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Abstract

We prove that the function Fa,b(x) = xaΓb(x)/Γ(bx) is strictly logarithmically
completely monotonic on (0, ∞) if and only if (a, b) Î {(a, b) : b >0, b ≥ 2a + 1, b ≥

a + 1}\{(a, b) : a = 0, b = 1} and that [Fa,b(x)]
-1 is strictly logarithmically completely

monotonic on (0, ∞) if and only if (a, b) Î {(a, b ) : b > 0, b ≤ 2a + 1, b ≤ a + 1}
\{(a, b ) : a = 0, b = 1}.
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1 Introduction
For real and positive values of x the Euler gamma function Γ and its logarithmic deri-

vative ψ, the so-called digamma functions are defined by

�(x) =
∫ ∞

0
tx−1e−tdt, (1:1)

ψ(x) =
�′(x)
�(x)

= −γ +
∫ ∞

0

e−t − e−xt

1 − e−t
dt, (1:2)

where g = 0.5772 ··· is the Euler’s constant.

For extension of these functions to complex variable and for basic properties see [1].

Over the last half century, many authors have established inequalities and monotoni-

city for these functions [2-22].

We know that a real-valued function f : I ® ℝ is said to be completely monotonic on

I if f has derivatives of all orders on I and

(−1)nf (n)(x) ≥ 0 (1:3)

for all x Î I and n ≥ 0. Moreover, f is said to be strictly completely monotonic if

inequalities (1.3) are strict.

We also know that a positive real-valued function f : I ® (0, ∞) is said to be logarith-

mically completely monotonic on I if f has derivatives of all orders on I and its loga-

rithm log f satisfies
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(−1)k[log f (x)](k) ≥ 0 (1:4)

for all x Î I and k Î N. Moreover, f is said to be strictly logarithmically completely

monotonic if inequalities (1.4) are strict.

Recently, the completely monotonic or logarithmically completely monotonic func-

tions have been the subject of intensive research. In particular, many complete mono-

tonicity and logarithmically complete monotonicity properties related to the gamma

function, psi function, and polygamma function can be found in the literature

[17,18,23-37]. In 1997, Merkle [38] proved that F(x) = �(2x)
�2(x) is strictly log-concave on

(0, ∞). Later, Chen [39] showed that [F(x)]−1 = �2(x)
�(2x) is strictly logarithmically comple-

tely monotonic on (0, ∞). In [40], Li and Chen proved that Fβ(x) =
�β (x)
�(βx) is strictly

logarithmically completely monotonic on (0, ∞) for b >1, and that [Fb(x)]
-1 is strictly

logarithmically completely monotonic on (0, ∞) for 0 < b <1. The purpose of this arti-

cle is to generalize Li and Chen’s result. Our main result is as follows.

Theorem 1.1 Let a Î ℝ, b > 0 and Fa,b(x) = xaΓb(x)/Γ(bx), then

(1) Fa,b(x) is strictly logarithmically completely monotonic on (0, ∞) if and only if

(a, b) Î {(a, b) : b >0, b ≥ 2a + 1, b ≥ a + 1}\{(a, b) : a = 0, b = 1};

(2) [Fa,b(x)]
-1 is strictly logarithmically completely monotonic on (0, ∞) if and only if

(a, b) Î {(a, b) : b >0, b ≤ 2a + 1, b ≤ a + 1}\{(a, b) : a = 0, b = 1}.

2 Lemma
In order to prove our Theorem 1.1, we need a lemma which we present in this section.

Lemma 2.1 Let a Î ℝ, b Î (0, 1) ∪ (1, ∞) and

h(t) = −αe−(β+1)t + (α + 1)e−βt + (α − β)e−t + β − α − 1.

Then the following statements are true:

(1) If b ≤ a + 1 and b ≤ 2a + 1, then h(t) <0 for t Î (0, ∞);

(2) If a + 1 < b <2a + 1, then there exists l1 Î (0, ∞) such that h(t) <0 for t Î (0,

l1) and h(t) >0 for t Î (l1, ∞);
(3) If b ≥ a + 1 and b ≥ 2a + 1, then h(t) >0 for t Î (0, ∞);

(4) If 2a + 1 < b < a + 1, then there exists l2 Î (0, ∞) such that h(t) >0 for t Î (0,

l2) and h(t) <0 for t Î (l2, ∞).

