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Abstract

In order to unify some variational inequality problems, in this paper, a new system of
generalized quasivariational inclusion (for short, (SGQVI)) is introduced. By using
Banach contraction principle, some existence and uniqueness theorems of solutions
for (SGQVI) are obtained in real Banach spaces. Two new iterative algorithms to find
the common element of the solutions set for (SGQVI) and the fixed points set for
Lipschitz mappings are proposed. Convergence theorems of these iterative
algorithms are established under suitable conditions. Further, convergence rates of
the convergence sequences are also proved in real Banach spaces. The main results
in this paper extend and improve the corresponding results in the current literature.
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1 Introduction
Variational inclusion problems, which are generalizations of variational inequalities

introduced by Stampacchia [1] in the early sixties, are among the most interesting and

intensively studied classes of mathematics problems and have wide applications in the

fields of optimization and control, economics, electrical networks, game theory, engi-

neering science, and transportation equilibria. For the past decades, many existence

results and iterative algorithms for variational inequality and variational inclusion pro-

blems have been studied (see, for example, [2-13]) and the references cited therein).

Recently, some new and interesting problems, which are called to be system of varia-

tional inequality problems, were introduced and investigated. Verma [6], and Kim and

Kim [7] considered a system of nonlinear variational inequalities, and Pang [14]

showed that the traffic equilibrium problem, the spatial equilibrium problem, the Nash

equilibrium, and the general equilibrium programming problem can be modeled as a

system of variational inequalities. Ansari et al. [2] considered a system of vector varia-

tional inequalities and obtained its existence results. Cho et al. [8] introduced and stu-

died a new system of nonlinear variational inequalities in Hilbert spaces. Moreover,

they obtained the existence and uniqueness properties of solutions for the system of

nonlinear variational inequalities. Peng and Zhu [9] introduced a new system of gener-

alized mixed quasivariational inclusions involving (H, h)-monotone operators. Very
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recently, Qin et al. [15] studied the approximation of solutions to a system of varia-

tional inclusions in Banach spaces and established a strong convergence theorem in

uniformly convex and 2-uniformly smooth Banach spaces. Kamraksa and Wangkeeree

[16] introduced a general iterative method for a general system of variational inclusions

and proved a strong convergence theorem in strictly convex and 2-uniformly smooth

Banach spaces. Wangkeeree and Kamraksa [17] introduced an iterative algorithm for

finding a common element of the set of solutions of a mixed equilibrium problem, the

set of fixed points of an infinite family of nonexpansive mappings, and the set of solu-

tions of a general system of variational inequalities, and then proved the strong conver-

gence of the iterative in Hilbert spaces. Petrot [18] applied the resolvent operator

technique to find the common solutions for a generalized system of relaxed cocoercive

mixed variational inequality problems and fixed point problems for Lipschitz mappings

in Hilbert spaces. Zhao et al. [19] obtained some existence results for a system of var-

iational inequalities by Brouwer fixed point theory and proved the convergence of an

iterative algorithm infinite Euclidean spaces.

Inspired and motivated by the works mentioned above, the purpose of this paper is

to introduce and investigate a new system of generalized quasivariational inclusions

(for short, (SGQVI)) in q-uniformly smooth Banach spaces, and then establish the exis-

tence and uniqueness theorems of solutions for the problem (SGQVI) by using Banach

contraction principle. We also propose two iterative algorithms to find the common

element of the solutions set for (SGQVI) and the fixed points set for Lipschitz map-

pings. Convergence theorems with estimates of convergence rates are established

under suitable conditions. The results presented in this paper unifies, generalizes, and

improves some results of [6,15-20].

2 Preliminaries
Throughout this paper, without other specifications, we denote by Z+ and R the set of

non-negative integers and real numbers, respectively. Let E be a real q-uniformly

Banach space with its dual E*, q > 1, denote the duality between E and E* by 〈·, ·〉 and

the norm of E by || · ||, and T: E ® E be a nonlinear mapping. When {xn} is a

sequence in E, we denote strong convergence of {xn} to x Î E by xn ® x. A Banach

space E is said to be smooth if limt→0
||x+ty||−||x||

t exists for all x, y Î E with ||x|| = ||y||

= 1. It is said to be uniformly smooth if the limit is attained uniformly for ||x|| = ||y||

= 1. The function

ρE(t) = sup
{ ||x + y|| + ||x − y||

2
− 1 : ||x|| = 1, ||y|| ≤ t

}

is called the modulus of smoothness of E. E is called q-uniformly smooth if there

exists a constant c > 0 such that rE(t) ≤ ctq.

Example 2.1.[20] All Hilbert spaces, Lp(or lp) and the Sobolev spaces Wp
m, (p ≥ 2) are

2-uniformly smooth, while Lp(or lp) and Wp
m spaces (1 <p ≤ 2) are p-uniformly smooth.

