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A new concept of p-Aleksandrov body is firstly introduced. In this paper, p-Brunn-
Minkowski inequality and p-Minkowski inequality on the p-Aleksandrov body are
established. Furthermore, some pertinent results concerning the Aleksandrov body
and the p-Aleksandrov body are presented.
2000 Mathematics Subject Classification:
52A20 52A40

Keywords: Aleksandrov body, p-Aleksandrov body, Brunn-Minkowski inequality,
Minkowski inequality

1 Introduction
The notion of Aleksandrov body was firstly introduced by Aleksandrov to solve

Minkowski problem in 1930s in [1]. The Aleksandrov body establishes the relationship

between the convex body containing the origin and the positive continuous functions

and characterizes the convex body by means of the positive continuous functions. The

Aleksandrov body not only be used to solve Minkowski problem but also has a wide

range of applications in other areas of Convex Geometric Analysis. Then, the Aleksan-

drov body is an essential matter in the Brunn-Minkowski theory and plays an impor-

tant role in Convex Geometric Analysis. In recent years, Ball [2], Gardner [3,4],

Lutwak [5-10], Klain [11], Hug [12], Haberl [13], Schneider [14], Stancu [15], Umans-

kiy [16] and Zhang [17] have given considerable attention to the Brunn-Minkowski

theory and their various generalizations.

The purpose of this paper is to study comprehensively the Aleksandrov body, and

most importantly, the Lp analogues of Aleksandrov body become a major goal. Here, a

new geometric body is firstly introduced, called p-Aleksandrov body. Meanwhile,

p-Brunn-Minkowski inequality and p-Minkowski inequality for the p-Aleksandrov

bodies associated with positive continuous functions are established. Furthermore,

some related results, including of the uniqueness results, the convergence results for

the Aleksandrov bodies and the p-Aleksandrov bodies associated with positive continu-

ous functions, are presented.

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty

interiors) in Euclidean space ℝn, Kn
0 denote the set of convex bodies containing the ori-

gin in their interiors. Let V (K) denote the n-dimensional volume of body K, for the stan-

dard unit ball B in ℝn, denote ωn = V (B), and let Sn-1 denote the unit sphere in ℝn.

Let C+(Sn-1) denote the set of positive continuous functions on Sn-1, endowed with

the topology derived from the max norm. Given a function f ÎC+(Sn-1), the set
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{K ∈ Kn
0 : hK ≤ f }

has a unique maximal element, then we denoted the Aleksandrov body associated

with the function f ÎC+(Sn-1) by

K(f ) = max{K ∈ Kn
0 : hK ≤ f }.

The volume of body K(f) is denoted by V (K(f)). Following Aleksandrov (see [18]),

define the volume V (f) of a function f as the volume of the Aleksandrov body asso-

ciated with the positive continuous function f.

In this paper, we generalize and improve Brunn-Minkowski inequality and Minkowski

inequality for the Aleksandrov bodies associated with positive continuous functions and

establish p-Minkowski inequality and p-Brunn-Minkowski inequality for the Aleksan-

drov bodies and the p-Aleksandrov bodies associated with positive continuous functions

as follows.

Theorem 1

If Q ∈ Kn
0, f ÎC

+(Sn-1), and p ≥ 1, then

Vp(Q, f ) ≥ V(Q)(n−p)/nV(f )p/n, (1:1)

with equality if and only if there exists a constant c >0 such that hQ = cf, almost

everywhere with respect to S(Q, ·) on Sn-1.

Theorem 2

If p ≥ 1, f, g ÎC+(Sn-1), and l, μ Îℝ+, then

V(λ · f+pμ · g)
p
n ≥ λV(f )

p
n + μV(g)

p
n , (1:2)

with equality if and only if there exists a constant c >0 such that f = cg, almost every-

where with respect to S(K(f ), ·) on Sn-1.

The other aim of this paper is to establish the following inequality for the Aleksan-

drov bodies and the p-Aleksandrov bodies associated with positive continuous

functions.

