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Abstract

The authors investigate differentiability of the solutions of nonlinear parabolic
systems of order 2 m in divergence form of the following type

5
3 (-1)*D% (X, Du) + al; - 0.

loe|<m

The achieved results are inspired by the paper of Marino and Maugeri 2008, and the
methods there applied.

This note can be viewed as a continuation of the study of regularity properties for
solutions of systems started in Ragusa 2002, continued in Ragusa 2003 and Floridia
and Ragusa 2012 and also as a generalization of the paper by Capanato and
Cannarsa 1981, where regularity properties of the solutions of nonlinear elliptic
systems with quadratic growth are reached.
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1 Introduction

The study of regularity for solutions of partial differential equations and systems has
received considerable attention over the last thirty years. On the other hand, little is
known concerning parabolic systems in divergence form of order 2m with quadratic
growth and the corresponding analytic properties of solutions. To such classes of sys-
tems, our attention is devoted.

This note is a natural continuation of the study, carried out in the last decade and a
half, of embedding results of Gagliardo-Nirenberg type from which we deduce local
differentiability theorems, making use of interpolation theory in Besov spaces (see e.g.
[1-6] and [7]).

In this respect, we mention at first the note [8] where the author proves that, let Q
c R" an open set, 0 < T <eoand Q = Q x (-T, 0), x% = (x9,19,...,4%) € Qp > 0 and
B(p) =B(x% p) = {x=(x1,%2,.... %) : i =29 <p, i=1,2,...,n}if

uel?(~T,0,H(2R)NC*(QRN)), Vo<ir<1 (1.1)

is a solution of a second order nonlinear parabolic system of variational type and
under the assumptions that the coefficients a®(x, Du) have quadratic growth is
© 2011 Floridia and Ragusa; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:maragusa@dmi.unict.it
mailto:maragusa@dmi.unict.it
http://creativecommons.org/licenses/by/2.0

Floridia and Ragusa Journal of Inequalities and Applications 2011, 2011:42 Page 2 of 17
http://www.journalofinequalitiesandapplications.com/content/2011/1/42

obtained that
u € L?(—a,0,H* (B(0), RY)),

for every a € (0, 1), VO € (0, 1) and for each cube B(20) €< Q.
In the same paper, Fattorusso stressed that it is not possible to improve this result in
such a way to achieve, for each solution u to the above system, the differentiability

u e L?(—a,0,H*(B(c),RY)), (1.2)
if, preliminarily, is not ensured the regularity
Diju € L*(—a,0,L*(B(0),RN)), i=1,...,n (1.3)

for every a € (0, T), and for every B(20) cC Q,
The technique used in [8] allows the author to achieve, instead of (1.3), the condition

Diu € L20*)(—q,0,L*(B(c),RY)), i=1,...,n,

for every a € (0, T), VB(0) €< Q and every 0 € (m"M, l), which is not enough to
ensure that is true (1.2)

In [9], under the same assumptions of the previous result [8], the differentiability
result (1.2) is proved, for u satistying (1.1).

Key of this note is the use of interpolation theorems of Gagliardo-Nirenberg type.

The use of interpolation theory, made in [9] and in [1] with montonicity assumption
and quadratic growth, as illustrated in [10], has recently allowed Fattorusso and Mar-
ino to obtain differentiability also for weak solutions of nonlinear parabolic systems of
second order having nonlinearity 1 < g <2 (see for details [11]).

Inspired by the note mentioned above by Marino and Maugeri, in the present note,
the authors extend differentiability properties to the case of parabolic systems of order
2m. More precisely, let () be an open subset of R”, n >2, and 0 < T <eo, aim of this
note is to study, in the cylinder Q = Q x (-7, 0), the problem of interior local differ-
entiability for solutions

uel?(-T,0,H"(Q2,RV)NnC" " (QRY), 0<ir<1
of the nonlinear parabolic systems of order 2m of variational type
|l v o ou
> (=)D (X, Du) + 5 = O
la|<m

Using the above explained idea is proved the following local differentiability with
respect to the spatial derivatives

u e L*(—a, 0, H™ (B(0), RN))NH!(—a,0,L*(B(c),RN)), Va e (0,T),VB(c) CC Q.

