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Abstract

In this article, we consider the numerical method for solving the system of
inequalities under the order induced by a symmetric cone with the function
involved being monotone. Based on a perturbed smoothing function, the underlying
system of inequalities is reformulated as a system of smooth equations, and a
smoothing-type method is proposed to solve it iteratively so that a solution of the
system of inequalities is found. By means of the theory of Euclidean Jordan algebras,
the algorithm is proved to be well defined, and to be globally convergent under
weak assumptions and locally quadratically convergent under suitable assumptions.
Preliminary numerical results indicate that the algorithm is effective.
AMS subject classifications: 90C33, 65K10.
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1 Introduction
Let V be a finite dimensional vector space over 4 with an inner product 〈·,·〉. If there

exists a bilinear transformation from V × V to V, denoted by “○,” such that for any x,

y, z Î V,

x ◦ y = y ◦ x; x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y); 〈x ◦ y, z〉 = 〈x, y ◦ z〉,

where x2 := x ○ x, then (V, ○, 〈·,·〉) is called a Euclidean Jordan algebra. Let K := {x2 :

x Î V}; then K is a symmetric cone [1]. Thus, K could induce a partial order ≽: for
any x Î V, x ≽ 0 means xÎ K. Similarly, x ≻ 0 means x Î intK where intK denotes

the interior of K; and x ≼ 0 means -x ≽ 0.

Let Πk(x) denote the (orthogonal) projection of x onto K. By Moreau decomposition

[2], we can define

x + : = �K(x), x : = x + − x = �K( − x), and |x| := x+ + x− =
√
x2. (1:1)

The system of inequalities under the order induced by the symmetric cones K is

given by

f (x) � 0, (1:2)
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where f : V ® V is a transformation (see two transformations: Löwner operator

defined in [3], and relaxation transformation defined in [4]). We assume that f is con-

tinuously differentiable. Recall that a transformation f : V ® V is called to be continu-

ously differentiable if the linear operator ∇f (x) : V ® V is continuous at each x Î V,

where ∇f (x) satisfying limh→0
||f (x + h) − f (x) − ∇f (x)h||

||h|| = 0 is the Fréchet derivative

of f at x.

When K = �n
+, (1.2) reduces to the usual system of inequalities over ℜn. In this

case, the system of inequalities has been studied extensively because of its various

applications in data analysis, set separation problems, computer-aided design pro-

blems, image reconstructions, and detection on the feasibility of nonlinear program-

ming. Already many iteration methods exist for solving such inequalities; see, for

example [5-9]. It is well known that the positive semi-definite matrix cone, the sec-

ond-order cone, and the nonnegative orthant cone �n
+ as common symmetric cones

have many applications in practice and are studied mostly. Thus, investigation of

(1.2) could provide a unified theoretical framework for studying the system of

respective inequalities under the order induced by the nonnegative orthant, the sec-

ond-order, and the positive semidefinite matrix cones. This is one of the factor that

motivated us to investigate (1.2).

Another motivation factor comes from detection on the feasibility of optimization

problems. A main method to solve symmetric cone programming problems is the

interior point method (IPM, in short). An usual requirement in the IPM is that a feasi-

ble interior point of the problem is known in advance. In general, however, the diff-

culty to find a feasible interior point is equivalent to the one to solve the optimization

problem itself. Consider an optimization problem with the constraint given by (1.2)

where the interior of the feasible set is nonempty. If an algorithm can solve (1.2) effec-

tively, then the same algorithm can be applied to solve f (x) + εe ≼ 0 to generate an

interior point of the solution set of (1.2), where ε >0 is a sufficiently small real number

and e is the unique element in V such that x ○ e = e ○ x = x holds for all x Î V (i.e.,

the identity of V ). Thus, a feasible interior point of conic optimization problem could

be found in this way.

It is well known that smoothing-type algorithms have been a powerful tool for sol-

ving many optimization problems. On one hand, smoothing-type algorithms have been

developed to solve symmetric cone complementarity problems (see, for example,

[10-14]) and symmetric cone linear programming (see, for example, [15,16]). On the

other hand, smoothing-type algorithms have also been developed to solve the system

of inequalities under the order induced by �n
+ (see, for example, [17-19]). From these

recent studies, a natural question is that how to develop a smoothing-type algorithm to

solve the system of inequalities under the order induced by a symmetric cone. Our

objective of this article is to answer this question.

