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Abstract

In the present paper, we establish some new Rozanova’s type integral inequalities
involving higher-order partial derivatives. The results in special cases yield some of
the interrelated results on Rozanova’s inequality and provide new estimates on
inequalities of this type.
MS (2000) Subject Classifiication: 26D15.
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1 Introduction
In the year 1960, Opial [1] established the following integral inequality:

Theorem A Suppose f Î C1[0, h] satisfies f(0) = f(h) = 0 and f(x) >0 for all x Î (0, h).

Then

∫ h

0

∣∣f (x)f ′(x)
∣∣ dx ≤ h

4

∫ h

0
(f ′(x))2dx. (1:1)

The first Opial’s type inequality was established by Willett [2] as follows:

Theorem B Let x(t) be absolutely continuous in [0, a], and x(0) = 0. Then∫ a

0
|x(t)x′(t)|dt ≤ a

2

∫ a

0
|x′(t)|2dt. (1:2)

A non-trivial generalization of Theorem B was established by Hua [3] as follows:

Theorem C Let x(t) be absolutely continuous in [0, a], and x(0) = 0. Futher, let l be a

positive integer. Then

∫ a

0
|x(t)x′(t)|dt ≤ al

l + 1

∫ a

0
|x′(t)|l+1dt. (1:3)

A sharper inequality was established by Godunova [4] as follows:

Theorem D Let f(t) be convex and increasing functions on [0, ∞) with f(0) = 0.

Further, let x(t) be absolutely continuous on [0, τ], and x(a) = 0. Then, following

inequality holds∫ τ

α

f ′(|x(t)|)|x′(t)|dt ≤ f
(∫ τ

α

|x′(t)|dt
)
. (1:4)

Rozanova [5] proved an extension of inequality (1.4) is embodied in the following:

Theorem F Let f(t) and g(t) be convex and increasing functions on [0, ∞) with f(0) =

0, and let p(t) ≥ 0, p’(t) >0, t Î [a, a] with p(a) = 0. Further, let x(t) be absolutely
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continuous on [a, a), and x(a) = 0. Then, following inequality holds
∫ a

α

p′(t) · g
( |x′(t)|

p′(t)

)
·
[
f ′

(
p(t) · g

( |x(t)|
p(t)

))]
dt ≤ f

(∫ a

α

p′(t) · g
( |x′(t)|

p′(t)

)
dt

)
. (1:5)

The inequality (1.5) will be called as Rozanova’s inequality in the paper.

Opial’s inequality and its generalizations, extensions and discretizations play a funda-

mental role in establishing the existence and uniqueness of initial and boundary value

problems for ordinary and partial differential equations as well as difference equations

[6-13]. For Opial-type integral inequalities involving high-order partial derivatives, see

[14,15]. For an extensive survey on these inequalities, see [16].

The first aim of the present paper is to establish the following Opial-type inequality

involving higher-order partial derivatives, which is an extension of the Rozanova’s

inequality (1.5).

Theorem 1.1 Let f and g be convex and increasing functions on [0, ∞) with f(0) = 0,

and let p(s, t) ≥ 0, D1D2p(s, t) = ∂2

∂s∂ t p(s, t), D1D2p(s, t) >0, s Î [a, a], t Î [b, b] with p

(s, b) = p(a, t) = p(a, b) = 0 and D1D2p(s, t) |t = τ = 0. Further, let x(s, t) be absolutely

continuous on [a, a) × [b, b], and x(s, b) = x(a, t) = x(a, b) = 0. Then following

inequality holds

∫ a

α

∫ b

β

D1D2p(s, t) · g
( |D1D2x(s, t)|

D1D2p(s, t)

)
· ∂

∂t

[
f
(
p(s, t) · g

( |x(s, t)|
p(s, t)

))]
dsdt

≤ f

(∫ a

α

∫ b

β

D1D2p(s, t) · g
( |D1D2x(s, t)|

D1D2p(s, t)

)
dsdt

)
.

(1:6)

We also prove the following Rozanova-type inequality involving higher-order partial

derivatives.