Let us also mention the considerable note by [1] where the authors prove that a
solution u of nonlinear parabolic systems of order 2 with natural growth and coeffi-
cients uniformly monotone in D u belongs to

L*(—a, 0, H*(B(0), RN)) N H' (=4, 0, L*(B(0), RY))

Results similar to those obtained by Marino and Maugeri in [9], with stronger
assumptions, are obtained by Naumann in [12] and by Naumann and Wolf in [13]. Let
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us also bear in mind the study made by Campanato in [14] on parabolic systems in
divergence form.

We want to finish this historical overview, concerning interior differentiability of
weak solutions, recalling the recent note [4] where similar results are achieved for
elliptic systems of order 2m.

2 Useful assumptions and results

Let Q be an bounded open set in R”, n >2, x = (xy, &, ..., ¥,,) denotes a generic point
therein, 0 < T < and Q the cylinder Q x (-7, 0), let N be a positive integer. In Q, we
consider the following parabolic metric

1
d(X,Y) = max{|lx = ylln, [t —7]2}, X=(x1),Y=(p7).

Let us set k a positive integer greater than 1, (-|-)x and [|-||x respectively the scalar
product and the norm in R¥ If there is no ambiguity, we omit the index .

Let k be a nonnegative integer and 4 € ]0, 1]. We denote by Ct*(Q, RN) the subspace
of C*(Q, RN) of functions y : Q — RN that satisfy a Hélder condition of exponent 4,
together with all their derivatives D%y, || < k. If u € Ct*(Q, RV), then we set

lull g,y = Y suplID¥ulln + Y [D*ul, g

laj<k Q lae|=k
where
D*u(X) — D*u(Y
[D%u], 5 = sup 1D u(X) u(¥)lln < +00, Yo : |a| = k.
*Q - (X, Y
X,YeQ (X.Y)
X4Y

The space C**(Q, RN) is a Banach space, provided with the norm

Nl @rn) = ullogeey + D 1Dl 6.
la|=k
Definition 2.1 (see e.g. [15,16]). Let Q be an bounded open set in R”, let k and j be
two positive integers, k = j. If p € [1, +o° [and u € C°°(S_2, [RN), so we set
1 1

p k

p p

[uljpe = [ID%ullyy dx | ullep0 = lul; , o

i
Q lel=j j=0

(2.1)

and denote respectively by H* 2(Q, RNy and H’é’p(g, |RN)the spaces obtained as clo-
sure of C*°(Q, RNYand C¥ (R, RN)regarding the norm ||u||x, yo. The spaces H* 7(Q,
RN) and Hﬁ’p(gz, RN)are known in literature as Sobolev Spaces.

We remark that H#(Q, RN) = I7(Q, RN), 1 < p <+oo.

If p = 2, then we shall simply write H(Q, R™), HE(Q, RN), |ul;0, ||#]|k0-

Let Q be an bounded open set in R”, let us set 9 e (0, 1), p € [1, + [.

Definition 2.2. We say that a function u defined in Q having values in RN belongs to
H? P(Q, RY) if u e I7(Q, RN) and is finite
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[lu(x) — u(y)II
|u|g,p,9 = /dX/ nﬂypN d)/
Q

x_
J lx =yl

Definition 2.3. If k is a nonnegative integer, we mean for H> ?(Q, RN) the subspace
ofHk’ P(Q, RN) of functions u e H*?(Q, RN such that

D e H?(Q,RY), Va:|a| =k

We stress that H*% 7(Q, RN) is a Banach space equipped with the following norm

1
p

p p
ullkeop = |l + Y ID*ulf g
la| =k

If p = 2, then we shall simply write H*"?(Q, R™) and ||u||x0,0-
Let k a positive integer, p € [1, +oo [, 9 € (0, 1), in the following, we will consider

the spaces

L’(~T, 0, H* (2, RN))

0
= {u(x, Olu(- 1) € H** (2, RN) forae. t € (—T, 0) and / [u(-, t)Hlelg2 dt < oo]
“r

and

LP(=T, 0, H*"%(Q, RN))