The generalized duality mapping Jq: E ® 2E* is defined as

Jq(x) = {f ∗ ∈ E∗ : 〈f ∗, x〉 = ||f ∗||||x|| = ||x||q, ||f ∗|| = ||x||q−1}

for all x Î E. Particularly, J = J2 is the usual normalized duality mapping. It is well-

known that Jq(x) = ||x||q-2J(x) for x ≠ 0, Jq(tx) = tq-1Jq(x), and Jq(-x) = -Jq(x) for all x Î
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E and t Î [0, +∞), and Jq is single-valued if E is smooth. If E is a Hilbert space, then J

= I, where I is the identity mapping. Many properties of the normalized duality map-

ping Jq can be found in (see, for example, [21]). Let r1, r2 be two positive constants,

A1, A2 : E × E ® E be two single-valued mappings, M1, M2 : E ® 2E be two set-valued

mappings. The (SGQVI) problem is to find (x*, y*) Î E × E such that{
0 ∈ x∗ − y∗ + ρ1(A1(y∗, x∗) +M1(x∗)),
0 ∈ y∗ − x∗ + ρ2(A2(x∗, y∗) +M2(y∗)).

(2:1)

The set of solutions to (SGQVI) is denoted by Ω.

Special examples are as follows:

(I) If A1 = A2 = A, E = H is a Hilbert space, and M1(x) = M2(x) = ∂j (x) for all x Î
E, where j: E ® R ∪ {+∞} is a proper, convex, and lower semicontinuous functional,

and ∂j denotes the subdifferential operator of j, then the problem (SGQVI) is equiva-

lent to find (x*, y*) Î E × E such that{ 〈ρ1A(y∗, x∗) + x∗ − y∗, x − x∗〉 + φ(x) − φ(x∗) ≥ 0, ∀x ∈ E,
〈ρ2A(x∗, y∗) + y∗ − x∗, x − y∗〉 + φ(x) − φ(y∗) ≥ 0, ∀x ∈ E,

(2:2)

where r1, r2 are two positive constants, which is called the generalized system of

relaxed cocoercive mixed variational inequality problem [22].

(II) If A1 = A2 = A, E = H is a Hilbert space, and K is a closed convex subset of E,

M1(x) = M2(x) = ∂j (x) and j (x) = δK (x) for all x Î E, where δK is the indicator func-

tion of K defined by

φ(x) = δK(x) =
{
0 if x ∈ K,
+∞ otherwise,

then the problem (SGQVI) is equivalent to find (x*, y*) Î K × K such that{ 〈ρ1A(y∗, x∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K,
〈ρ2A(x∗, y∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K,

(2:3)

where r1, r2 are two positive constants, which is called the generalized system of

relaxed cocoercive variational inequality problem [23].

(III) If for each i Î {1, 2}, z Î E, Ai(x, z) = Ψi(x), for all x Î E, where Ψi : E ® E,

then the problem (SGQVI) is equivalent to find (x*, y*) Î E × E such that{
0 ∈ x∗ − y∗ + ρ1(�1(y∗) +M1(x∗)),
0 ∈ y∗ − x∗ + ρ2(�2(x∗) +M2(y∗)),

(2:4)

where r1, r2 are two positive constants, which is called the system of quasivariational

inclusion [15,16].

(IV) If A1 = A2 = A and M1 = M2 = M then the problem (SGQVI) is reduced to the

following problem: find (x*, y*) Î E × E such that{
0 ∈ x∗ − y∗ + ρ1(A(y∗, x∗) +M(x∗)),
0 ∈ y∗ − x∗ + ρ2(A(x∗, y∗) +M(y∗)), (2:5)

where r1, r2 are two positive constants.

(V) If for each i Î {1, 2}, z Î E, Ai(x, z) = Ψ (x), and M1(x) = M2(x) = M, for all x Î
E, where Ψ: E ® E, then the problem (SGQVI) is equivalent to find (x*, y*) Î E × E

such that
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{
0 ∈ x∗ − y∗ + ρ1(�(y∗) +M(x∗)),
0 ∈ y∗ − x∗ + ρ2(�(x∗) +M(y∗)),

where r1, r2 are two positive constants, which is called the system of quasivariational

inclusion [16].

We first recall some definitions and lemmas that are needed in the main results of

this work.

Definition 2.1.[21] Let M: dom(M) ⊂ E ® 2E be a set-valued mapping, where dom

(M) is effective domain of the mapping M. M is said to be

(i) accretive if, for any x, y Î dom(M), u Î M(x) and v Î M(y), there exists jq(x - y)

Î Jq(x - y) such that

〈u − v, jq(x − y)〉 ≥ 0.

(ii) m-accretive (maximal-accretive) if M is accretive and (I + rM)dom(M) = E holds

for every r > 0, where I is the identity operator on E.

Remark 2.1. If E is a Hilbert space, then accretive operator and m-accretive operator

are reduced to monotone operator and maximal monotone operator, respectively.