By the definition of “≼” and the second equality in (1.1), we have f(x) ≼ 0 ⇔ -f(x) Î K ⇔ f

(x)- = -f(x) ⇔ f(x)+ = f(x)- + f(x) = 0; that is, the system of inequalities (1.2) is equivalent to

the following system of equations:

f (x)+ = 0 (1:3)
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Since the transformation involving in (1.3) is non-smooth, the classical Newton

methods cannot be directly applied to solve (1.3). In this article, we introduce the

smoothing function:

φ(μ, y) = y +
√
y2 + 4μ2e, ∀y ∈ V, μ ∈ �. (1:4)

By means of (1.4), we extend a smoothing-type algorithm to solve (1.2). By investi-

gating the solvability of the system of Newton equations, we show that the algorithm

is well defined. In particular, we show that the algorithm is globally and locally quadra-

tically convergent under some assumptions.

The rest of this article is organized as follows. In the next section, we first briefly

review some basic concepts on Euclidean Jordan algebras and symmetric cones, and

then present some useful results which will be used later. In Section 3, we investigate a

smoothing-type algorithm for solving the system of inequalities (1.2) and show that the

algorithm is well defined by proving that solvability of the system of Newton equations.

In Section 4, we discuss the global and local quadratic convergence of the algorithm.

The preliminary numerical results for the system of inequalities under the order

induced by the second-order cone are reported in Section 5; some final remarks are

provided in Section 6.

2 Preliminaries
2.1 Euclidean Jordan Algebra

In this subsection, we first recall some basic concepts and results over Euclidean Jor-

dan algebras. For a comprehensive treatment of Jordan algebras, the reader is referred

to [1] by Faraut and Korányi.

Suppose that (V, ○, 〈·,·〉) is a Euclidean Jordan algebra which has the identity e. An

element c Î V is called an idempotent if c ○ c = c. An idempotent c is primitive if it is

nonzero and cannot be expressed by sum of two other nonzero idempotents. For any x

Î V, let m(x) be the minimal positive integer such that {e, x, x2,..., xm(x)} is linearly

dependent. Then, rank of V, denoted by Rank(V ), is defined as max{m(x) : x Î V }. A

set of primitive idempotents {c1, c2,..., ck} is called a Jordan frame if ci ○ cj = 0 for any

i, j Î {1,..., k} with i ≠ j and
∑k

j=1 cj = e.

Theorem 2.1 (Spectral Decomposition Theorem [1]) Let (V, ○, 〈·,·〉) be a Euclidean

Jordan algebra with Rank(V ) = r. Then for any x Î V, there exists a Jordan frame {c1
(x),..., cr (x)} and real numbers l1(x),..., lr (x) such that x =

∑r
i=1 λi(x)ci(x). The num-

bers l1(x),...,lr (x) (with their multiplicities) are uniquely determined by x.

Every li (x)(i Î {1,..., r}) is called an eigenvalue of x, which is a continuous function

with respect to x (see [20]). Define Tr(x) :=
∑r

i=1 λi(x), where Tr(x) denotes the trace

of x. For any x Î V, define a linear transformation Lx by Lxy = x ○ y for any y Î V.

Specially, when K is the nonnegative orthant cone �n
+, for any x = (x1,..., xn)

T , y =

(y1,..., yn)
T Î ℜn,

Lx =

⎛
⎜⎜⎜⎝
x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

⎞
⎟⎟⎟⎠ , Lxy =

⎛
⎜⎜⎜⎝
x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
x1y1
x2y2
...

xnyn

⎞
⎟⎟⎟⎠ = x ◦ y;
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when K is the second-order cone Ln
+, for any x =

(
x0
x̄

)
, y =

(
y0
ȳ

)
∈ � × �n−1,

Lx =
(
x0 x̄T

x̄ x0I

)
, Lxy =

(
x0 x̄T

x̄ x0I

)(
y0
ȳ

)
=

( 〈x, y〉
x0ȳ + y0x̄

)
= x ◦ y;

when K is the positive semidefinite cone Sn×n
+ , for any X ∈ Sn×n

+

LXY =
1
2
(XY + YX) = X ◦ Y, ∀Y ∈ Sn×n

+ ,

For any x, y Î V, x and y operator commute if Lx and Ly commute, i.e., LxLy =

LyLx. It is well known that x and y operator commute if and only if x and y have their

spectral decompositions with respect to a common Jordan frame. We define the inner

product 〈·,·〉 by 〈x, y〉 := Tr(x ○ y) for any x, y Î V. Thus, the norm on V induced by

the inner product is ||x|| := √〈x, x〉 =
√∑r

i=1 (λi(x))
2,∀x ∈ V .