0
= {u(x, Olu(- t) € H*?(Q,RN) for a.e. t € (—T,0) and / [lu(-, tmim,p,sz dt < oo} .
-T

We say a function u € L*(-T, 0, H(Q, RY) n C"(Q, RN), N positive integer and 0
< A <1, weak solution in Q to the nonlinear parabolic system of order 2m

S (—1)IDFa® (%, Duy + O =0
' at

lee]<m

if

0

/ 3" (a*(X, Du)[D*p) — (u| a‘f) dX=0, VpeCRQRY). (22
la]=m

Let us now state some properties useful in the sequel.

Let 7 €]0, 1[, p and a two positive numbers and /2 € R\{0}, where |i| <(1 - 7)p.

If u is a function from B(p) x (-a, 0) in RNand X = (x, 0) € B(zp) x (-a, 0), we set
(X)) = u(x + he', t) —u(X), i=1,2,...,n, (2.3)

where {e"}l-ﬂ,zw,, is the canonic basis of R”.

Let us now state the following results, proved in [17,18] and [19], useful to achieve
the main result of the note.

Theorem 2.1. If u € L*(-a, 0, LP(B(2p), R™), a, p >0, 1 < p <+oo, N is a positive inte-
ger and exists M >0 such that
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0
/dt/ ltipull” dx < |hPM, Vb <(1—1)p, Vi=1,...,n,

—a  B(p)

then u € I*(-a, 0, H?(B(p), R™)) and

0
/dt/ IDiulf dx <M, VYi=1,...,n.
—a  B(p)

Theorem 2.2. Let u € H"”(B(p), RY) for a, p >0, 1 < p <+ and N be a positive
integer. Then, for every € (0, 1) and every h € R, |h| <(1 - 7)p, we have

[lTintllopBz o) < Bl lIDiuillop,Bo), i=1,2,...,1
Theorem 2.3 (see [18,20]). Let N be a positive integer and Q a cube of R”. If
ue W (Q,RN)n (2, RY),

with m > 2, m integer, 1 < r <o, s > 0, s integer, 0 < A <1, s < m - 1, then, for each
integer j with s +A < j < m, there exists two constants ¢, and ¢, (depending on Q, m, r,
s, A, j) such that

s 1-5
max |D%ulope < c1 (max |D°‘ulomg> . (max [D%u], Q) + ¢y max [D%ul;,q
Jer|=j lee|=m lar]=s ' lar]=s

where | = +8(} =) —(1=8) 7 va e | J27 ],

m—s—>\’

Theorem 2.4 (see [9]). Let N be a positive integer and Q a cube of R”. If
ue W (Q, RNy N C* (2, RY),

with m > 1, m integer, 0 < 0 <1, 1 < r <o, s > 0, s integer, 0 < A <1, s < m, then, for

each integer j with max(s+ A, m+60 — ') <j < m+0, it results
ue W*(Q,RN)
and there exists a constant ¢ (depending on Q, m, 0, r, s, A, j, n, 0) such that

8 1-6
lullipg < el 00 18157 o gry

where § =1 +8 (1= 10) — (1= 8)"A V8 € [ L7, Lwith (1- 8)(s + ) + 60m +

P T n m+0—s—\’

0) noninteger.

3 Interior differentiability of the solutions
Let us set m, N positive integers, & = (¢, ..., o,,) @ multi-index and |of] = ot + - - - + @,
the order of o. We denote by R the Cartesian product

R=[] RY

Ja| <m

and p = {p*}jaj<m p* € RY, the generic point of R. If p € R, we set p = (p’, p”) where
P = 0" Vatem € R = [Tiajom R 27 = (0" Vatom € R” = [Tjajom Ra» and

Page 5 of 17
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Woll> = > %1% 10117 = > %1% 10717 = D 1l
lee|<m

lo|<m loe|l=m
We consider, as usual,
Bx,-'iz 1,...,nm;

D* = D“'D% ... D
Du = {Dau}\a\Sm/

D’u = {D"‘u}\akm, D”u = {D“u}|a|=m.