Definition 2.2. Let T: E ® E be a single-valued mapping. T is said to be a g-
Lipschitz continuous mapping if there exists a constant g > 0 such that

||Tx − Ty|| ≤ γ ||x − y||, ∀x, y ∈ E. (2:7)

We denote by F(T) the set of fixed points of T, that is, F(T) = {x Î E: Tx = x}. For

any nonempty set Ξ ⊂ E × E, the symbol Ξ ∩ F(T) ≠ ∅ means that there exist x*, y* Î
E such that (x*, y*) Î Ξ and {x*, y*} ⊂ F(T).

Remark 2.2. (1) If g = 1, then a g-Lipschitz continuous mapping reduces to a nonex-

pansive mapping.

(2) If g Î (0, 1), then a g-Lipschitz continuous mapping reduces to a contractive

mapping.

Definition 2.3. Let A: E × E ® E be a mapping. A is said to be

(i) τ-Lipschitz continuous in the first variable if there exists a constant τ > 0 such

that, for x, x̃ ∈ E,

||A(x, y) − A(x̃, ỹ)|| ≤ τ ||x − x̃||, ∀y, ỹ ∈ E.

(ii) a-strongly accretive if there exists a constant a > 0 such that

〈A(x, y) − A(x̃, ỹ), Jq(x − x̃)〉 ≥ α||x − x̃||q, ∀(x, y), (x̃, ỹ) ∈ E × E,

or equivalently,

〈A(x, y) − A(x̃, ỹ), J(x − x̃)〉 ≥ α||x − x̃||, ∀(x, y), (x̃, ỹ) ∈ E × E.

(iii) a-inverse strongly accretive or a-cocoercive if there exists a constant a > 0 such

that

〈A(x, y) − A(x̃, ỹ), Jq(x − x̃)〉 ≥ α||A(x, y) − A(x̃, ỹ)||q, ∀(x, y), (x̃, ỹ) ∈ E × E,

or equivalently,

〈A(x, y) − A(x̃, ỹ), J(x − x̃)〉 ≥ α||A(x, y) − A(x̃, ỹ)||, ∀(x, y), (x̃, ỹ) ∈ E × E.
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(iv) (μ, ν)-relaxed cocoercive if there exist two constants μ ≤ 0 and ν > 0 such that

〈A(x, y)−A(x̃, ỹ), Jq(x−x̃)〉 ≥ (−μ)||A(x, y)−A(x̃, ỹ)||q+ν||x−x̃||q, ∀(x, y), (x̃, ỹ) ∈ E×E.

Remark 2.3. (1) Every a-strongly accretive mapping is a (μ, a)-relaxed cocoercive for

any positive constant μ. But the converse is not true in general.

(2) The conception of the cocoercivity is applied in several directions, especially for

solving variational inequality problems by using the auxiliary problem principle and

projection methods [24]. Several classes of relaxed cocoercive variational inequalities

have been investigated in [18,23,25,26].

Definition 2.4. Let the set-valued mapping M: dom(M) ⊂ E ® 2E be m-accretive.

For any positive number r > 0, the mapping R(r, M) : E ® dom(M ) defined by

R(ρ,M)(x) = (I + ρM)−1(x), x ∈ E,

is called the resolvent operator associated with M and r, where I is the identity

operator on E.

Remark 2.4. Let C ⊂ E be a nonempty closed convex set. If E is a Hilbert space, and

M = ∂j, the subdifferential of the indicator function j, that is,

φ(x) = δC(x) =
{
0 if x ∈ C,
+∞ otherwise,

then R(r, M) = PC, the metric projection operator from E onto C.

In order to estimate of convergence rates for sequence, we need the following

definition.

Definition 2.5. Let a sequence {xn} converge strongly to x*. The sequence {xn} is said

to be at least linear convergence if there exists a constant ϱ Î (0, 1) such that

||xn+1 − x∗|| ≤ 
||xn − x∗||.

Lemma 2.1.[27] Let the set-valued mapping M: dom(M) ⊂ E ® 2E be m-accretive.

Then the resolvent operator R(r, M) is single valued and nonexpansive for all r > 0:

Lemma 2.2.[28] Let {an} and {bn} be two nonnegative real sequences satisfying the

following conditions:

an+1 ≤ (1 − λn)an + bn, ∀n ≥ n0,

for some n0 Î N, {ln} ⊂ (0, 1) with
∑∞

n=0 λn = ∞ and bn = 0(ln). Then limn ® ∞ an =

0.

Lemma 2.3.[29] Let E be a real q-uniformly Banach space. Then there exists a con-

stant cq > 0 such that

||x + y||q ≤ ||x||q + q〈y, Jq(x)〉 + cq||y||q, ∀x, y ∈ E.

3 Existence and uniqueness of solutions for (SGQVI)
In this section, we shall investigate the existence and uniqueness of solutions for

(SGQVI) in q-uniformly smooth Banach space under some suitable conditions.

