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Abstract

Let D be the unit disk in the complex plane. We define By to be the little Bloch
space of functions f analytic in D which satisfy limy,;_, (1 - |Z|2)\f’(z)| =0.If

¢ : D — Dis analytic then the composition operator C, : f+ f e ¢ is a continuous
operator that maps By into itself. In this paper, we show that the compactness of C,
, as an operator on By, can be modelled geometrically by its principal eigenfunction.
In particular, under certain necessary conditions, we relate the compactness of C, to
the geometry of @ = (D), where o satisfies Schoder's functional equation o ° ¢ =
¢'(0)o.

2000 Mathematics Subject Classification: Primary 30D05; 47B33 Secondary 30D45.
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1 Introduction
Let D = {z € C: |z| < 1} be the unit disk in the complex plane and T its boundary. We
define the Bloch space B to be the Banach space of functions, £, analytic in D with

lIfl15 = If(0)l +squ(1 —12*)If'(z)] < oo.

This space has many important applications in complex function theory, see [1] for
an overview of many of them. We denote by B the little Bloch space of functions in B
that satisfy lim,_,; (1 - |z|*)|f’(2)| = 0. This space coincides with the closure of the
polynomials in J3.

Suppose now that ¢ : D — D is analytic, then we may define the operator, C, , acting
on By as f~ feo ¢. It was shown in [2] that every such operator maps By continuously
into itself. Moreover, it was proved that C, is compact on By if and only if ¢ satisfies

1 —|z)?

\Zli\gll 1— |(,0(Z)|2 |§0 (Z)| =0. (1)

Recall that the hyperbolic geometry on D is defined by the distance
disk(z, w) = inf/ Ap(n)ldnl
r

where the infimum is taken over all sufficiently smooth arcs that have endpoints z

and w.
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Here, Ap(n) = (1 — |n|?)~ ! is the Poincaré density of D. The hyperbolic derivative of
¢ is given by ¢'(2)/(1 - |¢(2)|*) and functions that satisfy (1) are called little hyperbolic
Bloch functions or written ¢ € Bgt.

The Schroder functional equation is the equation
cog=yo. 2)

Note that this is just the eigenfunction equation for C,. Koenigs’ theorem states that
if ¢ has fixed point at the origin then (2) has a unique solution for y = ¢’(0) which we
call the Keenigs function and denote by o from here on. In the study of the geometric
properties of ¢ in relation to the operator theoretic properties of C,, it has become
evident that the Koenigs function is much more fruitful to study than ¢ itself. In parti-
cular, see [3] for a discussion of the Koenigs function in relation to compact composi-
tion operators on the Hardy spaces.

If we let Q@ = o(D) be the Keenigs domain of ¢, then (2) may be interpreted as imply-
ing that the action of ¢ on D is equivalent to multiplication by y on Q. It is due to this
that the pair (Q, y) is often called the geometric model for ¢.

In this paper, we study the geometry of Q when ¢ € B}t In order to do this, we will
use the hyperbolic geometry of Q. If f : D — Q is a universal covering map and Q is a
hyperbolic domain in C, then the Poincaré density on Q is derived from the equation

ra(f(@)If'(2)| = Ap(2),

which is independent of the choice of f. Since this equation, in terms of differentials,
is Ag(w)|dw| = Ap(z)|dz| (for w = f (z)), we see that the hyperbolic distance on D
defined above carries over to a hyperbolic distance on Q. For a more thorough treat-
ment of the hyperbolic metric, see [4].

In [5], the Konigs domain of a compact composition operator on the Hardy space
was studied and the following result was proved.

Theorem A. Let ¢ be a univalent self-map of Dwith a fixed point in D. Suppose that
for some positive integer ngy there are at most finitely many points of Tat which ¥nihas
an angular derivative. Then the following are equivalent.

1. Some power of C,, is compact on the Hardy space H*;
2. 0 lies in H” for every p <oo;
3. Q = o(D)does not contain a twisted sector.

Here, Q) is said to contain a twisted sector if there is an unbounded curve I' e Q
with

Sa(w) > elw|
for some ¢ > 0 and all w € T', where Jq, is the distance from w to the boundary of Q

as defined below. The purpose of this paper is to provide a similar result to this in the
context of the Bloch space.

2 Simply connected domains
Throughout this section, we assume that Q is an unbounded simply connected domain
in C with 0 € Q. As in the previous section, o represents the Riemann mapping of D
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onto Q with 6(0) = 0 and ¢’(0) > 0. We will also define ¢ via the Schroder functional

equation. Throughout we let

bo(w) = inf w—¢|,

so that do(w) is the Euclidean distance from w to the boundary of Q.