Let us consider the following differential nonlinear variational parabolic system of
order 2m :

lee] <m

3
> (-1)D"a* (X, Du) + 8” =0

(3.1)
where a®(X, p) = a®(X, p’, p”) are functions of A = Q x R in R", satisfying the fol-
lowing conditions:

(3.2) for every o : || < m and every p € R, the function X — a®(X, p), defined in Q
having values in RN, is measurable in X;

(3.3) for every a : |ot| < m and every X € Q, the function p — a®(X, p), defined in
Rhaving values in RY, is continuous in p;
(3.4) for every o : |a| < m and every (X, p) € A, such that |

lla® (X, p)II < M(K) (If*(X)1 + 1Ip"11%),
where f* € L*(Q);

v

< K, we have

have

(3.5) for every o : |a| = m, the function a®(X, p’, p”), defined in Q x Rhaving values
in RN, are of class C* in Q x Rand, for every (X,p,p") € Q x Rwith ||p’|| < K, we

N
da* da* .
a1+ |+ D2 D0 |, | =ME) 1+ 1",
=1 T i1 181=m |l 0P,
N
8 o
Y| =M
i1 181=m || OP%

(3.6) 3 v = v(K) >0 such that:

N
da% (X,

> 2 “(ﬂ P eoct = 0(k) Y 1612 = vikEIP,
0

hle=1lal=|pl=m Pk \Blom

for every & = (&%) € R” and for every (X,p) € Q x R, with ||p’|| < K. If the coeffi-
cients a” satisfy condition (3.6) we say that the system (3.1) is strictly elliptic in Q.
Theorem 3.1. If u € L*(-T, 0, H™(Q, R™)) n C"YQ, RY), 0 < A <1, is a weak solu-

tion of the system (3.1) and if the assumptions (3.2)-(3.6) hold, then VB(30) = B(x°, 30)
cc Q,Va,be (0, 1), a < b, it results

u € L*(—a, 0, H"*(B(c), RN))

(3.7)
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and the following estimate holds

1+9

0 0 2 0
/ Wl 4,50t < c(v, K, U, A 0,a,b,mmn) 1+ Y (/ 11 lo,830) dr) + / Il seo)dtp (3.8)
“a —b

laj<m b

where K = supq ||Dul| and U = ||ullon-15(q,rny.
Proof Let us observe that, using Theorem 2.IIT in [21], for every 0 < J <1 and

b* = a;b’

uel? (—b*, 0, H™? (B (ia) , [RN)) ,

and

we have

0

/ ID"ul®> 5 dt
V,B(50)
,b*

1+9 (3.9)

0 0
2
<, KU, 9,0 0,abmn) 1+ Y (/ |f“||o,3<3a)dr) ¥ f Jul?, 50y dt
b

|la|<m —p*

Hence, we remark that u € C"~1*(, RN), then, it results, for a. e. t € (-b%, 0),
m+ 5 N m—1,1 5 N
u(x,t) € H B 20' ,RY )nC™** B 20 ,RY], VO<9® <1, VB(30)cCCK.

Then, from Theorem 2.4 with Q = B (go), 1-A<6c<1,fors= ;, and for a.e. t €
(-b*, 0):

u(x, t) € H™ (B (;o),[RN),

and there exists a constant ¢ = ¢(6, A, 0, m, n) such that

1

2
il 530 = L 5 0

1
2
cmflrk(s(;a)/uw)'
8(0+r—1)
n—2(0+a-1) > &
The choice § = 1 — ;(> 1 — 1) ensures that for a. e. £ € (-b* 0) we have

where p=4 +

5 4
u(x, t) € H™ <B <20) , [RN) , withp=4+ Y VB(30) CC Q. (3.10)

and
1 1
u < (8, r,0,m,n)|ull? ul|? , 3.11
[l ||m,p,B<;a) < ) ||m 17’;,3(35)” ||C’"*11’\(B(go),[RN) (3.11)

where p=4 + n{)‘)\ > 4.