Theorem 3.1. Let r1, r2 be two positive constants, and (x*, y*) Î E × E. Then (x*, y*)

is a solution of the problem (2.1) if and only if
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{
x∗ = R(ρ1,M1)(y

∗ − ρ1A1(y∗, x∗)),
y∗ = R(ρ2,M2)(x

∗ − ρ2A2(x∗, y∗)), (3:1)

Proof. It directly follows from Definition 2.4. This completes the proof. □
Theorem 3.2. Let E be a real q-uniformly smooth Banach space. Let M2 : E ® 2E be

m-accretive mapping, A2 : E × E ® E be (μ2, ν2)-relaxed cocoercive and Lipschitz con-

tinuous in the first variable with constant τ2. Then, for each x Î E, the mapping

R(ρ2,M2)(x − ρ2A2(x, ·)) : E → E has at most one fixed point. If

1 − qρ2ν2 + qρ2μ2τ
q
2 + cqρ

q
2τ

q
2 ≥ 0, (3:2)

then the implicit function y(x) determined by

y(x) = R(ρ2,M2)(x − ρ2A2(x, y(x))),

is continuous on E.

Proof. Firstly, we show that, for each x Î E, the mapping

R(ρ2,M2)(x − ρ2A2(x, ·)) : E → E has at most one fixed point. Assume that y, ỹ ∈ E such

that

y = R(ρ2,M2)(x − ρ2A2(x, y)),

ỹ = R(ρ2,M2)(x − ρ2A2(x, ỹ)).

Since A2 is Lipschitz continuous in the first variable with constant τ2, then

||y − ỹ|| = ||R(ρ2,M2)(x − ρ2A2(x, y)) − R(ρ2,M2)2, (x − ρ2A2(x, ỹ))||
≤ ||x − ρ2A2(x, y) − (x − ρ2A2(x, ỹ))||
= ρ2||A2(x, y) − A2(x, ỹ))||
≤ ρ2τ2||x − x|| = 0.

Therefore, y = ỹ.

On the other hand, for any sequence {xn} ⊂ E, x0 Î E, xn ® x0 as n ® ∞: Since A2 :

E × E ® E is (μ2, ν2)-relaxed cocoercive and Lipschitz continuous in the first variable

with constant τ2, one has

L = ||A2(xn, y(xn)) − A2(x0, y(x0))||q
≤ τ

q
2 ||xn − x0||q,

Q = 〈A2(xn, y(xn)) − A2(x0, y(x0)), Jq(xn − x0)〉
≥ (−μ2)||A2(xn, y(xn)) − A2(x0, y(x0))||q + ν2||xn − x0||q
≥ (−μ2τ

q
2 + ν2)||xn − x0||q.

As a consequence, we have, by Lemma 2.1,

||y(xn) − y(x0)|| = ||R(ρ2,M2)(xn − ρ2A2(xn, y(xn))) − R(ρ2,M2)(x0 − ρ2A2(x0, y(x0)))||
≤ ||xn − ρ2A2(xn, y(xn)) − (x0 − ρ2A2(x0, y(x0)))||
= ||(xn − x0) − ρ2(A2(xn, y(xn)) − A2(x0, y(x0)))||
≤ q

√
||xn − x0||q − qρ2Q + cqρ

q
2L

≤ q

√
||xn − x0||q − qρ2(−μ2τ

q
2 + ν2)||xn − x0||q + cqρ

q
2τ

q
2 ||xn − x0||q

= q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 ||xn − x0||.
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Together with (3.2), it yields that the implicit function y(x) is continuous on E. This

completes the proof. □
Theorem 3.3. Let E be a real q-uniformly smooth Banach space. Let M2 : E ® 2E be

m-accretive mapping, A2 : E × E ® E be a2-strong accretive and Lipschitz continuous

in the first variable with constant τ2. Then, for each x Î E, the mapping

R(ρ2,M2)(x − ρ2A2(x, ·)) : E → E has at most one fixed point. If 1 − qρ2α2 + cqρ
q
2τ

q
2 ≥ 0,

then the implicit function y(x) determined by

y(x) = R(ρ2,M2)(x − ρ2A2(x, y(x))),

is continuous on E.

Proof. The proof is similar to Theorem 3.2 and so the proof is omitted. This com-

pletes the proof. □
Theorem 3.4. Let E be a real q-uniformly smooth Banach space. Let Mi: E ® 2E be

m- accretive mapping, Ai: E × E ® E be (μi, νi)-relaxed cocoercive and Lipschitz con-

tinuous in the first variable with constant τi for i Î {1, 2}. If

1 − qρ2ν2 + qρ2μ2τ
q
2 + cqρ

q
2τ

q
2 ≥ 0, and

0 ≤
2∏
i=1

(1 − qρiνi + qρiμiτ
q
i + cqρ

q
i τ

q
i ) < 1. (3:3)

Then the solutions set Ω of (SGQVI) is nonempty. Moreover, Ω is a singleton.

Proof. By Theorem 3.2, we define a mapping P: E ® E by

P(x) = R(ρ1,M1)(y(x) − ρ1A1(y(x), x)),

y(x) = R(ρ2,M2)(x − ρ2A2(x, y(x))), ∀x ∈ E.

