
RESEARCH Open Access

Approximately cubic functional equations and
cubic multipliers
Abasalt Bodaghi1*, Idham Arif Alias2 and Mohammad Hossein Ghahramani1

* Correspondence: abasalt.
bodaghi@gmail.com
1Department of Mathematics,
Garmsar Branch, Islamic Azad
University, Garmsar, Iran
Full list of author information is
available at the end of the article

Abstract

In this paper, we prove the Hyers-Ulam stability and the superstability for cubic
functional equation by using the fixed point alternative theorem. As a consequence,
we show that the cubic multipliers are superstable under some conditions.
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1. Introduction
The stability problem for functional equations is related to the following question origi-

nated by Ulam [1] in 1940, concerning the stability of group homomorphisms: Let (G1,

.) be a group and let (G2, *) be a metric group with the metric d(., .). Given ε >0, does

there exist δ >0 such that, if a mapping h : G1 ® G2 satisfies the inequality d(h(x.y), h(x)

* h(y)) < δ for all x, y Î G1, then there exists a homomorphism H : G1 ® G2 with d(h(x),

H(x)) < ε for all x Î G1?

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach

spaces. Later, Rassias in [3] provided a remarkable generalization of the Hyers’ result

by allowing the Cauchy difference to be bounded for the first time, in the subject of

functional equations and inequalities. Gǎvruta then generalized the Rassias’ result in

[4] for the unbounded Cauchy difference.

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1:1)

is called quadratic functional equation. Also, every solution (for example f(x) = ax2)

of functional Equation (1.1) is said to be a quadratic mapping. A Hyers-Ulam stability

problem for the quadratic functional equation was proved by Skof [5] for mappings

f : X → Y, where X is a normed space and Y is a Banach space. Cholewa [6] noticed

that the theorem of Skof is still true if the relevant domain X is replaced by an abelian

group. In [7] Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic func-

tional equation. Several functional equations have been extensively investigated by a

number of authors (for instances, [8-10]).

Jun and Kim [11] introduced the functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x) (1:2)
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which is somewhat different from (1.1). It is easy to see that function f(x) = ax3 is a

solution of (1.2). Thus, it is natural that Equation (1.2) is called a cubic functional

equation and every solution of this cubic functional equation is said to be a cubic func-

tion. One year after that, they solved the generalized Hyers-Ulam-Rassias stability of a

cubic functional equation f(x + 2y) + f(x - 2y) + 6f(x) = f(x + y) + 4f(x - y) in Jun and

Kim [12]. Since then, a number of authors (for details see [13,14]) proved the stability

problems for cubic functional equation.

Recently, Bodaghi et al in [15] proved the superstability of quadratic double centrali-

zers and of quadratic multipliers on Banach algebras by fixed point methods. Also, the

stability and the superstability of cubic double centralizers of Banach algebras which

are strongly without order had been established in Eshaghi Gordji et al. [16].

In this paper, we remove the condition strongly without order and investigate the

generalized Hyers-Ulam-Rassias stability and the superstability by using the alternative

fixed point for cubic functional Equation (1.2) and their correspondent cubic

multipliers.

2. Stability of cubic function equations
Throughout this section, X is a normed vector space and Y is a Banach space. For the

given mapping f : X ® Y , we consider

Df (x, y) := f (2x + y) + f (2x − y) − 2f (x + y) − 2f (x − y) − 12f (x)

for all x, y Î X.
We need the following known fixed point theorem, which is useful for our goals (an

extension of the result was given in Turinici [17]).

Theorem 2.1. (The fixed point alternative [18]) Suppose that (Ω, d) a complete gen-

eralized metric space and let J : � → �be a strictly contractive mapping with

Lipschitz constant L <1. Then for each element x Î Ω, either d(J nx,J n+1x) = ∞for all

n ≥ 0, or there exists a natural number n0 such that:

(i) d(J nx,J n+1x) < ∞for all n ≥ n0;

(ii) the sequence {J nx}is convergent to a fixed point y* of J ;

(iii) y* is the unique fixed point of J in the set

� = {y ∈ � : d(J n0x, y ) < ∞};

(iv) d(y, y∗) ≤ 1
1 − L

d(y, J y)for all y Î Λ.

Theorem 2.2. Let f : X ® Y be a mapping with f(0) = 0, and let ψ : X × X ® [0, ∞)

be a function satisfying

lim
n→∞

ψ(2nx, 2ny)
8n

= 0 (2:1)

and

||Df (x, y)|| ≤ ψ(x, y) (2:2)
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for all x, y Î X. If there exists L Î (0, 1) such that

ψ(2x, 0) ≤ 8Lψ(x, 0) (2:3)

for all x Î X, then there exists a unique cubic mapping C : X ® Y such that

||f (x) − C(x)|| ≤ L

2(1 − L)
ψ(x, 0) (2:4)

for all x Î X.