Page 7 of 17
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Then we have, for a. e. £ € (-b* 0), the following inclusion between Sobolev spaces

u(x,t) e H™? <B (};) , [RN> cc H™* <B (};) , [RN) (3.12)

then, using (3.9), written with 6 = 1 — ;, and (3.10)-(3.12), we have

f CRWEREIENC) / I, 5 5,y

—b* —b*
<c¢(0,\0,mn D"ul|? dt
= )in RN (e .
1+
<c(v,K, U 0,mn) 1+ /||f [lo,8(35) dt +/|u|fn,3(30) dee,
loe|<m =~

then it follows the requested inequality (3.8). =

Theorem 3.2 (main result). If u ¢ L*(-T, 0, H™(Q, RN)) n C"MMQ, BRN), 0< A <1, is
a weak solution of the system (3.1) and if the assumptions (3.2)-(3.6) hold, then YB(30)
= B(x° 30) cc Q, Ya, be (0, T), a < b it results

u € L*(—a,0,H™(B(c), RN)) N H'(—a, 0, L*(B(c), RY)) (3.14)

and the following estimate holds

0

/ {|u|m+1 B(o) +

—a

oul?
at

dt

0,B(0)
(3.15)

SC(UIKI U/)‘-/G/a/b/ m/n) /”f ||03(30’)dt +/|u|fn,3(3g)dt
b

la|<m

where K = supq ||D’u|| and U = ||ullcn-1,(q,rN).

Proof Let us fix B(306) = B(x°, 36) €€ Q, a, b e (0, T) with a < b and & € R such
that |h| < 9, set b* = ¥, and let ¥(x) € C3°(R") a real function satlsfymg the following
properties 0 < y < 1 in R”, w = 1in B(0), v = 0 in R"\B(20), [ID¥/|| < {in R"

Let us also define the function p,(t), for u > ﬁ, u integer, the following real function

1 if —a<t<-2
0 ift<—-bandt> —1!
t) = - - K 3.16
Pul) =y w if —b<t<-—a (3.16)

; 2 1
_(Mt+1)1f_u<t<—ﬂ

Moreover set {g,(£)} the sequence of symmetric regularizing functions such that

&) € CF(R), &() =0, gl(t) =g(-1),
supp & C I:—irzill /[Rgs(t) de=1.
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Let i be a positive integer, i < 1, and / a real number such that |h| < 9. For every
"> i and for every s > max{u, le }, let us define the following “test function

©(X) = Ti—n {‘ﬂzml)u [(Pufi,hu) *gs]}, VX =(xt) € Q.

(3.17)
Substituting in (2.2) the above defined function ¢, we have
D (zna® (X, Du) ID* (Y77 oy, [(ouTinu) * &5])) dX
o lal=m
= / (zintl " o[ (P Tintt) * &])) dX— (3.18)
Q

—Z/

(a® (X, Du) |7, - D*{¥*" p, [ (ppuinu) * gs}) dX.
la|<m Q

For every o : || = m and a. e. X = (x, £) € Q, we have

Tin a%(X, Du(X)) = a%(x + heé', t, Du(x + he', t)) — a®(X, Du(X))

1
- / p a® (x + nhe', t, Du(X) + ntDu(X)) dn
n

0

1
h/ ai (x+ nhe', t, Du(X) + ntinDu(X)) dn
0 1
N

1
0
+ Z r,hDﬁuk(X) /3
0

(x + nhe', t, Du(X) + ntipDu(X)) dn
Bl=m k=1 P

aaa

Z Z ‘L',hD uk(X)

[Bl=m k=1

where, if b = b(X, p), for simplicity of notation, we set

b(X) = / b (x + nhe',t, Du(X) +n tuDu(X)) dn
0

Then, equality (3.18) becomes

fz(a“ +ZZT,,,DWX)
o lel=m Xi

[Bl=m k=1

Da (‘pzmp;t[(ﬂuflh“) *gs])) dXx
/ Wzm ! Tlh“'(pll«fi.hu) *gs) dX + / (Ti,hulwzmp//.[(putihu) *gS],) dx—
Q

o

(a* (X, Du) |ti—nD* {¥*" oy [(opTinu) * &5 }) dX.
\a|<mQ

Taking into account, for o : || = m, that

D (V7" oyl (prutint)*ge]) = " 0| (0T D u)4ge ]+ 9™ P ) Cay (V)| (01eTis DY 10)5s]

y<a
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where
c(m, n)
|Cay(¢)| S gm*\}/l ’
we obtain
/szmpu Z Z ((TthDﬁ”k(X)) (PuTip Du) *3S> dx
5 lal=IBl=m k=1