Theorem 1.2 Assume that

(i) f, g and x(s, t) are as in Theorem 1.1,

(ii) p(s, t) is increasing on [0, a] × [0, b] with p(s, b) = p(a, t) = p(a, b) = 0,

(iii) h is concave and increasing on [0, ∞),

(iv) j(t) is increasing on [0, a] with j(0) = 0,

(v) For y(s, t) =
∫ s
0

∫ t
0 D1D2p(σ , τ )g

( |D1D2x(σ ,τ)|
D1D2p(σ ,τ)

)
dσdτ ,

D1D2f
(
y(s, t)

)
D1D2y(s, t) · φ

(
1

D1D2y(s, t)

)
≤ c(a,b)

y(a, b)
· φ′

(
t

y(a, b)

)
.

Then

∫ a
0

∫ b
0 D1D2f

(
p(s, t)g

(∣∣x(s, t)∣∣
p(s, t)

))
· v

(
D1D2p(s, t)g

(∣∣D1D2x(s, t)
∣∣

D1D2p(s, t)

))
dsdt

≤ w

(∫ a
0

∫ b
0 D1D2p(s, t)g

( ∣∣x(s, t)∣∣
D1D2p(s, t)

)
dsdt

)
,

(1:7)
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where

v(z) = zh
(

φ

(
1
z

))
,

w(z) = c(a,b)h
(
aφ

(
b

z

))
,

and

c(a,b) =
∫ a

0

∫ b

0
D1D2f

(
y(s, t)

)
D1D2y(s, t)dsdt.

2 Main results and proofs
Theorem 2.1 Let f and g be convex and increasing functions on [0, ∞) with f(0) = 0,

and let p(s, t) ≥ 0, D1D2p(s, t) = ∂2

∂s∂ t p(s, t), D1D2p(s, t) >0, s Î [a, a], t Î [b, b] with p

(s, b) = p(a, t) = p(a, b) = 0 and D1D2p(s, t) |t = τ = 0. Further, let x(s, t) be absolutely

continuous on [a, a) × [b, b], and x(s, b) = x(a, t) = x(a, b) = 0. Then, following

inequality holds

∫ a
α

∫ b
β
D1D2p(s, t) · g

( |D1D2x(s, t)|
D1D2p(s, t)

)
· ∂

∂t

[
f
(
p(s, t) · g

( |x(s, t)|
p(s, t)

))]
dsdt

≤ f
(∫ a

α

∫ b
β
D1D2p(s, t) · g

( |D1D2x(s, t)|
D1D2p(s, t)

)
dsdt

)
.

(2:1)

Proof Let y(s, t) =
∫ s

α

∫ t

β

∣∣D1D2x(σ , τ )
∣∣ dσdτ so that D1D2y(s, t) = |D1D2x(s, t)| and

y(s, t) ≥ |x(s, t)|. Thus, from Jensen’s integral inequality, we obtain

g

(∣∣x(s, t)∣∣
p(s, t)

)
≤ g

(
y(s, t)
p(s, t)

)
≤ g

⎛
⎝

∫ s
α

∫ t
β
D1D2p(σ , τ )

|D1D2x(σ ,τ)|
D1D2p(σ ,τ)

dσdτ∫ s
α

∫ t
β
D1D2p(σ , τ )dσdτ

⎞
⎠

≤ 1
p(s, t)

∫ s
α

∫ t
β
D1D2p(σ , τ )g

( |D1D2x(σ , τ )|
D1D2p(σ , τ )

)
dσdτ .

(2:2)

By using the inequality (2.2), we have

∫ a
α

∫ b
β
D1D2p(s, t) · g

( |D1D2x(s, t)|
D1D2p(s, t)

)
· ∂

∂t

[
f
(
p(s, t) · g

( |x(s, t)|
p(s, t)

))]
dsdt

≤ ∫ a
α

∫ b
β
D1D2p(s, t) · g

(
D1D2y(s, t)
D1D2p(s, t)

)
· ∂

∂t

[
f
(∫ s

α

∫ t
β
D1D2p(σ , τ ) · g

(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]
dsdt.