Theorem 1. Let ¢ be a univalent function mapping Dinto D, ¢$(0) = 0. Suppose that
the closure of ¢(D)intersects Tonly at finitely many fixed points and is contained in a
Stolz angle of opening no greater than our there.

If |¢'(0)| > 16 tan(om/2) then the following are equivalent

1. C, is compact on 3;

2. lim da(w) _

o dalyw)

)

3. For every n > 0, " € By.

Remark: It has recently been shown by Smith [6] that compactness of C, on B is
equivalent to compactness of C,, on B, BMOA and VMOA when ¢ is univalent and so
in the above theorem, the first condition could read: Cy is compact on B, By, BMOA
and VMOA Before proceeding, we prove the following lemma.

Lemma 1. Under the hypotheses of the theorem, w and yw tend to the same prime
end at o, and 0yQ < Q.

Proof. The first assertion follows from the fact that the closure of ¢(D) touches T
only at fixed points. Suppose now that the second assertion is false and there are dis-
tinct prime ends p; and p, with p; = yp>. Then under the boundary correspondence
given by o there are distinct points 1, ¢ € T with

a(n) =ya(¢)=0o(e(¢))

It follows that ¢(¢) € T and therefore { is a fixed point of ¢. Hence, we have the
contradiction p; = p,. O

Proof. We first prove that 1 is equivalent to 2.

By the results of Madigan and Matheson [2], and Smith [6] cited above C, is com-
pact on B if and only if

— lz|?

lim ! =0.
Hm e ¢’ (2)]

However, by Schrioder’s equation

l¢'(2)| = A"jj;p((zz))) ¢’ (2)]
_ ra(o 0 9(2)) lo’ o p(2)¢' (2)]
ra(o(2)) lo”(2)]
ro(yw)
=l Lo (w)

1—|z)?
1 —lo(=)12

Since Q is simply connected, Ao (w) K 1/dq (w) and so C, is compact on B if and
only if
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ba(w) _ o
w=0% o (yw)

®3)

Since YQ) € Q, yw — 9Q implies that w — 0Q. Therefore, (3) holds if and only if

Sa(w) _
yw—0Q 89()/“))

By the Lemma, we see that yw — 9Q means w — e and w € Y, and we have
shown that 1 and 2 are equivalent.

Suppose that 2 holds and let ¢ > 0 be given. Then we can find a R > 0 so that dq (w)
<&dq (yw) for all |w| >R, since there are only a finite number of prime ends at .
Choose w € Q arbitrarily with modulus greater than R and let # satisfy |y|”'R < |w| <
"R

Then we have that o (w) < &"dq (" w) and hence

—logdq(w) —nloge —logéq(y"w)
> .
log |w| —(n+1)log|y| +logR

Now as w — <o in yQ, Y'w lies in a closed set properly contained in Q and therefore
da (Y" w) is bounded below by a constant independent of w. We thus have that
—logs -1
liminf 8 a(w) > OBE
w> oo log|w| —log|y|
and since ¢ was arbitrary, the left-hand side of the above inequality must tend to co.
Hence, we have shown that lim,,_,.. [w|? 6o (w) = 0 for every 8 > 0.
Now o¢" € By may be interpreted geometrically as lim,, ,50 #|w| 154 (w) = 0 and
this follows from the above argument. Therefore, 2 implies 3.
To show that 3 implies 2, we need to show that if

—logs
lim f(w) = lim ~ 08%2() _
W— 00 W—> 00 log |w|
then 2 holds.
To complete the proof, we require the following lemma whose proof we merely
sketch.

Lemma 2. Under the hypotheses of the theorem,

8
lim sup a(w) <

K < 1.
w—ooo So(yw) ~

Sketch of Proof. First note that

) 16 ) z
lim sup 2() < im sup o) ).
w1 da(yw) l©’(0)] 1z>1  dp(=)
Now if ¢(D) lies in a non-tangential angle of opening o at {; then a short calcula-
tion shows that

8
lim sup OIQ <tan "

= 5ID(Z) a 2

and the assertion follows. O
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Now with f defined above, we have

flyw) - flw) =~ 08%Uw) _ ~logdalv)

log [yw| log |w|
. logde(w)/balyw) _
log |w]

for large enough w. Hence,

Sa(w) _ ly P ) < 9 S o
So(yw) ~ @ -fow) =

as w — oo and so 2 holds. ©

It is of interest to consider the growth of ¢ since condition 3 would imply that it has
very slow growth. The following corollary follows from 3 and the fact that functions in
By grow at most of order log 1/(1 - |z]).