Theorem 3

If K(f ), K(g) ∈ Kn
e , are the Aleksandrov bodies associated with the functions f, g ÎC+(Sn-1),

and n ≠ p ≥ 1, then

V(f+pg)
n−p
n ≥ V(f )

n−p
n + V(g)

n−p
n , (1:3)

with equality if and only if there exists a constant c >0 such that f = cg, almost every-

where with respect to S(K(f ), ·) on Sn-1.

More interrelated notations, definitions, and their background materials are exhibited

in the next section.

2 Definition and notation
The setting for this paper is n-dimensional Euclidean space ℝn. Let Kn denote the set

of convex bodies (compact, convex subsets with non-empty interiors), Kn
0 denote the

subset of Kn that contains the origin in their interiors, and Kn
e denote the subset of Kn
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that are centered in ℝn. We reserve the letter u for unit vector and the letter B for

the unit ball centered at the origin. The surface of B is Sn-1, and the volume of B

denotes ωn.

For � ÎGL(n), let �t, � -1, and � -t, denote the transpose, inverse, and inverse of the

transpose of �, respectively. If K Î Kn, the support function of K, hK = h(K, ·): ℝn ®
(0, ∞), is defined by

h(K, u) = max{u · x : x ∈ K}, u ∈ Sn−1,

where u · x denotes the standard inner product of u and x.

The set Kn will be viewed as equipped with the usual Hausdorff metric, d, defined by

d(K, L) = |hK - hL|∞, where | · |∞ is the sup (or max) norm on the space of continuous

functions on the unit sphere, C(Sn-1).

For K, L Î Kn, and a, b ≥ 0 (not both zero), the Minkowski linear combination, aK
+ bL Î Kn is defined by

h(αK + βL, ·) = αh(K, ·) + βh(L, ·). (2:1)

Firey introduced, for each real p ≥ 1, new linear combinations of convex bodies: For

K, L ∈ Kn
0, and a, b ≥ 0 (not both zero), the Firey combination, α · K+pβ · L ∈ Kn

0

whose support function is defined by (see [19])

h(α · K+pβ · L, ·)p = αh(K, ·)p + βh(L, ·)p. (2:2)

Obviously, a · K = a1/pK.

For K, L Î Kn, and a, b ≥ 0 (not both zero), by the Minkowski existence theorem

(see [3,14]), there exists a convex body a ⋅ K + b ⋅ L Î Kn, such that

S(α · K + β · L, ·) = αS(K, ·) + βS(L, ·), (2:3)

where S(K, ·) denotes the surface area measure of K, and the linear combination a ·

K + b · L is called a Blaschke linear combination.

Lutwak generalized the notion of Blaschke linear combination in [5]:

For K, L ∈ Kn
e , and n ≠ p ≥ 1, define K+pL ∈ Kn

e by

Sp(K+pL, ·) = Sp(K, ·) + Sp(L, ·). (2:4)

The existence and uniqueness of K +p L are guaranteed by Minkowski’s existence

theorem in [5].

2.1 Mixed volume and p-mixed volume

If Ki Î Kn (I = 1, 2, ..., r) and li (i = 1, 2,..., r) are nonnegative real numbers, then of

fundamental importance is the fact that the volume of
∑r

i=1 λiKi is a homogeneous

polynomial in li given by

V(
r∑
i=1

λiKi) =
∑
i1,...,in

λi1 . . . λinV(Ki1 . . .Kin), (2:5)

where the sum is taken over all n-tuples (i1,... in) of positive integers not exceeding r.

The coefficient V(Ki1 . . .Kin), which is called the mixed volume of Ki1 . . .Kin, depends only

on the bodies Ki1 . . .Kin and is uniquely determined by (2.5). If K1 = ... Kn-i = K and Kn - i

+1 = ... = Kn = L, then the mixed volume V (K1 ... Kn) is usually written as Vi(K, L).
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Let r = 1 in (2.5), we see that

V(λ1K1) = λn
1V(K1).