An element x Î V is said to be invertible if there exists a y in the subalgebra gener-

ated by x such that x ○ y = y ○ x = e, and is written as x-1. If x2 = y and x Î K, then x

can be written as y1/2. Given x Î V with x =
∑r

i=1 λi(x) ci(x), where {c1(x),..., cr(x)} is a

Jordan frame and l1(x),..., lr (x) are eigenvalues of x, then x2 =
∑r

i=1 (λi(x))
2ci(x) and

|x| = ∑r
i=1 λi(x)|ci(x) Furthermore, if li (x) ≥ 0 for all i Î {1,..., r}, then

√
x =

∑r

i=1
(λi(x))

1/2ci(x); and if li (x) >0 for all i Î {1,..., r}, then

x−1 =
∑r

i=1 (λi(x))
−1ci(x). More generally, we extend the definition of any real-valued

analytic function g to elements of Euclidean Jordan algebras via their eigenvalues, i.e.,

g(x) :=
∑r

i=1 g(λi(x)) ci(x) where x Î V has the spectral decomposition

x =
∑r

i=1 λi(x) ci(x).

We recall the Peirce decomposition theorem on the space V. Fix a Jordan frame

{c1,..., cr}in a Euclidean Jordan algebra V, for i, j Î {1,..., r}, define

Vii := {x ∈ V : x ◦ ci = x},
Vij := {x ∈ V : x ◦ ci =

1
2
x = x ◦ cj}, i �= j.

Theorem 2.2 (Peirce decomposition Theorem [1]) The space V is the orthogonal

direct sum of spaces Vij (i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj; Vij ◦ Vjk ⊂ Vik if i �= k; Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given a Jordan frame {c1,..., cr}, we can write any element x Î V as

x =
∑r

i=1 xici +
∑

i<j xij, where xi Î ℜ and xij Î Vij.

2.2 Basic Results

In this subsection, we produce several basic results which will be used in our later

analysis.

Proposition 2.1 If x ≽ 0, y ≽ 0, and x - y ≽ 0, then
√
x − √

y � 0.

Proof. The proof is similar to Proposition 8 in [20]; hence we omit it.

Proposition 2.2 For any sequence {ak} ⊆ V and any given Jordan system {c1,..., cr},
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suppose that, for any k, ak =
∑r

i=1
aki ci +

∑
i<j

akijis the Peirce decomposition of ak

with respect to {c1,..., cr}. Then,

(i) if there exists an index i Î {1,..., r} such that aki → ∞, then lmax(a
k) ® ∞ and

(ii) if there exists an index i Î {1,..., r} such that aki → −∞, then lmin(a
k) ® -∞,

where lmax (ak) and lmin (ak) denote the largest and the smallest eigenvalues of ak,

respectively.

Proof. For any k, let ak =
∑r

j=1 λj(ak)ej(ak) be the spectral decomposition of ak with

{e1 (a
k),..., er (a

k)} being a Jordan system. Then, for any i Î {1,..., r}, we have

aki ||ci|| =
〈

r∑
i=1

aki ci +
∑
i<j

akij, ci

〉
= 〈ak, ci〉 =

r∑
j=1

λj(ak) 〈ej(ak), ci〉

≤ λmax(ak)
r∑
j=1

〈ej(ak), ci〉 (since 〈ej(ak), ci〉 ≥ 0)

= λmax(ak) 〈e, ci〉.

(2:1)

Since Le is positive definite by [1, Proposition III.2.2] and ci ≠ 0, it follows 〈e, ci〉 > 0

and ||ci|| > 0. Thus, from (2.1) we have that lmax(a
k) ® ∞ when aki → ∞, which

implies that the result (i) holds;

Similarly, aki ||ci||2 =
∑r

j=1 λj(ak) 〈ej(ak), ci〉 ≥ λmin(ak)
∑r

j=1 〈ej(ak), ci〉 = λmin(ak) 〈e, ci〉 for any i Î {1,...,

r}, and hence, lmin(a
k) ® -∞ when aki → −∞, which implies that the result (ii) holds.