Since Ai : E × E ® E are (μi, νi)-relaxed cocoercive and Lipschitz continuous in the

first variable with constant τi for i Î {1, 2}, one has, for any x, x̃ ∈ E,

L1 = ||A1(y(x), x) − A1(y(x̃), x̃)||q
≤ τ

q
1 ||y(x) − y(x̃)||q,

Q1 = 〈A1(y(x), x) − A1(y(x̃), x̃), Jq(y(x) − y(x̃))〉
≥ (−μ1)||A1(y(x), x) − A1(y(x̃), x̃)||q + ν1||y(x) − y(x̃)||q
≥ (−μ1τ

q
1 + ν1)||y(x) − y(x̃)||q,

L2 = ||A2(x, y(x)) − A2(x̃, y(x̃))||q
≤ τ

q
2 ||x − x̃||q,

and

Q2 = 〈A2(x, y(x)) − A2(x̃, y(x̃)), Jq(x − x̃)〉
≥ (−μ2)||A2(x, y(x)) − A2(x̃, y(x̃))||q + ν2||x − x̃||q
≥ (−μ2τ

q
2 + ν2)||x − x̃||q.

From both Lemma 2.1 and Theorem 3.1, we get

||P(x) − P(x̃)|| = ||R(ρ1,M1)(y(x) − ρ1A1(y(x), x)) − R(ρ1,M1)(y(x̃) − ρ1A1(y(x̃), x̃))||
≤ ||(y(x) − ρ1A1(y(x), x)) − (y(x̃) − ρ1A1(y(x̃), x̃))||
= ||(y(x) − y(x̃)) − ρ1(A1(y(x), x)) − A1(y(x̃), x̃)))||
≤ q

√
||y(x) − y(x̃)||q − qρ1Q1 + cqρ

q
1L1

≤ q

√
1 − qρ1(−μ1τ

q
1 + ν1) + cqρ

q
1τ

q
1 ||y(x) − y(x̃)||.

Chen and Wan Journal of Inequalities and Applications 2011, 2011:49
http://www.journalofinequalitiesandapplications.com/content/2011/1/49

Page 7 of 14



Note that

||y(x) − y(x̃)|| = ||R(ρ2,M2)(x − ρ2A2(x, y(x))) − R(ρ2,M2)(x̃ − ρ2A2(x̃, y(x̃)))||
≤ ||(x − ρ2A2(x, y(x))) − (x̃ − ρ2A2(x̃, y(x̃)))||
= ||(x − x̃) − ρ2(A2(x, y(x))) − A2(x̃, y(x̃)))||
≤ q

√
||x − x̃||q − qρ2Q2 + cqρ

q
2L2

≤ q

√
1 − qρ2(−μ2τ

q
2 + ν2) + cqρ

q
2τ

q
2 ||x − x̃||.

Therefore, we obtain

||P(x) − P(x̃)|| ≤
2∏
i=1

q

√
1 − qρi(−μiτ

q
i + νi) + cqρ

q
i τ

q
i ||x − x̃||

=
2∏
i=1

q

√
1 − qρiνi + qρiμiτ

q
i + cqρ

q
i τ

q
i ||x − x̃||.

From (3.3), this yields that the mapping P is contractive. By Banach contraction prin-

ciple, there exists a unique x* Î E such that P(x*) = x*. Therefore, from Theorem 3.2,

there exists an unique (x*, y*) Î Ω, where y* = y(x*). This completes the proof. □
Theorem 3.5. Let E be a real q-uniformly smooth Banach space. Let Mi : E ® 2E be

m- accretive mapping, Ai : E × E ® E be ai-strong accretive and Lipschitz continuous

in the first variable with constant τi for i Î {1, 2}. If 1 − qρ2α2 + cqρ
q
2τ

q
2 ≥ 0, and

0 ≤
2∏
i=1

(1 − qρiαi + cqρ
q
i τ

q
i ) < 1. (3:4)

Then the solutions set Ω of (SGQVI) is nonempty. Moreover, Ω is a singleton.

Proof. It is easy to know that Theorem 3.5 follows from Remark 2.3 and Theorem

3.4 and so the proof is omitted. This completes the proof. □
In order to show the existence of ri, i = 1, 2, we give the following examples.

Example 3.1. Let E be a 2-uniformly smooth space, and let M1, M2, A1 and A2 be

the same as Theorem 3.4. Then there exist r1, r2 > 0 such that (3.3), where

ρi ∈
(
0,

2νi − 2μiτ
2
i

c2τ 2
i

)
, νi > μiτ

2
i , (μiτ

2
i − νi)2 < c2τ 2

i , i = 1, 2,

or

ρi ∈

⎛
⎜⎝0,

νi − μiτ
2
i −

√
(νi − μiτ

2
i )

2 − c2τ 2
i

c2τ 2
i

⎞
⎟⎠ ∪

⎛
⎜⎝νi − μiτ

2
i +

√
(νi − μiτ

2
i )

2 − c2τ 2
i

c2τ 2
i

,
2νi − 2μiτ

2
i

c2τ 2
i

⎞
⎟⎠ ,

νi > μiτ
2
i , (μiτ

2
i − νi)2 ≥ c2τ 2

i , i = 1, 2.