Further, from (2.5), it follows immediately that

nV1(K, L) = lim
ε→0

V(K + εL) − V(K)
ε

.

Aleksandrov (see [1]) and Fenchel and Jessen (see [20]) have shown that correspond-

ing to each K Î Kn, there is a positive Borel measure, S(K, ·) on Sn-1, called the surface

area measure of K, such that

V1(K,Q) =
1
n

∫

Sn−1

h(Q, u)dS(K, u), (2:6)

for all Q Î Kn.

For p ≥ 1, the p-mixed volume Vp(K, L) of K, L ∈ Kn
0, was defined by (see [5])

n
p
Vp(K, L) = lim

ε→0

V(K+pε · L) − V(K)

ε
.

That the existence of this limit was demonstrated in [5].

It was also shown in [5], that corresponding to each K ∈ Kn
0, there is a positive Borel

measure, Sp(K, ·) on Sn -1 such that

Vp(K,Q) =
1
n

∫

Sn−1

h(Q, u)pdSp(K, u), (2:7)

for all Q ∈ Kn
0. It turns out that the measure Sp(K, ·) is absolutely continuous with

respect to S(K, ·) and has Radon-Nikodym derivative,

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p. (2:8)

From (2.7) and (2.8), we have

Vp(K,Q) =
1
n

∫

Sn−1

h(Q, u)ph(K, u)1−pdS(K, u), (2:9)

where S(K, ·) = S0(K, ·) is the surface area measure of K.

Obviously, for each K ∈ Kn
0, p ≥ 1,

Vp(K,K) = V(K). (2:10)

2.2 Aleksandrov body

If a function f Î C+(Sn-1) (denoted the set of positive continuous functions on Sn-1 and

endowed with the topology derived from the max norm), the set

{K ∈ Kn
0 : hK ≤ f }

has a unique maximal element, then the Aleksandrov body associated with the func-

tion f is denoted by
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K(f ) = max{K ∈ Kn
0 : hK ≤ f }. (2:11)

From (2.11) and (2.1), we have: If f, g Î C+(Sn-1), and l, μ ≥ 0 (not both zero), then

K(λf + μg) ⊇ λK(f ) + μK(g). (2:12)

Obviously, if f is the support function of a convex body K, then the Aleksandrov body

associated with f is K.V (K(f )) denotes the volume of body K(f ). Following Aleksandrov

(see [18]), define the volume V (f ) of a function f as the volume of the Aleksandrov body

associated with the positive function f.

For Q ∈ Kn
0, f Î C +(Sn-1), and p ≥ 1, Vp(Q, f ) is defined by (see [5])

Vp(Q, f ) =
1
n

∫

Sn−1

f (u)ph(Q, u)1−pdS(Q, u), (2:13)

Obviously, Vp(K, hK) = V (K), for all K ∈ Kn
0.

2.3 p-Aleksandrov body

Definition 1

Let f, g Î C+(Sn-1), p ≥ 1, and

ε > −min{f (u)p/g(u)p, u ∈ Sn−1},

define

f+pε · g = (f p + εgp)1/p. (2:14)

Then, the set

{Q ∈ Kn
0 : h(Q, ·) ≤ (f p + gp)1/p},

has a unique maximal element.

We denote the p-Aleksandrov body associated with the function f +p g Î C+ (Sn-1) by

Kp(f+pg) = max{Q ∈ Kn
0 : h(Q, ·) ≤ (f p + gp)1/p}, (2:15)

for p ≥ 1.

The volume of body Kp(f +p g) is denoted by V (Kp(f +p g)), and define the volume

V (f +p g) of the function f +p g as the volume of the p-Aleksandrov body associated

with the positive function f +p g.

From (2.2), we have the following result: If f, g Î C+(Sn-1), and p ≥ 1, then

Kp(f+pg) ⊇ K(f )+pK(g). (2:16)

We note that the equality condition in (2.16) is clearly holds, when f and g are the

support functions of K(f ) and K(g), respectively. Also, the case p = 1 of (2.16) is just

(2.12).