Proposition 2.3 Let j(·,·) be defined by (1.4). Then, the following results hold:

(i) j(·,·) is continuously differentiable at any (μ, y) Î ℜ++ × V with

Dφ(μ, y) (h, v) = v + L−1
cμ (4μhe + y ◦ v),

Where ℜ++:= {a Î ℜ|a > 0}, cμ :=
√
y2 + 4μ2e, (h, v) Î ℜ × V and Dj(μ, y)

denotes the Fréchet derivative of the transformation j at (μ, y).

(ii) j(0, y) = 2y+, and j (0, y) is strong semismoothness at any y Î V.

(iii) j (μ, y) = 0 if and only if μ = 0 and y+ = 0.

Proof. (i): It is easy to get the results similar to [11, Lemma 3.1]; hence we omit the

proof.

(ii) φ(0, y) = y +
√
y2 = y + |y| = 2y+. In addition, [3, Proposition 3.3] says that y+ is

strong semismoothness at any y Î V. Thus, j(0, y) is strong semismoothness at

any y Î V.

(iii): It is easy to see that

φ(μ, y) = 0 ⇔ −y =
√
y2 + 4μ2e ⇔ y2 = y2 + 4μ2e, y � 0.

The last equality implies μ = 0. This, together with (ii), yields the desired result.
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3 A smoothing Newton algorithm
Let j(·,·) be defined by (1.4). We define a transformation H by

H(z) := H(μ, x, y) =

⎛
⎝ μ

y − f (x) − μx
φ(μ, y) + μy

⎞
⎠ . (3:1)

From Proposition 2.3(iii) it follows that H(μ*, x*, y*) = 0 if and only if μ* = 0, y* = f

(x*) and f(x*)+ = 0, i.e., x* solves the system of inequalities (1.2).

By Proposition 2.3 (i), for any z = (μ, x, y) Î ℜ++ × V × V, the transformation H is

continuously differentiable with

DH(z) (h, u, v) =

⎛
⎝ h

−hx − D f (x)u − μu + v
hy + (1 + μ)v + L−1

cμ (4μhe + y ◦ v

⎞
⎠ , (3:2)

where DH (z) denotes the Fréchet derivative of the transformation H at z and (h, u,

v) Î ℜ × V × V. Therefore, we may apply some Newton-type method to solve the

smoothing equations H (z) = 0 at each iteration and make μ > 0 and H (z) ® 0, so

that a solution of (1.2) can be found.

Given μ̄ > 0, choose g Î (0, 1), such that γ μ̄ < 1. Define transformations Ψ and b as

�(z) := ||H(z)||2and β(z) := γmin {1, �(z)}. (3:3)

Algorithm 3.1 (A Smoothing Newton Algorithm)

Step 0 Choose δ Î (0, 1), σ ∈
(
0,

1
2

)
. Let g be given in the definition of b(·),

μ0 = μ̄and (x0, y0) Î V × V be an arbitrary element. Set z0 = (μ0, x
0, y0). Set

e0 = (μ̄, 0, 0) ∈ � × V × Vand k = 0.

Step 1 If ||H(xk)|| = 0 then stop.

Step 2 Compute Δzk = (Δμk, Δxk, Δyk) Î ℜ × V × V by

H(zk) +DH(zk)	zk = β(zk)e0, (3:4)

where DH (zk) denotes the Fréchet derivative of the transformation H at zk.

Step 3 Let lk be the maximum of the values 1, δ, δ2,... such that

�(zk + λk	zk) ≤ [1 − 2σ (1 − γμ0)λk] �(zk). (3:5)

Step 4 Set zk+1 = zk + lkΔz
k and k = k + 1. Go to Step 1.

In order to show that Algorithm 3.1 is well defined, we need to show that the system

of Newton equations (3.4) is solvable, and the line search (3.5) will terminate finitely.

The latter result can be proved in a similar way as those standard discussions in the

literature. Thus, we only need to prove the former result, i.e., the solvability of the sys-

tem of Newton equations.

Theorem 3.1 Suppose that f is a continuously differentiable monotone transforma-

tion. Then, the system of Newton equations (3.4) is solvable.

