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Abstract

In this paper, we consider the twisted Carlitz’s q-Bernoulli numbers using p-adic q-
integral on ℤp. From the construction of the twisted Carlitz’s q-Bernoulli numbers, we
investigate some properties for the twisted Carlitz’s q-Bernoulli numbers. Finally, we
give some relations between the twisted Carlitz’s q-Bernoulli numbers and q-
Bernstein polynomials.

Keywords: q-Bernoulli numbers, p-adic q-integral, twisted

1. Introduction and preliminaries
Let p be a fixed prime number. Throughout this paper, ℤp, Qp and Cp will denote the

ring of p-adic integers, the field of p-adic rational numbers and the completion of alge-

braic closure of Qp, respectively. Let N be the set of natural numbers, and let ℤ+ = N ∪

{0}. Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = 1
p. In this

paper, we assume that q ∈ Cp with |1 - q|p < 1. The q-number is defined by

[x]q =
1 − qx

1 − q
. Note that limq ® 1 [x]q = x.

We say that f is a uniformly differentiable function at a point a Î ℤp, and denote

this property by f Î UD(ℤp), if the difference quotient Ff (x, y) =
f (x)−f (y)

x−y has a limit

f’(a) as (x, y) ® (a, a). For f Î UD(ℤp), the p-adic q-integral on ℤp, which is called the

q-Volkenborn integral, is defined by Kim as follows:

Iq(f ) =
∫
Zp

f (x)dμq(x) = lim
N→∞

1
[pN]q

pN−1∑
x=0

f (x)qx, (see [1]). (1)

In [2], Carlitz defined q-Bernoulli numbers, which are called the Carlitz’s q-Bernoulli

numbers, by

β0,q = 1, and q(qβ + 1)n − βn,q =
{
1 if n = 1,
0 if n > 1,

(2)

with the usual convention about replacing bn by bn, q.
In [2,3], Carlitz also considered the expansion of q-Bernoulli numbers as follows:

β
(h)
0,q =

h
[h]q

, and qh(qβ(h) + 1)n − β
(h)
n,q =

{
1 if n = 1,
0 if n > 1, (3)
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with the usual convention about replacing (b(h))n by β
(h)
n,q.

Let Cpn = {ξ |ξ pn = 1} be the cyclic group of order pn, and let Tp = limn→∞Cpn = Cp∞ =
⋃
n≥0

Cpn

(see [1-16]). Note that Tp is a locally constant space.

For ξ Î Tp, the twisted q-Bernoulli numbers are defined by

t
ξet − 1

= eBξ t =
∞∑
n=0

Bn,ξ
tn

n!
, (4)

(see [1-19]). From (4), we note that

B0,q = 0, and ξ(Bξ + 1)n − Bn,ξ =
{
1 if n = 1,
0 if n > 1,

(5)

with the usual convention about replacing Bn
ξ by Bn,ξ (see [17-19]). Recently, several

authors have studied the twisted Bernoulli numbers and q-Bernoulli numbers in the

area of number theory(see [17-19]).

In the viewpoint of (5), it seems to be interesting to investigate the twisted properties

of (3). Using p-adic q-integral equation on ℤp, we investigate the properties of the

twisted q-Bernoulli numbers and polynomials related to q-Bernstein polynomials. From

these properties, we derive some new identities for the twisted q-Bernoulli numbers

and polynomials. Final purpose of this paper is to give some relations between the

twisted Carlitz’s q-Bernoulli numbers and q-Bernstein polynomials.

2. On the twisted Carlitz ‘s q-Bernoulli numbers
In this section, we assume that n Î ℤ+, ξ Î Tp and q ∈ Cp with |1 - q|p < 1.

Let us consider the nth twisted Carlitz’s q-Bernoulli polynomials using p-adic q-

integral on ℤp as follows:

βn,ξ ,q(x) =
∫
Zp

[y + x]nqξ
ydμq(y)

=
1

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lqlx

∫
Zp

ξ yqlydμq(y)

=
1

(1 − q)n−1

n∑
l=0

(
n
l

)(
l + 1

1 − ξql+1

)
(−1)lqlx.

(6)

In the special case, x = 0, bn,ξ,q(0) = bn,ξ,q are called the nth twisted Carlitz’s

q-Bernoulli numbers.