Proof: We consider the set Ω := {g : X ® Y | g(0) = 0} and introduce the generalized

metric on Ω as follows:

d(g1, g2) := inf{C ∈ (0,∞) : ||g1(x) − g2(x)|| ≤ Cψ(x, 0) for all x ∈ X}

if there exists such constant C, and d(g1, g2) = ∞, otherwise. One can prove that the

metric space (Ω, d) is complete. Now, we define the mapping J : � → � by

J g(x) =
1
8
g(2x), (x ∈ X).

If g1, g2 Î Ω such that d(g1, g2) < C, by definition of d and J , we have
∥∥∥∥
1
8
g1(2x) −1

8
g2(2x)

∥∥∥∥ ≤ 1
8
Cψ(2x, 0)

for all x Î X. By using (2.3), we get
∥∥∥∥
1
8
g1(2x) − 1

8
g2(2x)

∥∥∥∥ ≤ CLψ(x, 0)

for all x Î X. The above inequality shows that d(J g1,J g2) ≤ Ld(g1, g2) for all g1, g2
Î Ω. Hence, J is a strictly contractive mapping on Ω with Lipschitz constant L. Put-

ting y = 0 in (2.2), using (2.3), and dividing both sides of the resulting inequality by 16,

we have
∥∥∥∥
1
8
f (2x) − f (x)

∥∥∥∥ ≤ 1
16

ψ(x, 0) ≤ 1
2
Lψ

( x
2
, 0

)

for all x Î X. Thus,d(f , J f ) ≤ L
2

< ∞. By Theorem 2.1, the sequence {J nf } con-
verges to a fixed point C : X ® Y in the set Ω1 = {g Î Ω; d(f, g) <∞}, that is

C(x) = lim
n→∞

f (2nx)
8n

(2:5)

for all x Î X. By Theorem 2.1, we have

d(f , C) ≤ d(f ,J f )
1 − L

≤ L
2(1 − L)

. (2:6)

It follows from (2.6) that (2.4) holds for all x Î X. Substituting x, y by 2nx, 2ny in

(2.2), respectively, and applying (2.1) and (2.5), we have

||DC(x, y)|| = lim
n→∞

1
8n

||Df (2nx, 2ny)||

≤ lim
n→∞

1
8n

ψ(2nx, 2ny) = 0
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for all x Î X. Therefore C is a cubic mapping, which is unique. □
Corollary 2.3. Let p and l be non-negative real numbers such that p <3. Suppose

that f : X ® Y is a mapping satisfying

||Df (x, y)|| ≤ λ(||x||p + ||y||p) (2:7)

for all x, y Î X. Then, there exists a unique cubic mapping C : X ® Y such that

||f (x) − C(x)|| ≤ 2pλ
2(8 − 2p)

||x||p (2:8)

for all x Î X.

Proof: The result follows from Theorem 2.2 by using ψ(x, y) = l(||x||p + ||y||p). □
Now, we establish the superstability of cubic mapping on Banach spaces.

Corollary 2.4. Let p, q, l be non-negative real numbers such that p, q Î (3, ∞).

Suppose a mapping f : X ® Y satisfies

||Df (x, y)|| ≤ λ||x||q||y||p (2:9)

for all x, y Î X. Then, f is a cubic mapping on X.

Proof: Letting x = y = 0 in (2.9), we get f(0) = 0. Once more, if we put x = 0 in (2.9),

we have f(2x) = 8f(x) for all x Î X. It is easy to see that by induction, we have f(2nx) =

8nf(x), and so f (x) =
f (2nx)
8n

for all x Î X and n Î N. Now, it follows from Theorem

2.2 that f is a cubic mapping. □
Note that in Corollary 2.4, if p + q Î (0, 3) and p >0 such that the inequality (2.9)

holds, then by applying ψ(x, y) = l||x||p||y||q in Theorem 2.2, f is again a cubic

mapping.

Theorem 2.5. Let f : X ® Y be a mapping with f(0) = 0, and let ψ : X × X ® [0, ∞)

be a function satisfying

lim
n→∞ 8nψ

( x
2n

,
y
2n

)
= 0 (2:10)

and

||Df (x, y)|| ≤ ψ(x, y) (2:11)

for all x, y Î X. If there exists L Î (0, 1) such that

ψ(x, 0) ≤ 1
8
Lψ(2x, 0) (2:12)

for all x Î X, then there exists a unique cubic mapping C : X ® Y such that

||f (x) − C(x)|| ≤ L

16(1 − L)
ψ(x, 0) (2:13)

for all x Î X.

