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Abstract

Let P(2) be a polynomial of degree n having all its zeros in |z] < K < 1, then for each
0 >0,p >1,g >1 with 117 + Ll] =1 Aziz and Ahmad (Glas Mat Ser Ill 31:229-237, 1996)
proved that
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In this paper, we extend the above inequality to the class of polynomials

P(z) = apz" + Z]'-LM an,jz”‘j, 1 < u < n, having all its zeros in |z| < K < 1, and obtain
a generalization as well as refinement of the above result.
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1 Introduction and statement of results
Let P(z) be a polynomial of degree n and P'(z) be its derivative. If P(z) has all its zeros
in |z|] < 1, then it was shown by Turan [1] that

n
Maxp; 1P (z)| > 21\/1a3qz|:1|P(z)|. (1)

Inequality (1) is best possible with equality for P(z) = oz” + B, where || = |B|. As an
extension of (1), Malik [2] proved that if P(z) has all its zeros in |z| < K, where K < 1,
then

n
Maxp1 [P (2)| > ) +KMax‘z|=1|P(z)|. (2)

Malik [3] also obtained a generalization of (1) in the sense that the right-hand side of
(1) is replaced by a factor involving the integral mean of |P(z)| on |z| = 1. In fact, he
proved the following:
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Theorem A. If P(z) has all its zeros in |z| < 1, then for each 6 >0
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The result is sharp, and equality in (3) holds for P(z) = (z + 1)". If we let § — oo in
(3), we get (1).

As a generalization of Theorem A, Aziz and Shah [4] proved the following:

Theorem B. If P(z) = an" + YL, an—a" 9, 1 < u < n is a polynomial of degree n
having all its zeros in the disk |z| < K, K < 1, then for each ¢ >0,
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n / IP(e?)Pdo } < / 11+ K e %d0 ¢ Maxy-|P (). (4)
0 0
Aziz and Ahmad [5] generalized (3) in the sense that Max,,_1|P'(z)| on |z| = 1 on
the right-hand side of (3) is replaced by a factor involving the integral mean of |P'(z)|
on |z| = 1 and proved the following:
Theorem C. If P(z) is a polynomial of degree n having all its zeros in |z| < K < 1,

then for 0 >0, p >1, q >1 with ; + ; =1
1
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If we let p — oo (so that ¢ — 1) in (5), we get (3).

In this paper, we consider a class of polynomials P(z) := a,z" + Z;LM an—@" I, 1< <
n, having all the zeros in |z| < K < 1, and thereby obtain a more general result by
proving the following:

Theorem 1. If P(z) := a,z" + Zjiu an-2"7, 1 < p < n is a polynomial of degree n hav-

ing all its zeros in the disk |z| < K, K < 1, then for each ¢ >0, q >1, p >1 with

fl, + 617 = land for every complex number A with |A| <1
1
2 5
n /IP(eie) +am|’do
O (6)

1 1

q8 pé

2 2

nla,|K** an_, |K*17 . A

< /m[ anl K+ gl }e“’l"‘*de /|p’(e19)|f’5de
) nlay| K1 + wlap—,| )

where m = Min,_x|P (2)|.

If we take A = 0 in Theorem 1, we get the following:

Corollary 1. If P(2) := a2 + 3, an—2" 9, 1 < u < n is a polynomial of degree n
having all its zeros in the disk |z| < K, K < 1, then for each 6 >0, q >1, p >1 with
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For 4 = 1 in Theorem 1, we have the following:
Corollary 2. If P(z) := Z?:o aidis a polynomial of degree n having all its zeros in the
disk |z| < K, K < 1, then for each 6 >0, q >1, p >1 with 117 + }, =1,