Proof Let h1(t) = e(b + 1)t h’(t) and h2(t) = e−th′
1(t). Then simple computations lead to

h(0) = 0, (2:1)

h′(t) = α(β + 1)e−(β+1)t − β(α + 1)e−βt − (α − β)e−t,

h1(0) = h′(0) = 0,
(2:2)

h1(t) = α(β + 1) − β(α + 1)et − (α − β)eβt,

h′
1(t) = −β(α + 1)et − β(α − β)eβt,

(2:3)
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h2(0) = h′
1(0) = β(β − 2α − 1), (2:4)

h2(t) = −β(α + 1) − β(α − β)e(β−1)t (2:5)

and

h′
2(t) = β(β − 1)(β − α)e(β−1)t . (2:6)

(1) If b ≤ a + 1 and b ≤ 2a + 1, then we divide the proof into four cases.

Case 1 If 0 < b <1 and a < b ≤ 2a + 1, then from (2.4) and (2.6) we clearly see that

h2(0) ≤ 0, (2:7)

h′
2(t) < 0. (2:8)

Therefore, h(t) <0 for t Î (0, ∞), which follows from (2.7) and (2.8) together with

(2.1) and (2.2).

Case 2 If 0 < b <1 and b ≤ a, then (2.5) and (2.6) lead to

lim
t→+∞ h2(t) = −β(α + 1) < 0, (2:9)

h′
2(t) ≥ 0. (2:10)

Therefore, h(t) <0 for t Î (0, ∞), which follows from (2.9) and (2.10) together with

(2.1) and (2.2).

Case 3 If 1 < b ≤ a, then (2.4) and (2.6) lead to

h2(0) < 0, (2:11)

h′
2(t) ≤ 0. (2:12)

From equations (2.1) and (2.2) together with inequalities (2.11) and (2.12), we clearly

see that h(t) <0 for t Î (0, ∞).

Case 4 If b >1 and a < b ≤ a + 1, then we clearly see that

lim
t→+∞ h(t) = β − α − 1 ≤ 0. (2:13)

From (2.3)-(2.6), we know that

lim
t→+∞ h1(t) = +∞, (2:14)

h2(0) < 0, (2:15)

lim
t→+∞ h2(t) = +∞, (2:16)

h′
2(t) > 0. (2:17)

From (2.15)-(2.17), we clearly see that there exists t1 >0 such that h2(t) <0 for t Î (0,

t1) and h2(t) >0 for t Î (t1, ∞). Hence, h1(t) is strictly decreasing in [0, t1] and strictly

increasing in [t1, ∞).
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From (2.2) and (2.14) together with the monotonicity of h1(t), we know that there

exists t2 >0 such that h1(t) <0 for t Î (0, t2) and h1(t) >0 for t Î (t2, ∞). Hence, h(t) is

strictly decreasing in [0, t2] and strictly increasing in [t2, ∞).

Therefore, h(t) <0 for t Î (0, ∞) follows from (2.1) and (2.13) together with the

monotonicity of h(t).

(2) If a + 1 < b <2a + 1, then we clearly see that

lim
t→+∞ h(t) = β − α − 1 > 0 (2:18)

and (2.14)-(2.17) hold again. From the proof of Case 4 in Lemma 2.1(1), we know

that there exists l >0 such that h(t) is strictly decreasing in [0, l] and strictly increas-

ing in [l, ∞).
Therefore, Lemma 2.1(2) follows from (2.1) and (2.18) together with the monotoni-

city of h(t).

(3) If b ≥ a + 1 and b ≥ 2a + 1, then we divide the proof into three cases.

Case I If b >1 and b ≥ 2a + 1, then

β > α (2:19)

and it follows from (2.4) that

h2(0) ≥ 0. (2:20)

Equation (2.6) and inequality (2.19) lead to

h′
2(t) > 0. (2:21)

Therefore, h(t) >0 for t Î (0, ∞) follows from (2.1), (2.2), (2.20), and (2.21).