3 Proof of the main results
The following Lemmas will be required to prove our main theorems.

Lemma 1

[5]If K(f ) is the Aleksandrov body associated with f Î C+(Sn-1), then hK(f) = f almost

everywhere with respect to the measure S(K(f ), ·) on Sn-1.
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Obviously, if K(f ) is the Aleksandrov body corresponding to a given function f Î C
+(Sn-1), its support function has the property that 0 < hK ≤ f and V (f ) = V (hK(f )).

Lemma 2

[5]If p ≥ 1, K(f ) is the Aleksandrov body associated with f Î C+(Sn-1), then V (f ) = V

(K(f )) = Vp(K(f ), f ), i.e

V(f ) =
1
n

∫

Sn−1

h(K(f ), u)dS(K(f ), u).

Lemma 3

[5]If K ∈ Kn
0, f Î C+(Sn-1), then, for p ≥ 1,

n

p
Vp(K, f ) = lim

ε→0

V(hK+pε · f ) − V(hK)

ε
. (3:1)

We get the following Brunn-Minkowski inequality for the Aleksandrov bodies asso-

ciated with positive continuous functions.

Lemma 4

If f, g Î C+(Sn-1), and l, μ Îℝ+, then

V(λf + μg)1/n ≥ λV(f )1/n + μV(g)1/n, (3:2)

with equality if and only if there exist a constant c >0 and t ≥ 0, such that f = cg + t,

almost everywhere with respect to S(K(f ), ·) on Sn-1.

Proof

Since f, g Î C+(Sn-1), from (2.11), (2.12) and the Brunn-Minkowski inequality (see [21]),

we get

V(K(λf + μg))1/n ≥ V(λK(f ) + μK(g))1/n

≥ λV(K(f ))1/n + μV(K(g))1/n.
(3:3)

The equality condition in (3.3) is that f, g are the support functions of K(f ) and K(g)

which are homothetic, respectively.

From Lemma 1 and Lemma 2, we get the following result

V(λf + μg)1/n ≥ λV(f )1/n + μV(g)1/n, (3:4)

with equality if and only if there exist a constant c >0 and t ≥ 0, such that f = cg + t,

almost everywhere with respect to S(K(f ), ·) on Sn-1.

An immediate consequence of the definition of a Firey linear combination, and the

integral representation (2.13), is that for Q ∈ Kn
0, the p-mixed volume

Vp(Q, ·) : C+(Sn−1) → (0,∞)

is Firey linear.
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Lemma 5

If p ≥ 1, Q ∈ Kn
0, f, g Î C+(Sn-1), and l, μ Î ℝ+, then

Vp(Q,λ · f+pμ · g) = λVp(Q, f ) + μVp(Q, g). (3:5)

Proof

From (2.13), (2.14), we obtain

Vp(Q,λ · f+pμ · g) = 1
n

∫

Sn−1

(λ · f+pμ · g)ph(Q, u)1−pdS(Q, u)

=
1
n

∫

Sn−1

(λf p + μgp)h(Q, u)1−pdS(Q, u)

= λVp(Q, f ) + μVp(Q, g).

In the following, we will prove the p-Minkowski inequality for the Aleksandrov

bodies associated with positive continuous functions.

Proof of Theorem 1.

Firstly, let p = 1 in Lemma 3, we get

nV1(Q, f ) = lim
ε→0

V(hQ + εf ) − V(hQ)
ε

,

let ε = t
1−t, we have

nV1(Q, f ) = lim
t→0

V((1 − t)hQ + tf ) − (1 − t)nV(hQ)

t(1 − t)n−1

= lim
t→0

V((1 − t)hQ + tf ) − V(hQ)
t

+ lim
t→0

(1 − (1 − t)n)V(hQ)
t

= lim
t→0

V((1 − t)hQ + tf ) − V(hQ)
t

+ nV(hQ).