Proof. For this purpose, we only need to show that DH (z) is invertible for all z Î ℜ++ ×

V × V. Suppose that DH(z)Δz = 0, by (3.4) we have

	μ = 0,
−	μx − (D f (x) + μI) 	x + 	y = 0,

	μy + (1 + μ)	y + L−1
cμ (4μ	μe + y ◦ 	y) = 0,

⎫⎬
⎭ (3:6)
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where cμ :=
√
y2 + 4μ2e. Then, from the first and third system of equations in (3.6),

it follows that

[(1 + μ)cμ + y] ◦ 	y = L(1+μ)cμ+y	y = 0. (3:7)

By Proposition 2.1 and (1 + μ)2c2μ − y2 = (μ2 + 2μ) (y2 + 4μ2e) + 4μ2e � 0, we have

that (1 + μ) cμ ≻ |y| ≽ -y, and hence, (1 + μ) cμ + y ≻ 0. Then, by [1, Proposition

III.2.2], we know that L(1+μ)cμ+y is positive definite, and so, Δy = 0 holds from (3.7).

Since Df (x) is positive semidefinite from the fact that f is monotone, by the second

system of equations in (3.6), we have Δx = 0, which, together with the first system of

equations in (3.6), implies that DH (z) is invertible for all z Î ℜ++ × V × V.

The proof is complete.

Lemma 3.1 Suppose that f is a continuously differentiable monotone transformation

and {zk} = {(μk, x
k, yk)} ⊆ ℜ × V × V is a sequence generated by Algorithm 3.1, then we

have

(i) The sequences {Ψ(zk)}, {||H (zk)||}, and {b (zk)} are monotonically decreasing.

(ii) Define N (γ ) := {z ∈ �+ × V × V : μ̄β(z) ≤ μ}where the constant g is given in

Step 0 of Algorithm 3.1 and the function b (·) is defined by (3.3), then zk ∈ N (γ )for

all k.

(iii) The sequence {μk} is monotonically decreasing and μk > 0 for all k.

Proof. (i) From (3.5) it is easy to see that the sequence {Ψ(zk)} is monotonically

decreasing, and hence, sequences {||H(zk)||} and {b(zk)} are monotonically decreasing.

(ii) We use inductive method to obtain this result. First, it is evident from the

choice of the starting point that z0 ∈ N (γ ). Second, if we assume that

zm = (μm, xm, ym) ∈ N (γ ) for some index m, then

μm+1 − μ̄β(zm+1) = (1 − λm)μm + λmμ̄β(zm) − μ̄β(zm+1)

≥ (1 − λm)μ̄β(zm) + λmμ̄β(zm) − μ̄β(zm+1)

= μ̄(β(zm) − β(zm+1))

≥ 0,

where the first equality follows from the equation in (3.4) and Step 4, the first

inequality from the assumption zm ∈ N (γ ), and the last inequality from (i). This shows

that zm+1 ∈ N (γ ), and hence, zk ∈ N (γ ) for all k.

(iii) It follows (3.4) that μk+1 = μk + λk	μk = (1 − λk)μk + λkμ̄β(zk). Since μ0 >0,

we can get μk >0 for all k through the recursive methods. In addition, by (ii), we

have

μk+1 = (1 − λk)μk + λkμ̄β(zk) ≤ (1 − λk)μk + λkμk = μk,

which implies that {μk} is monotonically decreasing.

The proof is complete.
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4 Convergence of algorithm 3.1
In this section, we discuss the global and local quadratic convergences of Algorithm

3.1. We begin with the following lemma, a generalization of [21, Lemma 4.1], which

will be used in our analysis on the boundedness of iterative sequences.

Lemma 4.1 Let f be a continuously differentiable monotone function and {uk} ⊆ V be

a sequence satisfying||uk|| ® ∞. Then there exist a subsequence, which we write without

loss of generality as {uk}, and an index i Î {1,..., r} such that, either li (uk) ® ∞ and fi
(uk) is bounded below; or li (uk) ® -∞ and fi (uk) is bounded above, where

uk =
∑r

i=1
λi(uk)ei(uk)is the spectral decomposition of uk, and

f (uk) =
∑r

i=1 fi(u
k)ei(uk) +

∑
1≤i<j≤r fij(u

k)is the Peirce decomposition of f(uk) with

respect to {e1(u
k),..., er(u

k)}.

Proof. Since ||uk|| ® ∞, passing through a subsequence if necessary, it follows that

J := {i ∈ {1, . . . , r} : |λi(uk)| → ∞}.

Define a bounded sequence {vk} with vk =
∑r

i=1 (v
k)iei(u

k) ∈ V , where

(vk)i =
{
0, i ∈ J;
λi(uk), otherwise.

with uk =
∑r

i=1
λi(uk)ei(uk) is the spectral decomposition of uk. From the definition

of vk and the assumption of f being monotone, it follows that, for all k,

0 ≤ 〈uk − vk, f (uk) − f (vk)〉

= 〈
∑
i∈J

λi(uk)ei(uk),
r∑
i=1

(fi(uk) − fi(vk))ei(uk) +
∑

1≤i<j≤r

(fij(uk) − fij(vk))〉

=
∑
i∈J

λi(uk)(fi(uk) − fi(vk))||ei(uk)||2.