> ZZ f ((n,h DF (X)) Z;'ﬁ

le|=|Bl=my<c k=1 ) k

-2 33 [ (o)

lae|=m |B|<m k=1 Q

_;,2/(

loe|=m

V" ey (W) [(0pTin DY 1) * gs]) dx

da=
3 1] D* (Wzm,ou[(puri,hu) *85])) dx
pk

D* (V" pyl (i) *gs])> dX + / V2" o' (il (o Tinu) * &) dX
/ (il oy [(pintt)  g's1) dX — Y [ (a(X, Du) |7y nD* (92" pu[ (0 Tipt) # 1) dX.
Q |o(|<mQ

For s — +oo, using ellipticity condition (3.6), symmetry hypothesis, convolution prop-
erty of g, and that

Jim [ (" g, (o) ') dx = 0,
Q

we have

1

/dt / wzm 2|15 Dull)? dx—v/dt / wz"’ Z |17 ,D%ul|? dx

b B(20) -b B(ZU) lo|=m

/mep# 3 Z( D uk(X))

la|=|Bl=m k=1

(3.19)

p#t,hD u) dx

§A+B+C+D+E,

where

- ZZ / Cay (W)Y ((wD“uk(X)) )
Py

la|=|Bl=my <o k=1 Q

(g, hDVu)(X)) (3.20)

-2 Z / ( tn D uk(X)) D* (y*"p 2fmu(X))) (3.21)
lal=m |Bl<m k=1 ¢

C=hY / (a“ g 2w)(X))) (3.22)
|ee|= m

D= [ vl pmll ax 325
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E=_ Z /(a“(X, Du)lri,tha(WMPiTi,h“)) dX.

(3.24)
|0t|<mQ
We observe that, for every ¢ >0, we have
_1 1
%
Al <e / dt / Y2 o2 [[5aD"ul? dx+e(K, o, m,n, &) b / dt / (1+|ID"ul?) dr. (3:25)
S BQe) 5 BGe)
The term B can be estimated, for every ¢ >0, as follows
1
n
B < {e+c(K, U m,n) (" +hI*)} f de f v?" ppllzinD"ul|* dx
—b B(20)
1
+c(K, o, m,n,e)h? / dt [ [|D"u||? dx (3.26)
—-b B(30)
1
+c(K,m,n,e) / dt / Y o |1TinD'ul)*||D"ul|* dx.
—-b B(20)
Let us consider the term C, for every ¢ >0, we have
1
ICl < {e+c(K,m,n)(h*+|hl)} / dt / Y2 pl [1TinD"ul | dx
-b  B(20)
1
w
+c(K, 0, m,n, e)h? / de / (1 +|D"ul)?) dx.
—b B(30)
To estimate the term D, we firstly observe that
=0 ift<s—b-a<t<-21t>—|
(P'up)()] <l if —b<t<-—a (3.27)
<0 if -2 <t<—}

then, using Theorem 2.2, we obtain

D= f Y2 1w py |t ul?dX
Q
1

—a Tu
_ / dr / Y2 0 oyl Pd + f de f V"o woullmipulPdy (5 0g)

—b  Bgo) _ 2 Bpo
w

—a —a

1 h?
< fdtf gl 2 dx < fdt/ |IDjul? dx.
b—,a b—a

—b B —b B
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Finally, using (3.4) condition, the term E can be expressed as follows

1

E| < c(K,mn) Yy /pﬁdt / (1 + D" ull )z -nD* (" tin) lldx. (3 9)
5

loe|<m b

B, o)

Then, from (3.19) estimating the terms A, B, C, D, and E, for every ¢ >0, we have

71
"
v/dt / Y2 o2 ||7inD"ul | dx
)

—b*  B(20

n
< {3e +c(K,U,m,n) (] + h2+|h\’\+|h\“)}/dz / Y2 2 l|TinD"ul)*dx
b B(20)

1
s

+c(K,a,a,b,m,n,s)h2/dt / (1 +1ID"ull?) dx + ¢(o, a, b, n, )Kh?
b B(e)
1

(3.30)

+c(K,0,m,n,e) [ de / Y2 2 lTinDul? 11D ul|*dx
b Bo)

13

+o(K,mn) Y /pﬁdt / (If*1 + 1D ul )| i D (¥ 7i pu) | dx.
5
2(7

lel<m .