Let

f (t) = V((1 − t)hQ + tf )1/n, 0 ≤ t ≤ 1,

we see that

f ′(0) =
V1(Q, f ) − V(hQ)

V(hQ)
n−1
n

.

From Lemma 4, we know that f is concave, i.e.

V1(Q, f ) − V(hQ)

V(hQ)
n−1
n

≥ V(f )
1
n − V(hQ)

1
n .

Thus,

V1(Q, f ) ≥ V(Q)
n−1
n V(f )

1
n . (3:6)

According to the equality condition in inequality (3.3), and using Lemma 1 and

Lemma 2, we have the equality holds in inequality (3.6), if and only if there exist a
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constant c >0 and t ≥ 0, such that hQ = cf + t, almost everywhere with respect to S

(Q, ·) on Sn-1.

Secondly, from the Hölder inequality (see [22]), together with the integral representa-

tions (2.13) and (2.6), we obtain

Vp(Q, f ) =
1
n

∫

Sn−1

f (u)ph(Q, u)1−pdS(Q, u)

≥ V1(Q, f )pV(Q)1−p,

when this combined with inequality (3.6), we have

Vp(Q, f ) ≥ V(Q)
n−p
n V(f )

p
n . (3:7)

To obtain the equality conditions, we note that there is equality in Hölder’s inequal-

ity precisely when V1(Q, f )hQ = V (Q)f, almost everywhere with respect to the measure

S(Q, ·) on Sn-1. Combining the equality conditions in (3.6), and using Lemma 1, it

shows that the equality holds if and only if there exists a constant c >0 such that hQ =

cf, almost everywhere with respect to S(Q, ·) on Sn-1.

Using the above Lemmas and Theorem 1, we can get the following Corollaries

describing the uniqueness results.

Corollary 1

Suppose K, L ∈ Kn
0, and F ⊂ C+ (Sn-1) is a class of functions such that hK, hL Î F . (i) If

n ≠ p >1, and Vp(K, f ) = Vp(L, f ), for all f Î F , then K = L. (ii) If p = n, and Vp(K, f )

≥ Vp(L, f ), for all f Î F , then K and L are dilates, and hence

Vp(K, f ) = Vp(L, f ), for all f ∈ C+(Sn−1).

Proof

If n ≠ p >1, take f = hK, and from (2.13), Lemma 2 and Theorem 1, we get

Vp(K, f ) = Vp(K, hK) = Vp(L, hK) ≥ V(L)
n−p
n V(hK)

p
n .

Hence,

V(K) ≥ V(L).

Similarly, take f = hL, we get

V(L) ≥ V(K).

In view of the equality conditions of Theorem 1, we obtain that K = L.

If n = p, the hypothesis together with Theorem 1, we have

Vp(K, f ) ≥ Vp(L, f ) ≥ V(L)
n−p
n V(f )

p
n ,

with equality in the right inequality implying that L and K(f ) are dilates. Take f = hK,

since n = p, the terms on the left and right are identical, and thus, K and L must

dilates; hence,

Vp(K, f ) = Vp(L, f ), for all f ∈ C+(Sn−1).
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Corollary 2

Suppose f, g Î C+(Sn-1), and F ⊂ C+ (Sn-1) is a class of functions such that f, g Î F . If p

>1, and

Vp(Q, f ) = Vp(Q, g), for all hQ ∈ F ,

then f = g almost everywhere on Sn-1.

Proof

Since f, g Î C+(Sn-1), according to (2.11), we denote two Aleksandrov bodies K(f ) and

K(g). From the hypothesis, taking Q = K(f ), and using Lemma 2 and Theorem 1, we

get

Vp(K(f ), f ) = V(f ) = Vp(K(f ), g) ≥ V(K(f ))
n−p
n V(g)

p
n ,

then,

V(f ) ≥ V(g).

Similarly, take Q = K(g), we get

V(g) ≥ V(f ).