1
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n /lP(ei0)+Am|5d9
0
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< f|l+[ |an|K= + |an 1|]e19|‘4‘3d9 /lpl(eﬁ)'pﬁdg ,
0 0
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where m = Min,_g|P (2)].
Remark 1: Since all the zeros of P(z) lie in |z| < K, therefore, ;I“{’;;ll <KK<1it
can be easily verified that
nlanK? +lap] _ o
nlan| +lanal  —
It shows that for A = 0, Corollary 2 provides a refinement of the result of Aziz and
Ahmad [5].
The next result immediately follows from Theorem 1, if we let p — < (so that ¢ —
1)
Corollary 3. If P(z) = apz" + Z}LM an—2"9, 1 < u < n is a polynomial of degree n
having all its zeros in the disk |z| < K, K < 1, then for each 6 >0 and for every complex
number A with |A| <1
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Also if we let 0 —  in the Corollary 3 and note that
2 . 1
lim ), [ IP()Pd0)s = Maxa|P(2),
s—>o00 T J,

we get from (9)

nlan| (K2 + K*=1) + plap—,|(1 + K*1)

nMax; =1 |P(z)+Am| <
=1 1P(=) vAm] < nlan K=" + julan_ |

Maxp1|P'(z)|  for |z| = 1. (10)

If zy be such that Max;_1|P (2)| = |P (20)|, then from (10), we have

n|P(zp) + Am| <

nlay | (K2 +K* 1) 4]y, | (1+KH*~
nlan‘K’l71+l’v|an7u|

1
Max1|P'(2)] for el = 1.

Choosing an argument of A such that
|P(z0) + Am| = |P(z0)| + |A|m,
we get

nlan| (K?* + K1) + plan—, | (1 + K#71)

n(|P(zo)! + |A|m) <
( ( ) ) nla,|K#=1 + ldn—p

Maxz1|1P' (). (11)

From inequality (11), we conclude the following:
Corollary 4. If P(z) = apz" + Z]"w an—2"79, 1 < u < n is a polynomial of degree n
having all its zeros in the disk |z| < K, K < 1, then for 0 < t < 1, we have
Maxpz-1|P'(z)] =

nlan | KM +lan_ .| .
nnla"‘(K2/1+12/1—1)+M|a":LT(1+Ku—1) {Maz\z|:1 |P(Z)| + tMln\Z|:K|P(Z)|}

Further, if we take K = t = g = 1 in the Corollary 4, we get a result of Aziz and
Dawood [6].

2. Lemmas
For the proof of this theorem, we need the following lemmas.
The first lemma is due to Qazi [7].

Lemma 1. If P(z) :=ao + ), aid, 1 < u < nis a polynomial of degree n having no
zeros in the disk |z| < K, K =2 1, then

[nmolx"*lmlamK“] IP'(2)] < 1Q(=)| for 2| =1,

nlao|+pula, [Kr+t

whereQ(z) = 2"P(3;) and 'y | |K* < 1.
Lemma 2. If P(z) := a,2" + Z]’LM an—z"Jis a polynomial of degree n having all its

zeros in the disk |z| < K < 1, then

2, -1
Q@) = [l P @) for sl = 1,1 < <,

nlanlkﬂil‘*ﬂlan*ul

where Q(z) = 2"P(})-
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Proof of Lemma 2

Since all the zeros of P(z) lie in |z| < K < 1, therefore all the zeros of Q(z) = z"P(;) lie
in |z| > ; > 1 Hence, applying Lemma 1 to the polynomial Q(2) := @n + Y_i.,, dn—j7,

we get

1
+lan—p| 2
N IRE@I = 1P

Kn+l

nla,

1
IKM+1

nlanl“'l’vlanﬂxl

Or, equivalently

|Q/(z)| < |:n|ﬂn|K2u+I/~|ﬂn—,,z|Kﬂ*1i| |P/(Z)|, |Z| =1.

nla,|K#-1 +M|“n7/,z|

This proves Lemma 2.
Remark 1: Lemma 3 of Govil and Mc Tume [8] is a special case of this lemma when

u=1

Proof of Theorem 1

Let Q(z) = 2"P(})z we have P(z) = 2"Q(}). This gives

P@) = Q(}) - Q) (12)
Equivalently,
zP'(z) = nz"Q(}) —z"’lQ’(}). (13)
z z

This implies
IP'(2)] = nQ(z) —2Q' ()| for |zl =1. (14)

Let m = Min,_g|P ()|, so that m < |P ()| for |z| = K. Therefore, for every complex
number A with |A| < 1, we have [mA| < |P(z)| on |z| = K. Since P(z) has all its zeros in
|z| < K < 1, by Rouche’s theorem, it follows that all the zeros of the polynomial G(z) =
P(z) + Am lie in |z| < K < 1.