Proof: We consider the set Ω := {g : X ® Y | g(0) = 0} and introduce the generalized

metric on Ω:

d(g1, g2) := inf{C ∈ (0,∞) : ||g1(x) − g2(x)|| ≤ Cψ(x, 0) ∀x ∈ X}

if there exists such constant C, and d(g1, g2) = ∞, otherwise. It is easy to show that

(Ω, d) is complete. We will show that the mapping J : � → � defined by
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J g(x) = 8g
( x

2

)
; (x Î X) is strictly contractive. For given g1, g2 Î Ω such that d(g1, g2)

< C, we have

∥∥∥8g1
( x

2

)
− 8g2(

x

2
)
∥∥∥ ≤ 1

8
Cψ(2x, 0)

for all x Î X. By using (2.12), we obtain
∥∥∥8g1

( x

2

)
− 8g2

( x

2

)∥∥∥ ≤ CLψ(x, 0)

for all x Î X. It follows from the last inequality that d(J g1,J g2) ≤ Ld(g1, g2) for all

g1, g2 Î Ω. Hence, J is a strictly contractive mapping on Ω with Lipschitz constant L.

By putting y = 0 and replacing x by
x

2
in (2.11) and using (2.12), then by dividing both

sides of the resulting inequality by 2, we have

∥∥∥8f ( x
2
) − f (x)

∥∥∥ ≤ 1
2

ψ
( x
2
, 0

)
≤ 1

16
Lψ(x, 0)

for all x Î X. Hence, d(f ,J f ) ≤ L
16

< ∞. By applying the fixed point alternative,

there exists a unique mapping C : X ® Y in the set Ω1 = {g Î Ω; d(f, g) <∞} such that

C(x) = lim
n→∞ 8nf

( x
2n

)
(2:14)

for all x Î X. Again, Theorem 2.1 shows that

d(f , C) ≤ d(f ,J f )
1 − L

≤ L
16(1 − L)

(2:15)

where the inequality (2.15) implies the relation (2.13). Replacing x, y by 2nx, 2ny in

(2.11), respectively, and using (2.10) and (2.14), we conclude

||DC(x, y)|| = lim
n→∞ 8n

∥∥∥Df
( x
2n

,
y
2n

)∥∥∥
≤ lim

n→∞8nψ
( x
2n

,
y
2n

)
= 0

for all x Î X. Therefore C is a cubic mapping. □
Corollary 2.6. Let p and l be non-negative real numbers such that p >3. Suppose

that f : X ® Y is a mapping satisfying

||Df (x, y ) || ≤ λ(||x||p + ||y||p)

for all x, y Î X. Then there exists a unique cubic mapping C : X ® Y such that

||f (x) − C(x)|| ≤ λ

2(2p − 8)
||x||p

for all x Î X.

Proof: It is enough to let ψ(x, y) = l(||x||p + ||y||p) in Theorem 2.5. □
Corollary 2.7. Let p, q, l be non-negative real numbers such that p + q Î (0, 3) and

p >0. Suppose a mapping f : X ® Y satisfies

||Df (x, y)|| ≤ λ||x||q||y||p (2:16)
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for all x, y Î X. Then, f is a cubic mapping on X.

Proof: If we put x = y = 0 in (2.16), we get f(0) = 0. Again, putting x = 0 in (2.16),

we conclude that f (x) = 8f
( x

2

)
, and thus f (x) = 8nf

( x

2n

)
for all x Î X and n Î N.

Now, we can obtain the desired result by Theorem 2.5. □
One should remember that if a mapping f : X ® Y satisfies the inequality (2.16), where

p, q, l be non-negative real numbers such that p + q >3 and p >0, then it is obvious that

f is a cubic mapping on X by putting ψ(x, y) = l||x||p||y||q in Theorem 2.5.

3. Stability of cubic multipliers
In this section, we investigate the Hyers-Ulam stability and the superstability of cubic

multipliers.

Definition 3.1. A cubic multiplier on an algebra A is a cubic mapping T : A ® A

such that aT(b) = T(a)b for all a, b Î A.

The following example introduces a cubic multiplier on Banach algebras.