From the equality conditions of Theorem 1, we obtain

K(f ) = K(g).

In view of the definition of Aleksandrov body, and using Lemma 1, then

f = g, almost everywhere on Sn−1.

Corollary 3

Suppose n ≠ p >1, and f, g Î C+(Sn-1), such that Sp(K(f ), ·) ≤ Sp(K(g), ·).

(i) If V (f ) ≥ V (g), and p < n, then f = g almost everywhere on Sn-1.

(ii) If V (f ) ≤ V (g), and p > n, then f = g almost everywhere on Sn-1.

Proof

Suppose a function � Î C+(Sn-1), and n ≠ p >1, since Sp(K(f ), ·) ≤ Sp(K(g), ·), it follows

from the integral representation (2.13) and (2.8) that

Vp(K(f ),φ) ≤ Vp(K(g),φ), for all φ ∈ C+(Sn−1).

As before, take � = hK(g), from Lemma 1, Lemma 2, and Theorem 1, we get

V(f )
n−p
n ≤ V(g)

n−p
n .

Applying the hypothesis, and from the definition of the Aleksandrov body and

Lemma 1, we obtain the desired results.

Corollary 4

Suppose n ≠ p ≥ 1, f, g Î C+(Sn-1), and F ⊂ C+ (Sn-1) is a class of functions such that f,

g Î F . If

Yan and Junhua Journal of Inequalities and Applications 2011, 2011:39
http://www.journalofinequalitiesandapplications.com/content/2011/1/39

Page 9 of 13



Vp(K, f )

V(f )
=
Vp(K, g)

V(g)
, for all hK ∈ F ,

then f = g almost everywhere on Sn-1.

Proof

According to (2.11), we denote two Aleksandrov bodies K(f ) and K(g). From the

hypothesis, taking K = K(f ) and K = K(g), and combining with Lemma 2 and Theorem

1, respectively, we obtain

V(g) ≥ V(f ) and V(f ) ≥ V(g),

Hence, in view of the equality conditions of Theorem 1, the definition of Aleksan-

drov body, and Lemma 1, we get the desired result

f = g, almost everywhere on Sn−1.

Now, the p-Brunn-Minkowski inequality for the p-Aleksandrov bodies and the Alek-

sandrov bodies associated with positive continuous functions is established as

following.

Proof of Theorem 2.

From Lemma 5 and Theorem 1, we get

Vp(Q,λ · f+pμ · g) = λVp(Q, f ) + μVp(Q, g)

≥ V(Q)
n−p
n [λV(f )

p
n + μV(g)

p
n ],

with equality if and only if K(f) and K(g) are dilates of Q.

Now, take Q = Kp(l · f +p μ · g), use (2.10), and recall V (f ) = V (K(f )) = Vp(K(f ), f ),

we have

V(λ · f+pμ · g)
p
n ≥ λV(f )

p
n + μV(g)

p
n .

Also, we note that the equality holds, if and only if K(f ) and K(g) are dilates. Using

Lemma 1, we get the condition of equality holds if and only if there exists a constant c

>0 such that f = cg, almost everywhere with respect to S(K(f ), ·) on Sn-1.

Then, we will prove Theorem 3 by using the generalized Blaschke linear

combination.

Proof of Theorem 3.

Suppose a function � Î C+(Sn-1), and n ≠ p ≥ 1, from the integral representation

(2.13), (2.8), and (2.4), it follows that for K(f ), K(g) ∈ Kn
e ,

Vp(K(f )+pK(g),φ) = Vp(K(f ),φ) + Vp(K(g),φ), (3:8)

which together with Theorem 1, yields

Vp(K(f )+pK(g),φ) ≥ V(φ)
p
n [V(K(f ))

n−p
n + V(K(g))

n−p
n ], (3:9)

with equality if and only if K(f); K(g) and K(� ) are dilates.