If H(z) =2"G(}) = Q(z) + mAz" then by applying Lemma 2 to the polynomial G(z)

= P(z) + Am, we have for |z| = 1

: :
H @) < [T ie@l 1spsn

”I“anMil +l‘«|“n7;¢ |
This gives

nlan K + plan_, |K* !

i <
nlay|[K+=1 + ,Uv|an7u|

} IP'(2)l, l<pu<n (15)

Using (14) in (15), we get

1 an K + 1| an_ |[K*~!

nla, [ KF1 + Hlanﬂtl

Q) + nmAz | < [

1, 1<pu<n.
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Since P(z) has all its zeros in |z| < K < 1, by Gauss{Lucas theorem so does P'(z). It
follows that nQ(2) - zQ (z), which is simply (see (12))

—1ps(1
2P (L),
has all its zeros in |z| > ; > 1. Hence,

nlan | K* 1 + wlan—| i| 2(Q'(z) + nmaz" 1) (17)

(nQ(2) —2Q'(2))
is analytic for |z| <1, |W(z)| < 1 for |z| = 1 and W(0)=0. Thus, the function

I

”‘anIK'L71+lff‘an7ﬂ‘

wm=[

nla, |K>* + M|an—u|KV’_l

is subordinate to the function

1 ”‘an|K2M+ﬂ‘an—u‘KM71
”‘aan“7]+ﬂ‘an—u‘
for |z| <1. Hence, by a property of subordination (for reference see [[9], p. 36, Theo-
rem 1.6.17] or [[10], p. 454] or [11]), we have for each >0 and 0 < @ < 21,

2
nla, | K2* + plan_ |[K*1 -
/u+['” lan- ]wwmwe
nlan | KF1 + plan—,|

. (18)

nlay, |K2* + plan,_, |JK*17 .
5/|1+[ x| f""“' i|e19|8d9.
nla, | K= +H«|an—u|

Also from (17), we have

n|an|[K2* +plan_, |[KH1 _ n(Q(=)+mrz")
1*[ Rlan KA1+ cldn | ]W(Z) = nQ(2)-2Q(2)°

Therefore,

nlan K + play_, |K* !

nla, | K1 + wlan—pl

n|Q(z) + mrz"| = |1 + |: ] W(2)|InQ(z) — zQ'(z)l, (19)

which implies

nlan|K* + plan_, |K**

nlan K1 + plan—,|

nHE)] = 11+ [ ] W(DlInQ() - 2Q (). 20)

Using (14) and the fact that |H(z)| = |G(2)| = |P(z) + Am| for |z| = 1, we get from
(20)

nIP(z) +am| =1+ I:n\aan2u+M\ﬂn—u\K#*1i| W(Z)“P,(ZN fOT lz| = 1.

n‘“an#71+M‘an7u |
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Hence, for each 6 > 0 and 0 < 0 < 27, we have
2
n5/|P(ei9) +am|°dé

0

. (21)
K2 _ulK#! ; ;
_ f 1+ |:n|an| + plan—pl ]W(ele)lalp/(eleﬂadg_
0

nlan K1 + plan_y|

! = land for

This gives with the help of Holder’s inequality for p > 1, ¢ > 1, with 11) + 4

every J > 0,

27
n’ / |P(e?) + xm|®d6
0

1 1 (22)

2 o ki 1 q 2w

n|a,|K ap_ - . )

< /|1+[ lan] +fll nul }W(e‘e)lqadé /IP’(ele)lp5d9
J nlay|[KF=1 + plan—,,| )

Combining (18) and (22), we get for 6 > 0 and 0 < 6 < 27,
2
n’ / |P(e”) + Am|°de
0

1 1 (23)

2 KZI/- Kr 1 q 2

n|a an— - . .

< /m[ anl K" + alan ]e“’l‘”d@ /|p’(eu")|f’5de
) nla | K1 + wlap—,| )

This is equivalent to

2 §
n /lP(ei9)+Am|5d9
0

1 1 (24)

i nlan| K2 + jtan_ |K*17 N ps
< f|1+[ | " ]el"|‘75d9 f|P/(el")|P5d9
) nla, K+ + Mlan—ul

0

which proves the desired result.
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