Case II If 0 < b <1 and a ≤ -1, then from (2.5) and (2.6) we clearly see that

lim
t→+∞ h2(t) = −β(α + 1) ≥ 0, (2:22)

h′
2(t) < 0. (2:23)

Inequalities (2.22) and (2.23) imply that

h2(t) > 0 (2:24)

for t Î (0, ∞).

Therefore, h(t) >0 for t Î (0, ∞) follows from (2.1) and (2.2) together with (2.24).

Case III If 0 < a + 1 ≤ b <1, then we clearly see that

lim
t→+∞ h(t) = β − α − 1 ≥ 0. (2:25)

It follows from (2.3)-(2.6) that

lim
t→+∞ h1(t) = −∞, (2:26)

h2(0) = β(β − 2α − 1) > 0, (2:27)

lim
t→+∞ h2(t) = −β(α + 1) < 0, (2:28)

h′
2(t) < 0. (2:29)

Lv et al. Journal of Inequalities and Applications 2011, 2011:36
http://www.journalofinequalitiesandapplications.com/content/2011/1/36

Page 4 of 8



Inequalities (2.27)-(2.29) imply that there exists t3 >0 such that h2(t) >0 for t Î (0, t3)

and h2(t) <0 for t Î (t3, ∞). Hence, h1(t) is strictly increasing in [0, t3] and strictly

decreasing in [t3, ∞).

It follows from (2.2) and (2.26) together with the monotonicity of h1(t) that there

exists t4 >0 such that h1(t) >0 for t Î (0, t4) and h1(t) <0 for t Î (t4, ∞). Hence, h(t) is

strictly increasing in [0, t4] and strictly decreasing in [t4, ∞).

Therefore, h(t) >0 for t Î (0, ∞) follows from (2.1) and (2.25) together with the

monotonicity of h(t).

(4) If 2a + 1 < b < a + 1, then we clearly see that

lim
t→+∞ h(t) = β − α − 1 < 0 (2:30)

and (2.26)-(2.29) hold again.

From the proof of Case III in Lemma 2.1(3) we know that there exists μ >0 such that

h(t) is strictly increasing in [0, μ] and strictly decreasing in [μ, ∞).

Therefore, Lemma 2.1(4) follows from (2.1) and (2.30) together with the monotoni-

city of h(t).

3 Proof of Theorem 1.1
Proof of Theorem 1.1 Let E1 = {(a, b) : 0 < b <1, b ≥ a + 1}, E2 = {(a, b) : b >1, b ≥ 2a
+1}, E3 = {(a, b) : a <0, b = 1}, E4 = {(a, b) : a = 0, b = 1}, E5 = {(a, b) : a + 1 < b
<2a + 1}, E6 = {(a, b) : b >0, 2a + 1 < b < a + 1}, E7 = {(a, b) : 0 < b <1, b ≤ 2a +

1}, E8 = {(a, b) : b >1, b ≤ a + 1} and E9 = {(a, b) : a >0, b = 1}. Then

{(α,β) : α ∈ R,β > 0} = ∪9
i=1Ei,

{(α,β) : β > 0,β ≥ 2α + 1,β ≥ α + 1}\{(α,β) : α = 0,β = 1} = E1 ∪ E2 ∪ E3,

{(α,β) : β > 0,β ≤ 2α + 1,β ≤ α + 1}\{(α,β) : α = 0,β = 1} = E7 ∪ E8 ∪ E9.

(1) We divide the proof of Theorem 1.1(1) into five cases.