Now, take φ = hK(f )+pK(g), recall Vp(K, hK ) = V (K ), and from Lemma 2, we get

V(K(f )+pK(g))
n−p
n ≥ V(f )

n−p
n + V(g)

n−p
n .
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In view of (2.16), we have

V(Kp(f+pg)) ≥ V(K(f )+pK(g)).

Hence, we get

V(Kp(f+pg))
n−p
n ≥ V(K(f )+pK(g))

n−p
n

≥ V(f )
n−p
n + V(g)

n−p
n .

From Lemma 2 again, we obtain

V(f+pg)
n−p
n ≥ V(f )

n−p
n + V(g)

n−p
n .

In view of the equality condition (3.9), and from Lemma 1, we get the equality holds

if and only if there exists a constant c >0 such that f = cg, almost everywhere with

respect to S(K(f ), ·) on Sn-1.

Remark 1

The case p = 1 of the inequality of Theorem 3 is

V(f + g)
n−1
n ≥ V(f )

n−1
n + V(g)

n−1
n , (3:10)

with equality if and only if there exists a constant c >0 such that f = cg, almost every-

where with respect to S(K(f ), ·) on Sn-1.

The above inequality (3.10) is just the Kneser-Süss inequality type for the Aleksan-

drov bodies associated with positive continuous functions.

Actually, from these above proofs, we see Brunn-Minkowski inequality, Minkowski

inequality, and Knesser-Süss inequality are equivalent.

4 Convergence of Aleksandrov body
In this section, we establish a convergent result about the Aleksandrov bodies asso-

ciated with positive continuous functions.

The following Lemmas will be required to prove our main result.

Lemma 6

[7]If p ≥ 1, and Ki is a sequence of bodies in Kn
0, such that Ki → K0 ∈ Kn

0, then Sp(Ki, ·)

® Sp(K0, ·), weakly.

Lemma 7

Suppose Ki → K ∈ Kn
0, and fi ® f Î C+(Sn-1). If p ≥ 1, then Vp(Ki, fi) ® Vp(K, f ).

Proof

Since fi ® f Î C +(Sn-1), the fi are uniformly bounded on Sn-1. Hence,

f pi → f p, uniformly on Sn−1.

By Lemma 6, Ki ® K implies that

Sp(Ki, ·) → Sp(K, ·), weakly on Sn−1.
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Hence,
∫

Sn−1

fi(u)pdSp(Ki, u) →
∫

Sn−1

f (u)pdSp(K, u).

In view of the integral representation (2.13) and (2.8), we get the desired result. The

convergence result will be established as following.

Theorem 4

Suppose p >1, f Î C+(Sn-1). If fi is a sequence of functions in C+(Sn-1), such that

Vp(Q, fi) → Vp(Q, f ), for all Q ∈ Kn
0,

then fi ® f .

Proof

Firstly, since fi is a sequence in C +(Sn-1), fi are uniformly bounded on Sn-1.

Applying the Blaschke selection theorem (see [3]), it guarantees the existence of a

subsequence of the fi, which is again denoted by fi, converging to a positive continuous

function f0 on Sn-1.

Secondly, since fi are uniformly bounded on Sn-1,

1+pfi → 1+pf0, uniformly on Sn−1.

Define f̄i ∈ C+(Sn−1), by f̄i = 1+pfi. Since f̄i → f̄0, it follows from Lemma 7 that

Vp(Q, f̄i) → Vp(Q, f̄0), for allQ ∈ Kn
0.

However, since Vp(Q, fi) ® Vp(Q, f ), for all Q ∈ Kn
0, and f̄i = 1+pfi, for all i >0, it fol-

lows from Lemma 5 that

Vp(Q, f̄i) → Vp(Q, 1+pf ), for allQ ∈ Kn
0.

Thus,

Vp(Q, f̄0) = Vp(Q, 1+pf ), for allQ ∈ Kn
0.

By Corollary 2, this means f̄0 = 1+pf , which shows f0 = f .

Thus, every subsequence of fi has a subsequence that converges to f .
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