B(,0)

We observe that the function
h— c(K,U,o,mmn)(|hl + h*+|h]* + |h*")

is continuous in the origin, then 344(v, K, U, A, 6, m, n), 0 < hp < min{1, 7}, such

that for every |h| < ho, we have
o(K, U, o, m,n) (|hl + h* + |h|* + |h|**) < Z

For each integer i = 1, .., n, for € = |, and every & such that |/| < ho(<1), it follows

1
1
v
) / de f ¥ opl17in D" ul|*dx
—b*  B(20)
1

§c(v,K,a,a,b,m,n)|h|2/dt / (1 +[|D"u|?)dx
b B(30)

(3.31)

_1
n
2m 24, /112 12
+c(v,K,a,m,n)/dt / W2 027D ull? 1Dl P
b BQ0)
1

+c(K,mn) ) / ppdt / (IF*1 + 1D ul )|z, —nD* (¥ " i pus) | dx.
\C‘|<m,b* 5

5(,0)
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Let us focus our attention on the last term, taking into account that from (3.12), for
a. e. te (-b* 0), we have

u(-,t) e H™* (B (io),[RN)

then using Holder and Young inequalities, for every o such that |¢| < m, for every
¢ >0, it follows

/ (IF*1 + 1D ul )1z, -nD* (" zi ) |1

B(50)
2 2
< / 1|72 {17, -n D (¥ " 7)1 dx / (1) + 1|D"ul|?)” dx
(37) (3o)
s§|h|‘2 / |I7i-nD* (" ziput)||* dx + c(e)h? / (P + 11D ul*) dx.
B(30) B(g")

Furthermore, for every o such that |a| < m, from Theorem 2.2 for every 1 € R with
|| < ho and for every ¢ >0, we have

& _ & i m
Il 2 f ||Ti,—hDa(’/f2mTi,hu)||2dxS2 / |ID" (¥ i put) | |* dx

B(30) 5(70)

<s / Y2 (7, D"ul]* dx + ¢(o, ) / |l7in D ul*dx
B(20) B(20)
<e / V2™ |7 Dul 1> dx + (o, €) h? / [|D"u||? dx
B(20) B(30)
the last inequality follows, as before, applying Theorem 2.2 for p = 2.

v .
Let us now choose € = , it ensures
4 ¢(K,m,n)

(U1 + 110"l )13, D" (92" i pat)
B(30)
v
/ Y2 5D ul*dx + c(v, K, o, m, n)h? / FPdx + ulf, pse) + \ulfn'M( 5
)

<
~ 4c¢(K, m,n) 20)
B(20 B(30)

Multiplying each term for p} and integrating respect to (—b*, —;L) and applying

(3.13), we achieve



Floridia and Ragusa Journal of Inequalities and Applications 2011, 2011:42 Page 14 of 17

http://www.journalofinequalitiesandapplications.com/content/2011/1/42

1
T
/ prdt / (IF“] + 11D"ul ) l[7; 5D (¥*" ;) ||dx

—b* B(gn')
1
n
v 2 2m /! 2
< dt tin D ul|~dx
_4C(K,m,n)/p,l /w Nl D"ul
—b* B(20)
1+9 1
0 2 3
+c(v, K, U A 0,a,b,mn)h* {1+ Z /||fa||0,B(3o)dt +f|u|3n,3(30)dt
|er| <m b _p*

Taking into consideration the last inequality and the properties of the function y,
from (3.31) we deduce

