δ(a − b) − 2n2sd2δ(a) − 2n2sd2δ(b) ‖
≤ n−2s[‖ n2sd2δ(a + b) − ε(nsd)(a + b)2 ‖

+n−2s ‖ n2sd2δ(a − b) − ε(nsd)(a − b)2 ‖
+2n−2s ‖ δ(nsd)a2 − n2sd2δ(a) ‖ +2n−2s ‖ δ(nsd)b2 − n2sd2δ(b) ‖]

≤ n−2s[ψ(nsd, a + b) + ψ(nsd, a − b) + 2ψ(a,nsd) + 2ψ(b,nsd)]

for all a, b, d ∈ A. Thus, we have δ(a + b) + δ(a - b) -2δ(a) - 2δ(b) = 0 for all∥∥d2(δ(ab) − (δ(a)b2 + a2δ(b))
∥∥ = n−2s ‖ n2sd2(δ(ab) − δ(a)b2 − a2δ(b)) ‖

≤ n−2s[‖ n2sd2δ(ab) − ε(nsd)(ab)2 ‖
+ n−2s ‖ ε(nsd)(ab)2 − n2sd2δ(a)b2 + n2sd2a2δ(b) ‖]

≤ n−2s[ψ(nsd, ab) + ψ(nsd, ab)]

.

∥∥d2(δ(ab) − (δ(a)b2 + a2δ(b))
∥∥ = n−2s ‖ n2sd2(δ(ab) − δ(a)b2 − a2δ(b)) ‖

≤ n−2s[‖ n2sd2δ(ab) − ε(nsd)(ab)2 ‖
+ n−2s ‖ ε(nsd)(ab)2 − n2sd2δ(a)b2 + n2sd2a2δ(b) ‖]

≤ n−2s[ψ(nsd, ab) + ψ(nsd, ab)]

for all a, b, d ∈ A. So δ(ab) = δ(a)b2 + a2δ(b).

The rest of the proof is similar to the proof of Theorem 5.2.

Therefore, δ is a quadratic *-derivation on A. □
Corollary 5.6 Suppose that Ais a C*-algebra and that δ : A → Ais a mapping for

which there exist a nonnegative real number a and a positive real number p with p < 2

such that

‖ a2δ(b) − δ(a)b2 ‖ ≤ α ‖ a‖p ‖ b‖p,
‖ ε(a)(cd)2 − a2(δ(c)d2 − c2δ(d)) ‖ ≤ α ‖ a‖p ‖ cd‖p,
‖ a2δ(b∗) − ε(a)(b2)∗ ‖ ≤ α ‖ a‖p ‖ b‖p

for all a, b, c, d Î A. Then δ is a quadratic *-derivation on A.
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