Example 3.2. Let E be a 2-uniformly smooth space, and let M1, M2, A1 and A2 be

the same as Theorem 3.5. Then there exist r1, r2 > 0 such that (3.4), where

ρi ∈
(
0,

2αi

c2τ 2
i

)
, αi < τi

√
c2, i = 1, 2,
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or

ρi ∈

⎛
⎜⎝0,

αi −
√

α2
i − c2τ 2

i

c2τ 2
i

⎞
⎟⎠ ∪

⎛
⎜⎝αi −

√
α2
i + c2τ 2

i

c2τ 2
i

,
2αi

c2τ 2
i

⎞
⎟⎠ , αi ≥ τi

√
c2, i = 1, 2.

4 Algorithms and convergence analysis
In this section, we introduce two-step iterative sequences for the problem (SGQVI)

and a non-linear mapping, and then explore the convergence analysis of the iterative

sequences generated by the algorithms.

Let T: E ® E be a nonlinear mapping and the fixed points set F(T) of T be a none-

mpty set. In order to introduce the iterative algorithm, we also need the following

lemma.

Lemma 4.1. Let E be a real q-uniformly smooth Banach space, r1, r2 be two positive

constants. If (x*, y*) Î Ω and {x*, y*} ⊂ F(T), then{
x∗ = TR(ρ1,M1)(y

∗ − ρ1A1(y∗, x∗)),
y∗ = TR(ρ2,M2)(x

∗ − ρ2A2(x∗, y∗)). (4:1)

Proof. It directly follows from Theorem 3.1. This completes the proof. □
Now we introduce the following iterative algorithms for finding a common element

of the set of solutions to a (SGQVI) problem (2.1) and the set of fixed points of a

Lipschtiz mapping.

Algorithm 4.1. Let E be a real q-uniformly smooth Banach space, r1, r2 > 0, and let

T: E ® E be a nonlinear mapping. For any given points x0, y0 Î E, define sequences

{xn} and {yn} in E by the following algorithm:{
yn = (1 − βn)xn + βnTR(ρ2M2), (xn − ρ2A2(xn, yn)),

xn+1 = (1 − αn)xn + αnTR(ρ1M1)(yn − ρ1A1(yn, xn)), n = 0, 1, 2, . . . ,
(4:2)

where {an} and {bn} are sequences in [0, 1].

Algorithm 4.2. Let E be a real q-uniformly smooth Banach space, r1, r2 > 0, and let

T: E ® E be a nonlinear mapping. For any given points x0, y0 Î E, define sequences

{xn} and {yn} in E by the following algorithm:{
yn = TR(ρ2,M2)(xn − ρ2A2(xn, yn)),

xn+1 = (1 − αn)xn + αnTR(ρ1,M1)(yn − ρ1A1(yn, xn)), n = 0, 1, 2, . . . ,

where {an} is a sequence in [0, 1].

Remark 4.1. If A1 = A2 = A, E = H is a Hilbert space, and M1(x) = M2(x) = ∂j(x) for
all x Î E, where j: E ® R ∪ {+∞} is a proper, convex and lower semicontinuous func-

tional, and ∂j denotes the subdifferential operator of j, then Algorithm 4.1 is reduced

to the Algorithm (I) of [18].

Theorem 4.1. Let E be a real q-uniformly smooth Banach space, and A1, A2, M1 and

M2 be the same as in Theorem 3.4, and let T be a �-Lipschitz continuous mapping.

Assume that Ω ∩ F(T) ≠ ∅, {an} and {bn} are sequences in [0, 1] and satisfy the follow-

ing conditions:

(i)
∑∞

i=0 αn = ∞;
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(ii) limn® ∞ bn = 1;

(iii) 0 < κ q

√
1 − qρiνi + qρiμiτ

q
i + cqρ

q
i τ

q
i < 1, i = 1, 2.

Then the sequences {xn} and {yn} generated by Algorithm 4.1 converge strongly to x*

and y*, respectively, such that (x*, y*) Î and {x*, y*} ⊂ F(T).