From (6), we note that

βn,ξ ,q(x) =
1

(1 − q)n−1

n−1∑
l=0

(
n
l

)
(−1)lqlx

(
1

1 − ξql+1

)

+
1

(1 − q)n−1

n∑
l=0

(
n
l

)
(−1)lqlx

(
1

1 − ξql+1

)

= −n
∞∑
m=0

ξmq2m+x[x +m]n−1
q +

∞∑
m=0

ξmqm(1 − q)[x +m]nq .

(7)

Therefore, by (7), we obtain the following theorem.
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Theorem 1. For n Î ℤ+, we have

βn,ξ ,q(x) = −n
∞∑
m=0

ξmqm[x +m]n−1
q + (1 − q)(n + 1)

∞∑
m=0

ξmqm[x +m]nq .

Let Fq, ξ (t, x) be the generating function of the twisted Carlitz’s q-Bernoulli poly-

nomials, which are given by

Fq,ξ (t, x) = eβξ ,q(x)t =
∞∑
n=0

βn,ξ ,q(x)
tn

n!
, (8)

with the usual convention about replacing (bξ,q(x))n by bn,ξ,q(x).
By (8) and Theorem 1, we get

Fq,ξ (t, x) =
∞∑
n=0

βn,ξ ,q(x)
tn

n!

= −t
∞∑
m=0

ξmq2m+xe[x+m]qt + (1 − q)
∞∑
m=0

ξmqme[x+m]qt.

(9)

Let Fq,ξ(t, 0) = Fq,ξ(t). Then, we have

qξFq,ξ (t, 1) − Fq,ξ (t) = t + (q − 1). (10)

Therefore, by (9) and (10), we obtain the following theorem.

Theorem 2. For n Î ℤ+, we have

β0,ξ ,q(x) =
q − 1
qξ − 1

, and qξβn,ξ ,q(1) − βn,ξ ,q =
{
1 if n = 1,
0 if n > 1.

From (6), we note that

βn,ξ ,q(x) =
n∑
l=0

(
n
l

)
[x]n−l

q qlx
∫
Zp

ξ y[y]lqdμq(y)

=
n∑
l=0

(
n
l

)
[x]n−l

q qlxβl,ξ ,q

=
(
[x]q + qxβξ ,q

)n
,

(11)

with the usual convention about replacing (bξ,q)n by bn,ξ,q. By (11) and Theorem 2,

we get

qξ(qβξ ,q + 1)n − βn,ξ ,q =

⎧⎨
⎩
q − 1 if n = 0,
1 if n = 1,
0 if n > 1.

(12)

It is easy to show that

βn,ξ−1,q−1 (1 − x) =
∫
Zp

ξ−y[1 − x + y]nq−1dμq−1 (y)

=
(−1)nqn

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lq−l+lx

∫
Zp

ξ−yq−lydμq−1 (y)

= ξqn(−1)n
(

1

(1 − q)n−1

n∑
l=0

(
n
l

)
(−1)lqlx(

l + 1
1 − ξql+1

)

)

= ξqn(−1)nβn,ξ ,q(x).

(13)
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Therefore, by (13), we obtain the following theorem.

Theorem 3. For n Î ℤ+, we have

βn,ξ−1,q−1 (1 − x) = ξqn(−1)nβn,ξ ,q(x).

From Theorem 3, we can derive the following functional equation:

Fq−1,ξ−1 (t, 1 − x) = ξFq,ξ (−qt, x). (14)

Therefore, by (14), we obtain the following corollary.

Corollary 4. Let Fq,ξ (t, x) =
∑∞

n=0 βn,ξ ,q(x) tn

n!. Then we have

Fq−1,ξ−1 (t, 1 − x) = ξFq,ξ (−qt, x).

By (11), we get that

q2ξ2βn,ξ ,q(2) = q2ξ2
n∑
l=0

(
n
l

)
ql(1 + qβξ ,q)

l

= q2ξ2(
1 − q
1 − qξ

) +
(
n
1

)
q2ξ(1 + β1,ξ ,q) + q2ξ2

n∑
l=0

(
n
l

)
qlβl,ξ ,q(1)

= (1 − q)
q2ξ2

1 − qξ
+

(
n
1

)
q2ξ + qξ

n∑
l=0

(
n
l

)
qlβl,ξ ,q

=
1 − q
1 − qξ

q2ξ2 + nq2ξ − qξ
1 − q
1 − qξ

+ βn,ξ ,q, if n > 1.