(4:1)

For any i Î J, we have |li (uk)| ® ∞, and hence, either li (uk) ® ∞ or li (uk) ® -∞.

If li (uk) ® ∞, then (4.1) shows that fi (u
k) is bounded below by infk fi (v

k); if li (uk)
® -∞, then (4.1) shows that fi (u

k) is bounded above by supk fi (v
k). Thus, the proof is

complete.

Theorem 4.1 Suppose that f is a continuously differentiable monotone function, then

the sequence {zk} generated by Algorithm 3.1 is bounded and every accumulation point

of {xk} is a solution of the system of inequalities (1.2).

Proof. By Lemma 3.1, we have that sequences {μk} and {Ψ(zk)} are nonnegative and

monotone decreasing. From (3.1) and (3.3), we have

�(zk) = μ2
k + ||yk − f (xk) − μkx

k||2 + ||φ(μk, yk) + μky
k||2.

Thus, {yk - f (xk) - μkx
k} and {j(μk, yk) + μky

k} are bounded. Let g (μk, x
k, yk) := yk - f

(xk) - μkx
k, then {g (μk, x

k, yk)} is bounded and yk = g (μk, x
k, yk) + f (xk) + μkx

k. Suppose

that xk has the spectral decomposition xk =
∑r

i=1 λi(xk)ei(xk), then the Peirce decompo-

sition of f(xk) and g(μk, x
k, yk) with respect to the Jordan frame {e1(x

k),...., er(x
k)} are

f (xk) =
r∑
i=1

fi(xk)ei(xk) +
∑

1≤i<j≤r

fij(xk), (4:2)
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and

g(μk, xk, yk) =
r∑
i=1

gi(μk, xk, yk) ei(xk) +
∑

1≤i<j≤r

gij(μk, xk, yk) (4:3)

respectively. By (4.2) and (4.3), we have that the Peirce decomposition of yk with

respect to {e1(x
k),..., er (x

k)} is

yk = g(μk, xk, yk) + f (xk) + μkxk

=
r∑
i=1

[gi(μk, xk, yk) + fi(xk) + μkλi(xk)] ei(xk) +
∑

1≤i<j≤r

[gij(μk, xk, yk) + fij(xk)]

:=
r∑
i=1

(yk)iei(x
k) +

∑
1≤i<j≤r

(yk)ij.

(4:4)

In the following, we assume that {xk} is unbounded and derive a contradiction. Since

f is a continuously differentiable monotone function, by noticing Lemma 4.1, we can

take a subsequence if necessary, without loss of generality denoted by {xk}, and an

index i0 Î {1,..., r} such that either λi0 (x
k) → ∞and fi0 (x

k) is bounded below; or

λi0 (x
k) → −∞ and fi0 (x

k) is bounded above. Together with (4.4), it follows that either

λi0 (x
k) → ∞ and (yk)i0 → ∞; or λi0 (x

k) → −∞ and (yk)i0 → −∞ with

(yk)i0 = gi0 (mk, xk, yk) + (f (xk))i0 +mk(xk)i0. By Proposition 2.2, we further obtain that{
either
or

λi0 (x
k) → ∞ and λmax(yk) → ∞;

λi0 (x
k) → −∞ and λmin(yk) → −∞.

(4:5)

Suppose that yk has the spectral decomposition yk =
∑r

i=1 λi(yk)ei(yk), then j(μk, yk) +
μky

k has the spectral decomposition

φ(μk, yk) + μkyk =
r∑
i=1

(λi(yk) +
√

λ2
i (y

k) + 4μ2
k + μkλi(yk))ei(yk),

hence,

||φ(μk, yk) + μkyk||2 =
r∑
i=1

(λi(yk) +
√

λ2
i (y

k) + 4μ2
k + μkλi(yk))

2
||ei(yk)||2. (4:6)

We now consider two cases.

Case 1. li0 (xk) ® ∞. It follows from (4.5) that lmax(y
k) ® ∞, which together with

(4.6) implies that

||φ(μk, yk) + μky
k||2 ≥ (

√
λ2
max(yk) + 4μ2

k + (1 + μk)λmax(yk))2||emax(yk)||2 → ∞,

where emax (yk) denotes the element corresponding to lmax(y
k) in the spectral

decomposition of yk.