(2:3)

On the other hand

∂2

∂s∂t

[
f
(∫ s

α

∫ t

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]

=
∂

∂s

{
∂

∂t

[
f
(∫ s

α

∫ t

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]
·
∫ s

α

pσ t(σ , t) · g
(
D1D2y(σ , τ )
D1D2p(σ , t)

)
dσ

}

=
{

∂2

∂s∂t

[
f
(∫ s

α

∫ t

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]}
·
∫ s

α

D1D2p(σ , t) · g
(
D1D2y(σ , τ )
pσ t(σ , t)

)
dσ

×
∫ t

β

psτ (s, τ ) · g
(
D1D2y(σ , τ )
D1D2p(s, τ )

)
dτ +D1D2p(s, t) · g

(
D1D2y(s, t)
D1D2p(s, t)

)

× ∂

∂t

[
f
(∫ s

α

∫ t

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]

= D1D2p(s, t) · g
(
D1D2y(s, t)
D1D2p(s, t)

)
· ∂f

∂t

[(∫ s

α

∫ t

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]
.

(2:4)
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From (2.3) and (2.4), we have

∫ a

α

∫ b

β

D1D2p(s, t) · g
( |D1D2x(s, t)|

D1D2p(s, t)

)
· ∂

∂t

[
f
(
p(s, t) · g

( |x(s, t)|
p(s, t)

))]
dsdt

≤
∫ a

α

∫ b

β

∂2

∂s∂t

[
f
(∫ s

α

∫ t

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)]
dsdt

= f

(∫ a

α

∫ b

β

D1D2p(σ , τ ) · g
(
D1D2y(σ , τ )
D1D2p(σ , τ )

)
dσdτ

)

= f

(∫ a

α

∫ b

β

D1D2p(s, t) · g
( |D1D2x(s, t)|

D1D2p(s, t)

)
dsdt

)
.

This completes the proof.

Remark 2.2 Let x(s, t) reduce to s(t), and with suitable modifications in the proof of

Theorem 2.1, then (2.1) becomes inequality (1.5) stated in Section 1.

Remark 2.3 Taking for g(x) = x in (2.1), then (2.1) becomes the following inequality.

∫ a

α

∫ b

β

∣∣D1D2x(s, t)
∣∣ · ∂

∂t
(f (

∣∣x(s, t)∣∣))dsdt ≤ f

(∫ a

α

∫ b

β

∣∣D1D2x(s, t)
∣∣ dsdt

)
. (2:5)

Let x(s, t) reduce to s(t), and with suitable modifications, then (2.5) becomes inequal-

ity (1.4) stated in Section 1.

Remark 2.4 For f(t) = tl+1, l ≥ 0, the inequality (2.5) reduces to

∫ a

α

∫ b

β

∣∣x(s, t)∣∣l ∂

∂t
(
∣∣x(s, t)∣∣)dsdt ≤ 1

l + 1

(∫ a

α

∫ b

β

∣∣D1D2x(s, t)
∣∣ dsdt

)l+1

. (2:6)

In the right side of (2.6), by Hölder inequality with indices l + 1 and (l + 1)l, gives

∫ a

α

∫ b

β

∣∣x(s, t)∣∣l ∂

∂t
(
∣∣x(s, t)∣∣)dsdt ≤ [(a − α)(b − β)]

l

l + 1

∫ a

α

∫ b

β

∣∣D1D2x(s, t)
∣∣l+1dsdt. (2:7)

Let x(s, t) reduce to s(t) and a = b = 0, then (2.7) becomes Hua’s inequality (1.3) sta-

ted in Section 1.

Theorem 2.5 Assume that

(i) f, g and x(s, t) are as in Theorem 2.1,

(ii) p(s, t) is increasing on [0, a] × [0, b] with p(s, b) = p(a, t) = p(a, b) = 0,

(iii) h is concave and increasing on [0, ∞),

(iv) j(t) is increasing on [0, a] with j(0) = 0,

(v) For y(s, t) =
∫ s
0

∫ t
0 D1D2p(σ , τ )g

( |D1D2x(σ ,τ)|
D1D2p(σ ,τ)

)
dσdτ ,

D1D2f
(
y(s, t)

)
D1D2y(s, t) · φ

(
1

D1D2y(s, t)

)
≤ c(a,b)

y(a, b)
· φ′

(
t

y(a, b)

)
. (2:8)
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Then

∫ a
0

∫ b
0 D1D2f

(
p(s, t)g

(∣∣x(s, t)∣∣
p(s, t)

))
· v

(
D1D2p(s, t)g

(∣∣D1D2x(s, t)
∣∣

D1D2p(s, t)

))
dsdt

≤ w

(∫ a
0

∫ b
0 D1D2p(s, t)g

(∣∣D1D2x(s, t)
∣∣

D1D2p(s, t)

)
dsdt

)
,

(2:9)

where

v(z) = zh
(

φ

(
1
z

))
, (2:10)

w(z) = c(a,b)h
(
aφ

(
b
z

))
. (2:11)

and

c(a,b) =
∫ a

0

∫ b

0
D1D2f

(
y(s, t)

)
D1D2y(s, t)dsdt.