Proof. Let (x*, y*) Î Ω and {x*, y*} ⊂ F(T). Then, from (4.1), one has{
x∗ = TR(ρ1,M1)(y

∗ − ρ1A1(y∗, x∗)),
y∗ = TR(ρ2,M2)(x

∗ − ρ2A2(x∗, y∗)). (4:3)

Since T is a �-Lipschitz continuous mapping, and from both (4.2) and (4.3), we have

||xn+1 − x∗|| = ||αn(TR(ρ1,M1)(yn − ρ1A1(yn, xn)) − x∗) + (1 − αn)(xn − x∗)||
= ||αn(TR(ρ1,M1)(yn − ρ1A1(yn, xn)) − TR(ρ1,M1)(y

∗ − ρ1A1(y∗, x∗)))
+ (1 − αn)(xn − x∗)||

≤ αn||TR(ρ1,M1)(yn − ρ1A1(yn, xn)) − TR(ρ1,M1)(y
∗ − ρ1A1(y∗, x∗))||

+ (1 − αn)||xn − x∗||
≤ αnκ||R(ρ1,M1)(yn − ρ1A1(yn, xn)) − R(ρ1,M1)(y

∗ − ρ1A1(y∗, x∗))||
+ (1 − αn)||xn − x∗||

≤ αnκ||(yn − y∗) − ρ1(A1(yn, xn) − A1(y∗, x∗))|| + (1 − αn)||xn − x∗||.

For each i Î {1, 2}, Ai : E × E ® E are (μi, νi)-relaxed cocoercive and Lipschitz con-

tinuous in the first variable with constant τi, then

L̃1 = ||A1(yn, xn) − A1(y∗, x∗)||q
≤ τ

q
1 ||yn − y∗||q,

Q̃1 = 〈A1(yn, xn) − A1(y∗, x∗), Jq(yn − y∗)〉
≥ (−μ1)||A1(yn, xn) − A1(y∗, x∗)||q + ν1||yn − y∗||q
≥ −μ1τ

q
1 ||yn − y∗||q + ν1||yn − y∗||q

= (−μ1τ
q
1 + ν1)||yn − y∗||q,

L̃2 = ||A2(xn, yn) − A2(x∗, y∗)||q
≤ τ

q
2 ||xn − x∗||q,

and so

Q̃2 = 〈A2(xn, yn) − A2(x∗, y∗), Jq(xn − x∗)〉
≥ (−μ2)||A2(xn, yn) − A2(x∗, y∗)||q + ν2||xn − x∗||q
≥ −μ2τ

q
2 ||xn − x∗||q + ν2||xn − x∗||q

= (−μ2τ
q
2 + ν2)||xn − x∗||q.

Furthermore, by Lemma 2.1, one can obtain

||(yn − y∗) − ρ1(A1(yn, xn) − A1(y∗, x∗))|| = q

√
||yn − y∗||q − qρ1Q̃1 + cqρ

q
1L̃1

≤ q

√
1 − qρ1(−μ1τ

q
1 + ν1) + cqρ

q
1τ

q
1 ||yn − y∗||

= q

√
1 − qρ1ν1 + qρ1μ1τ

q
1 + cqρ

q
1τ

q
1 ||yn − y∗||

Chen and Wan Journal of Inequalities and Applications 2011, 2011:49
http://www.journalofinequalitiesandapplications.com/content/2011/1/49

Page 10 of 14



and consequently,

||(xn − x∗) − ρ2(A2(xn, yn) − A2(x∗, y∗))|| = q

√
||xn − x∗||q − qρ2Q̃2 + cqρ

q
2L̃2

≤ q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 ||xn − x∗||.

Note that

||yn − y∗|| = ||(1 − βn)(xn − y∗) + βn(TR(ρ2,M2)(xn − ρ2A2(xn, yn)) − Ty∗)||
≤ (1 − βn)||xn − y∗|| + βn||TR(ρ2,M2)(xn − ρ2A2(xn, yn)) − Ty∗||
≤ (1 − βn)||xn − y∗|| + βnκ||R(ρ2,M2)(xn − ρ2A2(xn, yn)) − y∗||
= βnκ||R(ρ2,M2)(xn − ρ2A2(xn, yn)) − R(ρ2,M2)(x

∗ − ρ2A2(x∗, y∗))||
+ (1 − βn)||xn − y∗||

≤ βnκ||(xn − x∗) − ρ2(A2(xn, yn) − A2(x∗, y∗))|| + (1 − βn)||xn − y∗||
≤ βnκ

q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 ||xn − x∗|| + (1 − βn)||xn − y∗||

≤ (βnκ
q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 + 1 − βn)||xn − x∗|| + (1 − βn)||x∗ − y∗||.

Therefore, we have

||xn+1 − x∗|| ≤ αnκ||(yn − y∗) − ρ1(A1(yn, xn) − A1(y∗, x∗))|| + (1 − αn)||xn − x∗||
≤ αnκ

q

√
1 − qρ1ν1 + qρ1μ1τ

q
1 + cqρ

q
1τ

q
1 ||yn − y∗|| + (1 − αn)||xn − x∗||

≤ [αnκ
q

√
1 − qρ1ν1 + qρ1μ1τ

q
1 + cqρ

q
1τ

q
1(βnκ

q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 + 1−

βn) + 1 − αn]||xn − x∗|| + αnκ(1 − βn)
q

√
1 − qρ1ν1 + qρ1μ1τ

q
1 + cqρ

q
1τ

q
1 ||x∗ − y∗||.