Case 2. li0 (xk) ® -∞. It follows from (4.5) that lmin(y
k) ® -∞, which together with

(4.6) implies that

||φ(μk, yk) + μky
k||2 ≥ (λmin(yk) +

√
λ2
min(y

k) + 4μ2
k + μkλmin(yk))2||emin(yk)||2

= [4μ2
k /(

√
λ2
min(y

k) + 4μ2
k − λmin(yk)) + μkλmin(yk)]2||emin(yk)||2,
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where emin(y
k) denotes the element corresponding to lmin(y

k) in the spectral decom-

position of yk. Since 4μ2
k /(

√
λ2
min(y

k) + 4μ2
k − λmin(yk)) → 0 when lmin(y

k) ® -∞, so

4μ2
k /(

√
λ2
min(y

k) + 4μ2
k − λmin(yk)) + μkλmin(yk) → −∞,

and hence, ||j(μk, yk) + μky
k||2 ® ∞ as k ® ∞.

In either case, we get ||j(μk, yk) + μky
k|| ® ∞ as k ® ∞, which contradicts the fact

that {j(μk, yk) + μky
k} is bounded. Hence, {xk} is bounded. Since the function f is con-

tinuous, by noticing that yk = g (μk, x
k, yk) + f (xk) + μkx

k for all k, it follows that {yk} is

bounded. Therefore, the sequence {(xk, yk)} is bounded.

By Lemma 3.1, we have that sequences {μk}, {||H(z
k)||}, and {Ψ(zk)} are nonnegative

and monotone decreasing, and hence they are convergent. Denote

lim
k→∞

μk = μ∗, lim
k→∞

||H(zk)|| = H∗, and lim
k→∞

�(zk) = �∗.

We show that H* = 0. In the following, we assume H* ≠ 0 and derive a contradiction.

Under this assumption, it is easy to show that H* > 0, μ* > 0, Ψ* > 0. Since μ* > 0 and

the sequence {||H(zk)||} is bounded, we could obtain from the first result that the

sequence {(xk, yk)} is bounded. Thus, subsequencing if necessary, we may assume that

there exists a point z* = (μ*, x*, y*) Î ℜ+ × V × V such that limk®∞ zk = z*, and hence,

H* = ||H(z*)|| and Ψ* = Ψ (z*). Since ||H(z*)|| > 0, so Ψ(z*) > 0, from (3.5), it follows

that limk®∞ lk = 0. Thus, for any sufficiently large k, the stepsize λ̂k := λk/δ does not

satisfy the line search criterion (3.5), i.e., �(zk + λ̂k	zk) > [1 − 2σ (1 − γμ0)λ̂k] �(zk),

which implies that

[�(zk + λ̂k	zk) − �(zk)]/λ̂k > −2σ (1 − γμ0)�(zk).

Since μ* > 0, it follows that Ψ(z) is continuously differentiable at z*. Let k ® ∞, then

the above inequality gives

−2σ (1 − γ μ̄)�(z∗) ≤ 2H(z∗)TDH(z∗)	z∗ = 2H(z∗)T(−H(z∗) + β(z∗)e0)

= −2H(z∗)TH(z∗) + 2β(z∗)H(z∗)Te0

= −2�(z∗) + 2β(z∗)μ̄μ∗
≤ 2(−1 + γ μ̄)�(z∗),

then (−1 + γ μ̄)(1 − σ ) ≥ 0, together with σ ∈
(
0,

1
2

)
, it follows that γ μ̄ ≥ 1, which

contradicts the fact that γ μ̄ < 1. So H* = 0. Thus, by a simple continuity discussion,

we obtain that x* is a solution of the system of inequalities (1.2). This shows that the

desired result holds.

Now, we discuss the local quadratic convergence of Algorithm 3.1. For this purpose,

we need the strong semismoothness of transformation H which can be obtained by

Proposition 2.3 (ii). In a similar way as the one in [17, Theorem 3.2], we can obtain

the local quadratic convergence of Algorithm 3.1.