Example. Let (A, ||·||) be a Banach algebra. Then, we take B = A × A × A × A × A × A =

A6. Let a = (a1, a2, a3, a4, a5, a6) be an arbitrary member of B where we define

| ||a|| | =
∑6

i=1 ||ai||. It is easy to see (B, |||·|||)) is a Banach space. For two elements a =

(a1, a2, a3, a4, a5, a6) and b = (b1, b2, b3, b4, b5, b6) of B, we define ab = (0, a1b4, a1b5 +

a2b6, 0, a4b6, 0). It is easy to show that B is a Banach algebra. We define T : B ® B by T

(a) = a3 for all a Î B. It is shown in Eshaghi Gordji et al. [16] that T is a cubic multiplier

on A.

Theorem 3.2. Let f : A ® A be a mapping with f(0) = 0 and let ψ: A4 ® [0, ∞) be a

function such that

||Df (x, y) + f (z)w − z f (w)|| ≤ ψ(x, y, z, w) (3:1)

for all x, y, z, w Î A. If there exists a constant L Î (0, 1) such that

ψ(2x, 2y, 2z, 2w) ≤ 8Lψ(x, y, z, w) (3:2)

for all x, y, z, w Î A, then there exists a unique cubic multiplier T on A satisfying

||f (x) − T(x)|| ≤ L

2(1 − L)
ψ(x, x, 0, 0) (3:3)

for all x Î A.

Proof. It follows from the relation (3.2) that

lim
n→∞

ψ(2nx, 2ny, 2nz, 2nw)
8n

= 0 (3:4)

for all x, y, z, w Î A.

Putting y = z = w = 0 in (3.1), we obtain

||2f (2x) − 16f (x)|| ≤ ψ(x, 0, 0, 0)

for all x Î A. Thus,
∥∥∥∥
1
8
f (2x) − f (x)

∥∥∥∥ ≤ 1
16

ψ(x, 0, 0, 0) (3:5)

for all x Î A.
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Now, similar to the proof of theorems in previous section, we consider the set X :=

{h : A ® A | h(0) = 0} and introduce the generalized metric on X as:

d(h1, h2) := inf{C ∈ R+ : ||h1(x) − h2(x)|| ≤ Cψ(x, 0, 0, 0) for all x ∈ A}
if there exists such constant C, and d(h1, h2) = ∞, otherwise. The metric space (X, d)

is complete, and by the same reasoning as in the proof of Theorem 2.2, the mapping

F: X ® X defined by �(h)(x) =
1
8
h(2x); (x Î A) is strictly contractive on X and has a

unique fixed point T such that limn→∞ d(�nf , T) = 0, i.e.,

T(x) = lim
n→∞

f (2nx)
8n

(3:6)

for all x Î A. By Theorem 2.1, we have

d(f , T) ≤ d(f ,� f )
1 − L

≤ L
2(1 − L)

. (3:7)

The proof of Theorem 2.2 shows that T is a cubic mapping. If we substitute z and w

by 2nz and 2nw in (3.1), respectively, and put x = y = 0 and we divide the both sides of

the obtained inequality by 24n, we get
∥∥∥∥z

f (2nw)
8n

− f (2nz)
8n

w

∥∥∥∥ ≤ ψ(0, 0, 2nz, 2nw)
24n

.

Passing to the limit as n ® ∞ and from (3.4), we conclude that zT(w) = T(z)w for all

z, w Î A. □
Corollary 3.3. Let r, θ be non-negative real numbers with r <3 and let f : A ® A be a

mapping with f(0) = 0 such that

||Df (x, y) + f (z)w − z f (w)|| ≤ θ(||x||r + ||y||r + ||z||r + ||w||r)
for all x, y, z, w Î A. Then, there exists a unique cubic multiplier T on A satisfying

||f (x) − T(x)|| ≤ 2r−1θ

8 − 2r
||x||r

for all x Î A.

Proof. The proof follows from Theorem 3.2 by taking

ψ(x, y, z,w) = θ(||x||r + ||y||r + ||z||r + ||w||r)
for all x, y, z, w Î A. □
Now, we have the following result for the superstability of cubic multipliers.

Corollary 3.4. Let rj(1 ≤ j ≤ 4). θ be non-negative real numbers with
∑4

j=1 rj < 3 and

let f : A ® A be a mapping with f (0) = 0 such that

||Df (x, y) + f (z)w − z f (w)|| ≤ θ(||x||r1 ||y||r2 ||z||r3 ||w||r4 )

for all x, y, z, w Î A. Then, f is a cubic multiplier on A.

Proof. It is enough to let ψ(x, y, z,w) = θ(||x||r1 ||y||r2 ||z||r3 ||w||r4 ) in Theorem 3.2. □
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