(15)

Therefore, by (15), we obtain the following theorem.

Theorem 5. For n Î N with n > 1, we have

βn,ξ ,q(2) =
1 − q

1 − qξ
+
n

ξ
− 1

qξ
(
1 − q

1 − qξ
) + (

1
qξ

)2βn,ξ ,q.

By a simple calculation, we easily set

ξ

∫
Zp

[1 − x]nq−1 ξ
xdμq(x) = ξ(−1)nqn

∫
Zp

[x − 1]nqξ
xdμq(x)

= ξ(−1)nqnβn,ξ ,q(−1) = βn,ξ−1,q−1 (2).

(16)

For n Î ℤ+ with n > 1, we have

ξ

∫
Zp

[1 − x]nq−1ξ
xdμq(x) = βn,ξ−1,q−1 (2)

= ξ(
1 − q
1 − qξ

) + nξ − qξ2(
1 − q
1 − qξ

) + (qξ)2βn,ξ−1,q−1

= ξ(1 − q) + nξ + (qξ)2βn,ξ−1,q−1 .

(17)

Therefore, by (16) and (17), we obtain the following theorem.

Theorem 6. For n Î ℤ+ with n > 1, we have∫
Zp

[1 − x]nq−1ξ
xdμq(x) = (1 − q) + n + q2ξβn,ξ−1,q−1 .
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For x Îℤp and n, k Î ℤ+, the p-adic q-Bernstein polynomials are given by

Bk,n(x, q) =
(
n
k

)
[x]kq[1 − x]n−k

q−1 , (18)

(see [8,20]).

In [8], the q-Bernstein operator of order n is given by

Bn,q(f |x) =
n∑

k=0

f (
n

k
)Bk,n(x, q) =

n∑
k=0

f (
n

k
)
(
n
k

)
[x]kq[1 − x]n−k

q−1 .

Let f be continuous function on ℤp. Then, the sequence Bn,q(f |x) converges uniformly

to f on ℤp (see [8]). If q is same version in (18), we cannot say that the sequence

Bn,q(f |x) converges uniformly to f on ℤp.

Let s Î N with s ≥ 2. For n1, ..., ns, k Î ℤ+ with n1 + · · · + ns >sk + 1, we take the

p-adic q-integral on ℤp for the multiple product of q-Bernstein polynomials as follows:∫
Zp

ξ xBk,n1(x, q) · · · Bk,ns(x, q)dμq(x)

=
(
n1
k

)
. . .

(
ns
k

)∫
Zp

[x]kq[1 − x]n1+···+ns−sk
q−1 ξ xdμq(x)

=
(
n1
k

)
. . .

(
ns
k

) sk∑
l=0

(
sk
l

)
(−1)l+sk

∫
Zp

[1 − x]n1+···+ns−l
q−1 ξ xdμq(x)

=
(
n1
k

)
. . .

(
ns
k

) sk∑
l=0

(
sk
l

)
(−1)l+sk

×(q2ξβn1+···+ns−l,ξ−1,q−1 + n1 + · · · + ns − l + 1 − q)dμq(x)

=

{
q2ξβn1+···+ns ,ξ−1,q−1 + n1 + · · · + ns + (1 − q) if k = 0,

q2ξ
(n1
k

) · · · (nsk )∑sk
l=0

(
sk
l

)
(−1)l+skβn1+···+ns−l,ξ−1.q−1 if k > 0,

(19)

and we also have∫
Zp

ξ xBk,n1 (x, q) · · ·Bk,ns (x, q)dμq(x)

=
(
n1
k

)
. . .

(
ns
k

) n1+···+ns−sk∑
l=0

(
n1 + · · · + ns − sk

l

)
(−1)lβl+sk,ξ ,q.

(20)

By comparing the coefficients on the both sides of (19) and (20), we obtain the fol-

lowing theorem.

Theorem 7. Let s Î N with s ≥ 2. For n1, ..., ns, k Î ℤ+ with n1 + ... + ns >sk + 1, we

have

n1+···+ns−sk∑
l=0

(
n1 + · · · + ns − sk

l

)
(−1)lβl+sk,ξ ,q

=
{
q2ξβn1+···+ns ,ξ−1,q−1 + n1 + · · · + ns + (1 − q) if k = 0,
q2ξ

∑sk
l=0

(
sk
l

)
(−1)l+skβn1+···+ns−l,ξ−1 .q−1 if k > 0.
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