Theorem 4.2 Suppose that f is a continuously differentiable monotone function. Let

the sequence {zk} be generated by Algorithm 3.1 and z* := (μ*, x*, y*) be an accumula-

tion point of {zk}. If all W Î ∂H(z*) is nonsingular, where

∂H(z∗) := conv{ lim
k→∞

DH(uk) : ∀uk → z∗ andH is Fréchet derivable at uk},
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and conv denotes convex hull, then the whole sequence {zk} converges to z*, and

||zk+1 − z∗|| = O(||zk − z∗||2), ||H(zk+1)|| = O(||H(zk)||2), μk+1 = O(μ2
k).

5 Numerical experiments
In this section, in order to evaluate the efficiency of Algorithm 3.1, we give some

numerical results for solving the system of inequalities under the order induced by the

second-order cone (SOCIS, for short) through conducting some numerical experi-

ments. All the experiments are done on a PC with CPU of 2.4 GHz and RAM of 2.0

GB, and all codes are written in MATLAB. Throughout the experiments, the para-

meters we used are δ = 0.5, s = 0.0001, and g = 0.20. The algorithm is terminated

whenever ||H (z)|| ≤ 10-6, or the step length a ≤ 10-6, or the number of iteration was

over 500. The starting points in the following test problems are randomly chosen from

the interval [-1, 1]. In our experiments, the function H defined by (3.1) is replaced by

H(z) := H(μ, x, y) =

⎛
⎝ μ

y − f (x) − cμx
φ(μ, y) + cμy

⎞
⎠ ,

where c is a constant. This does not destroy all theoretical results obtained in the

previous sections. Denote

Km := {x = (x1, x2) ∈ � × �m−1 : x1 ≥ ‖x2‖},
then Km is an m-dimensional second-order cone.

First, we test the following problem.

Example 5.1 Consider the system of inequalities (1.4) with f (x) := Mx + q, and the

order induced by the second-order cone K := Kn1 × · · · × Knm, where M = BBT with B Î
ℜn × n being a matrix every of which is randomly chosen from the interval [0, 1] and q

Î ℜn being a vector every component of which is 1.

For this example, the test problems are generated with sizes n = 400, 800,..., 4000

and each ni = 10. The random problems of each size are generated 10 times, and thus,

we have totally 100 random problems. Table 1 shows the average iteration numbers

(iter), the average CPU time (cpu) in seconds, and the average residual norm ||H(z)||

(res) for 10 test problems given in Example 5.1 of each size, for the random initializa-

tions, respectively. Figure 1 shows the convergence behavior of one of the largest test

problems, i.e., n = 4000.

Second, we test the following problem, which is taken from [22].

Example 5.2 Consider the system of inequalities (1.4) with

f (x) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

24(2x1 − x2)
3 + exp(x1 − x3) − 4x4 + x5

−12(2x1 − x2)
3 + 3(3x2 + 5x3)/

√
1 + (3x2 + 5x3)

2 − 6x4 − 7x5

−exp(x1 − x3) + 5(3x2 + 5x3)/
√
1 + (3x2 + 5x3)

2 − 3x4 + 5x5
4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2

⎞
⎟⎟⎟⎟⎟⎟⎠
,

and the order induced by the second-order cone K := K3 × K2.

This problem is tested 20 times for 20 random starting points. The average iteration

number is 5.250, the average CPU time is 0.002, and the average residual norm ||H

(z)|| is 1.197e-007.
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From the numerical results, it is easy to see that Algorithm 3.1 is effective for the

problems has tested. We have also tested some other inequalities, and the perfor-

mances of Algorithm 3.1 are similar.

6 Remarks
In this article, we proposed a smoothing-type algorithm for solving the system of

inequalities under the order induced by the symmetric cone. By means of the theory of

Euclidean Jordan algebras, we showed that the system of Newton equations is solvable.

Furthermore, we showed that the algorithm is well defined and is globally convergent

under weak assumptions. We also investigated the local quadratical convergence of the

algorithm. Moreover, the proposed algorithm has no restrictions on the starting point

Table 1 Average performances of Algorithm 3.1 for ten problems

n iter cpu res

400 24.500 1.053 1.552e-007

800 29.500 4.365 2.953e-007

1200 22.800 7.194 3.429e-007

1600 24.333 13.580 4.467e-007

2000 12.667 11.038 2.146e-007

2400 15.444 19.891 3.419e-007

2800 15.667 31.102 3.693e-008

3200 12.100 36.105 1.249e-007

3600 14.500 59.270 2.043e-007

4000 16.625 92.832 3.888e-007
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Figure 1 The logarithm of residual norm ||H(z)|| by iterations.
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and solves only one system of equations at each iteration. The preliminary numerical

experiments show that the algorithm is effective.
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