Case 1.1 (a, b) Î E1 ∪ E2. From (1.1), (1.2), and applying

ψm(x) = (−1)m+1
∫ ∞

0

tm

1 − e−t
e−xtdt (x > 0, m = 1, 2, ...),

we obtain for n ≥ 1,

(−1)n[log Fα,β(x)](n)

= (−1)n
[
(−1)n−1 α(n − 1)!

xn
+ βψ(n−1)(x) − βnψ(n−1)(βx)

]

= −α

∫ ∞

0
sn−1e−xsds + β

∫ ∞

0

sn−1

1 − e−s
e−xsds − βn

∫ ∞

0

tn−1

1 − e−t
e−βxtdt

= −αβn
∫ ∞

0
tn−1e−βxtdt + βn+1

∫ ∞

0

tn−1

1 − e−βt
e−βxtdt − βn

∫ ∞

0

tn−1

1 − e−t
e−βxtdt

= βn
∫ ∞

0

tn−1e−βxt

(1 − e−t)(1 − e−βt)
h(t)dt,

(3:1)

where

h(t) = −αe−(β+1)t + (α + 1)e−βt + (α − β)e−t − α + β − 1. (3:2)
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Therefore, Fa,b(x) is strictly logarithmically completely monotonic on (0, ∞), which

follows from (3.1) and (3.2) together with Lemma 2.1(3).

Case 1.2 (a, b) Î E3. Then we clearly see that

(−1)n[logFα,β(x)](n) = (−1)n
α(n − 1)!(−1)n−1

xn
= −α(n − 1)!

xn
> 0 (3:3)

for all x >0.

Therefore, Fa,b(x) is strictly logarithmically completely monotonic on (0, ∞), which

follows from (3.3).

Case 1.3 (a,b) Î E4. Then Fa,b(x) = 1 and

(−1)n[logFα,β(x)](n) = 0. (3:4)

Therefore, Fa,b(x) is not strictly logarithmically completely monotonic on (0, ∞),

which follows from (3.4).

Case 1.4 (a, b) Î E5∪E6∪E7∪E8. Then Fa,b(x) is not strictly logarithmically comple-

tely monotonic on (0, ∞), which follows from Lemmas 2.1(2), 2.1(4), 2.1(1), and equa-

tions (3.1) and (3.2).

Case 1.5 (a, b) Î E9. Then

(−1)n[logFα,β(x)](n) = −α(n − 1)!
xn

< 0 (3:5)

for all x >0.

Therefore, Fa,b(x) is not strictly logarithmically completely monotonic on (0, ∞),

which follows from (3.5).

(2) We divide the proof of Theorem 1.1(2) into five cases.

Case 2.1 (a, b) Î E7 ∪ E8. Then from (3.1) we get

(−1)n{log[Fα,β (x)]−1}(n)

= −βn
∫ ∞

0

tn−1e−βxt

(1 − e−t)(1 − e−βt)
h(t)dt,

(3:6)

where

h(t) = −αe−(β+1)t + (α + 1)e−βt + (α − β)e−t − α + β − 1. (3:7)

Therefore, [Fa,b(x)]
-1 is strictly logarithmically completely monotonic on (0, ∞),

which follows from (3.6) and (3.7) together with Lemma 2.1(1).

Case 2.2 (a, b) Î E9. Then

(−1)n{log[Fα,β(x)]−1}(n) = α(n − 1)!
xn

> 0 (3:8)

for all x >0.

Therefore, [Fa,b(x)]
-1 is strictly logarithmically completely monotonic on (0, ∞),

which follows from (3.8).

Case 2.3 (a, b) Î E4. Then [Fa,b(x)]
-1 = 1 and

(−1)n{log[Fα,β(x)]−1}(n) = 0. (3:9)
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Therefore, [Fa,b(x)]
-1 is not strictly logarithmically completely monotonic on (0, ∞),

which follows from (3.9).

Case 2.4 (a, b) Î E1 ∪ E2 ∪ E5 ∪ E6. Then [Fa,b(x)]
-1 is not strictly logarithmically

completely monotonic on (0, ∞), which follows from equations (3.6) and (3.7) and

Lemmas 2.1(3), 2.1(2) and 2.1(4).

Case 2.5 (a, b) Î E3. Then

(−1)n{log[Fα,β(x)]−1}(n) = α(n − 1)!
xn

< 0 (3:10)

for all x >0.

Therefore, [Fa,b(x)]
-1 is not strictly logarithmically completely monotonic on (0, ∞),

which follows from (3.10). □
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