2

"
/dt/ ||z D"ul|? dx

—a B(o)
1+ 1
0 2 p
<c(v,K, U A 0,abmn)h? {1+ Z /Ilfallo,B(sa)dt + / |u|fy,,3(3a)dt
laj<m b —b*
1
+c(v,K,0,m,n) / dt / v o || TinD'u||* ||D"ul|? dx.
—b* B(20)
From which, passing the limit y# — oo, we get
0
/ dt / |70 D"ul|? dx
—a B(o)
1+9
2

0
+/|u|fn'3(3a)dt (3.32)

0
<c(v,K ro,mn)h? {1+ Z /HfaHO,B(Sa)dt
b b

|la|<m

0
+c(v,K,a,m,n)/dt / Y2 ol 7D ul 1*||Dul]? dx.
—b*  B(20)

Let us now estimate the last term in (3.32). Using Holder inequality, applying Theo-
rem 2.2 (for p = 4, B(ga) instead of B(o) and t = ;‘) and formula (3.13), for every |h| <

hy, it follows

1
2 2
/ 2 Dul P1ID"ul[2dx < / [z Dul|* dx / 1Dl dx
B(20) (20) (20)
2 // 2 V4 2 2 4
< WRID'IR o D gy < R Tl s
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Integrating in (-b*, 0), from (3.32), it follows
0

/dt/ l1Tin D"ul|>dx

—a B(o)
o W (3.33)
<c(v, K, U ro,abmn)h? {1+ Z 11£*[10,5(30) dt +[|u|fn'3(3a)dt
loe|<m b b
If ho < |h] < 9, for every i = 1, 2, .., n we easily obtain
0 0 2 0
/dt/ [z, D"ul*dx < 4/dt / [|D"u||*dx =4, /dt / [|D"u||>dx
—a Bo) —a  B(30) 0 —a B(30)
0
<cwKUMhro,ab, m,n)hZ/ |u|,2nl3(3(,)dt
—b
1+9
0 2 0
<c(v, K Ui o,abmmn)h? {1+ Y / f*llopee)de | + / lul3, 530y A
lae|<m b b

It is then proved, for every || < ‘; and every i € {1, 2, .., n}, that
0

dr / l|7i0 D" ul|? dx

—a B(o)
1+
0 2 0
<c(v,K, U A o,abmn)h?* {1+ Z /”fall(),B(So)dt +/|u|3n,B(3U)dt )
|a|<m b b
applying Theorem 2.1, it follows
u € L*(—a, 0, H™ (B(0), RY))
and
0
/luerVHl,B(a)dt
—a
. o (3.34)
<c(v,K,UAo,abmn) 31+ Z /”fa”O,B(Sa)dt +/|u|3n,B(30)dt
|a|<m b b

Finally we have to prove that u H'(-a, 0, L*(B(0), RY)) and inequality (3.15).
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From inequality (3.8), we have

0
/dt/ [|D"u||*dx
—a B(o)
o 150 o (3.35)
<c¢(v,K,UAo,a,bmn)i1+ Z /.”fa”O,B(So)dt +/|u|fn’3(30)dt
laj<m b b
then we have
D"u e L*(B(0) x (—a,0),R"). (3.36)

Moreover, bearing in mind that, for || < m, a®(X, p) satisfies (3.4), and for || = m,
a®(X, p) satisfies (3.5), we have

D*a*(X,p) € L* (B(0) x (—a,0),RN) Va: |a| <m (3.37)

Recalling the definition of weak solution, for every ¢ € CP(Q, RN), proceeding as in
[22], we have

0 0
dp o o
/dt/ <u at)dx: ||Z /dt (D%a*(X, Du)lp) dx, (3.38)
-4 B(o) =M_g (o)

and, bearing in mind (3.37), we obtain that

3 2’: € 12 (B(o) x (~4,0), RN) . (3.39)

From (3.4), (3.5) and (3.38), we get

[af]

—a  B(o)

82
I ax
ot

0 2
<c(v,K, U o,abmn){l+ Z /IIf"IIo,B(sa)dt +/|u|rzn,B(30)dt
b )

loe|<m

The last inequality and (3.34) allows us to conclude the proof. =
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