Proof From (2.2), we easily obtain

p(s, t)g

(∣∣x(s, t)∣∣
p(s, t)

)
≤

∫ s

0

∫ t

0
D1D2p(σ , τ )g

( |D1D2x(σ , τ )|
D1D2p(σ , τ )

)
dσdτ = y(s, t). (2:12)

From (2.8), (2.10-2.12) and Jensen’s inequality(for concave function), hence

∫ a

0

∫ b

0
D1D2f

(
p(s, t)g

(∣∣x(s, t)∣∣
p(s, t)

))
· v

(
D1D2p(s, t)g

(∣∣D1D2x(s, t)
∣∣

D1D2p(s, t)

))
dsdt

≤
∫ a

0

∫ b

0
D1D2f

(
y(s, t)

) · v (
D1D2y(s, t)

)
dsdt

=
∫ a

0

∫ b

0
D1D2f

(
y(s, t)

)
D1D2y(s, t) · h

(
φ

(
1

D1D2y(s, t)

))
dsdt

=

∫ a
0

∫ b
0 D1D2f

(
y(s, t)

)
D1D2y(s, t) · h

(
φ

(
1

D1D2y(s,t)

))
dsdt∫ a

0

∫ b
0 D1D2f

(
y(s, t)

)
D1D2y(s, t)dsdt

×
∫ a

0

∫ b

0
D1D2f

(
y(s, t)

)
D1D2y(s, t)dsdt

≤ h

⎛
⎝

∫ a
0

∫ b
0 D1D2f

(
y(s, t)

)
D1D2y(s, t) · φ

(
1

D1D2y(s,t)

)
dsdt∫ a

0

∫ b
0 D1D2f

(
y(s, t)

)
D1D2y(s, t)dsdt

⎞
⎠ · c(a,b)

≤ h

⎛
⎝

∫ a
0

∫ b
0

c(a,b)
y(a,b) · φ′

(
t

y(a,b)

)
dsdt

c(a,b)

⎞
⎠ · c(a,b)

= h
(

1
y(a, b)

∫ a

0

(
y(a, b)φ

(
t

y(a, b)

)
|t=bt=0

)
ds

)
· c(a,b)

= h
(
aφ

(
b

y(a, b)

))
· c(a,b)

= w

(∫ a

0

∫ b

0
D1D2p(s, t)g

( |D1D2x(s, t)|
D1D2p(s, t)

)
dsdt

)
.
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This completes the proof.

Remark 2.6 Let x(s, t) reduce to s(t), and with suitable modifications in the proof of

Theorem 2.5, then (2.9) becomes the following inequality:

∫ a

0
f ′

(
p(t)g

(∣∣x(t)∣∣
p(t)

))
· v

(
p′(t)g

(∣∣x′(t)
∣∣

p′(t)

))
dt ≤ w

(∫ a

0
p′(t)g

( |x′(t)|
p′(t)

)
dt

)
. (2:13)

The inequality has been obtained by Rozanova in [17]. For

x(t) = x1(t), x′
1(t) > 0, x1(0) = 0, x(a) = b, g(t) = t, f (t) = φ(t) = t2 and h(t) =

√
1 + t ,

the inequality (2.13) reduces to Polya’s inequality (see [17]).

Remark 2.7 Taking for g(x) = x in (2.9), then (2.9) becomes the following interesting

inequality.

∫ a

0

∫ b

0
D1D2f (

∣∣x(s, t)∣∣) · v(∣∣D1D2x(s, t)
∣∣)dsdt ≤ w

(∫ a

0

∫ b

0

∣∣D1D2x(s, t)
∣∣ dsdt

)
.
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