Set ι = max{ q

√
1 − qρiνi + qρiμiτ

q
i + cqρ

q
i τ

q
i : i = 1, 2}. So the above inequality can be

written as follows:

||xn+1 − x∗|| ≤ {1 − αn[1 − κι(1 − βn(1 − κι))]}||xn − x∗|| + αnκι(1 − βn)||x∗ − y∗||. (4:4)

Taking an = ||xn - x*||, ln = an[1 - �ι(1 - bn(1 - �ι))] and bn = an �ι(1 -bn) ||x* -
y*||. By the condition (iii), we get

1 > κι, 1 > λn > αn(1 − κι), ∀n ∈ Z+. (4:5)

In addition, from the conditions (i) and (ii), it yields that bn = 0(ln) and
∞∑
n=0

λn = ∞.

Therefore, by Lemma 2.2, we obtain

lim
n→∞ an = 0, (4:6)

that is, xn ® x* as n ® ∞. Again from limn ® ∞ bn = 1 and (4.6), one concludes

lim
n→∞ ||yn − y∗|| = 0,

i.e., yn ® y* as n ® ∞. Thus (xn, yn) converges strongly to (x*, y*). This completes

the proof. □
Theorem 4.2. Let E be a real q-uniformly smooth Banach space, and A1, A2, M1 and

M2 be the same as in Theorem 3.5, and let T be a �-Lipschitz continuous mapping.

Assume that Ω ∩ F(T) ≠ ∅, {an} and {bn} are sequences in [0, 1] and satisfy the
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following conditions:

(i)
∑∞

i=0 αn = ∞;

(ii) limn® ∞ bn = 1;

(iii) 0 < κ q

√
1 − qρiαi + cqρ

q
i τ

q
i < 1, i = 1, 2.

Then the sequences {xn} and {yn} generated by Algorithm 4.1 converge strongly to x*

and y*, respectively, such that (x*, y*) Î Ω and {x*, y*} ⊂ F(T).

Proof. The proof is similar to the proof of Theorem 4.1 and so the proof is omitted.

This completes the proof. □
Theorem 4.3. Let E be a real q-uniformly smooth Banach space, and A1, A2, M1 and

M2 be the same as in Theorem 3.4, and let T be a �-Lipschitz continuous mapping.

Assume that Ω ∩ F(T) ≠ ∅, {an} is a sequence in (0, 1] and satisfy the following condi-

tions:

(i)
∑∞

i=0 αn = ∞;

(ii) 0 < κ q

√
1 − qρiνi + qρiμiτ

q
i + cqρ

q
i τ

q
i < 1, i = 1, 2.

Then the sequences {xn} and {yn} generated by Algorithm 4.2 converge strongly to x*

and y*, respectively, such that (x*, y*) Î Ω and {x*, y*} ⊂ F(T). Furthermore, sequences

{xn} and {yn} are at least linear convergence.

Proof. From the proof of Theorem 4.1, it is easy to know that the sequences {xn} and

{yn} generated by Algorithm 4.2 converge strongly to x* and y*, respectively, such that

(x*, y*) Î Ω and {x*, y*} ⊂ F(T), and so,

||xn+1 − x∗|| ≤ [1 − αn(1 − (κι)2)]||xn − x∗||, (4:7)

||yn − y∗|| ≤ κ
q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 ||xn − x∗||. (4:8)

Since {an} is a sequence in (0, 1], we obtain, from (4.5),

0 < 1 − αn(1 − (κι)2) < 1 (4:9)

and so,

0 < κ
q

√
1 − qρ2ν2 + qρ2μ2τ

q
2 + cqρ

q
2τ

q
2 < 1. (4:10)

Therefore, from (4.7)-(4.10), it implies that sequences {xn} and {yn} are at least linear

convergence. This completes the proof. □
Theorem 4.4. Let E be a real q-uniformly smooth Banach space, and A1, A2, M1 and

M2 be the same as in Theorem 3.5, and let T be a �-Lipschitz continuous mapping.

Assume that Ω ∩ F(T) ≠ ∅, {an} is a sequence in (0, 1] and satisfy the following condi-

tions:

(i)
∑∞

i=0 αn = ∞;

(ii) limn®∞ bn = 1;
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(iii) 0 < κ q

√
1 − qρiαi + cqρ

q
i τ

q
i < 1, i = 1, 2.

Then the sequences {xn} and {yn} generated by Algorithm 4.2 converge strongly to x*

and y*, respectively, such that (x*, y*) Î Ω and {x*, y*} ⊂ F(T). Furthermore, sequences

{xn} and {yn} are at least linear convergence.

Proof. In a way similar to the proof of Theorem 4.2, with suitable modifications, we

can obtain that the conclusion of Theorem 4.4 holds. This completes the proof. □
Remark 4.2. Theorem 4.1 generalizes and improves the main result in [18].

Abbreviation
(SGQVI): system of generalized quasivariational inclusion.
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