Corollary 1. Suppose that ¢ satisfies the hypotheses of the Theorem and that any of
the equivalent conditions holds, then for r = |z|.

1
loglo(2)| =0 (loglog ) r> .

We also provide the following restatement of the hypotheses of Theorem 1 to illus-
trate the main properties of the Konigs domain.

Corollary 2. Let Q be an unbounded domain in C with yQ € Q and 0 € Q. Suppose
that has Q only finitely many prime ends at ~ and

)
lim sup a(w) < 1.
w—oo Sg(yw)
In addition, suppose that 0yQ) € Q. If ¢ : D — ©, 6(0) = 0, 6’(0) > 0, and ¢ is
defined by Schroder’s equation, then the following are equivalent.

1. C, is compact on J3;
da(w
2. llm Q( ) =U;
wos Salyw)
3. For every n > 0, " € By.

The hypothesis on the boundary of Q is vital. If we do not assume that 9yQ2 € Q,
then we deduce from the proof of the Theorem that ¢ € BZt is equivalent to

Sa(w) _
yw—90Q 5Q(yw)

(4)

In this situation, the finite part of the boundary of Q plays a complicated role in the
behaviour of ¢. We conclude this section by constructing a domain that displays very
bad boundary properties. This answers a question of Madigan and Matheson in [2].

In [2] it was shown that if 9¢(D) touches T = 9D in a cusp, then ¢ € B}. However, it
is not sufficient that 0¢(D) touches T at an angle greater that 0. The question was
raised of whether or not it is possible that (D) N T can be infinite.

Page 5 of 7
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With the hypothesis that 0yQ € Q the prime ends at o correspond to points of
¢(D) that touch T. Therefore, (D) N T is at most countable. A natural question to
ask is whether or not A(p(D) N T) can ever be positive, where A represents linear
measure.

This example is well known in the setting of the unit disk, see [7, Corollary 5.3]. We
describe here the construction in terms of the Konigs domain.

Theorem 2. There is a univalent function ¢ € Bitsuch that (D) NT = T.

Proof. We construct the domain Q) so that it satisfies (4). Let 0 <y < 1 be given. We
will define a nested sequence ®, C T, n = 1, 2, ... so that

0Q = Upsq {reie ty " <r<oo,0 €0, (5)

where ©,, € ©,,,; foralln =1, 2, ....

First let N > 2 be chosen arbitrarily and let ®; = {27k/N: k =0, .., N - 1}.

Suppose now that ©, has been defined, then let ®,,,; be such that ®, € ©,,,, and
whenever 6 € 0, is isolated, we define a sequence 6, € 0,1, k = 1, 2, ..., so that 6, —>
0 as k — o and for each k there is a j so that 6 - 6, = 6, .y . Moreover, assume that

Ors1 — 6
im ! ’; =0. (6)
k— 00 (Q—Qk)

In this way, we define the sequence of sets ®,, n = 1, 2, .... We will, furthermore,
assume that for each ¢ ¢ T, there is a sequence 0, € 0,, n = 1, 2, ..., such that §,, —
0.

We claim that this gives the desired domain Q with boundary defined by (5).

To see this, let yw € Q be arbitrary, then by construction, we may find a € 9Q so
that dq (yw) = |{ - yw|. It is readily seen that for such ¢ there is an # so that (e {re'? .
r> v ™"} for some # € ©, and moreover, @ is isolated in ©,,.

If we now consider w, we may find a sequence 6; — 0 as k — o so that
{re® :r > y~""1} € 9Q for all k hence we may fix a k so that o (w) = |w - n| for
n = rei.

By estimating the line segment [w, 1] by the arc of rT joining w to 1, we see that do
(w) R |w|| o - 6] where w = re**. Therefore, we have the estimate dg, (w) < |w||0,1 -
Or|. By a similar argument, we deduce the estimate do (yw) K |yw||0 - 6| and so

Sa(w) <1
Sa(yw) —

Ore1 — Ok

<y l9—6
66, =yl d

by (6) and so the construction is complete.

We claim that if ¢ : D — Q is defined as usual and ¢ is given by Schroder’s equa-
tion, then (D) NT = T.

In fact, if 6 € O, is isolated, then the ray R = (re’ . r > y "1} is contained in a single
prime end of Q. Therefore, to each such ray, there exists a point ¢ € T that corre-
sponds to R under o. Since YR € 9Q), we thus have that { corresponds to a prime end
p under ¢ with pNT # 0.

On the other hand, if § € @, is isolated, then R = {ré’ : y " < r <y ™} satisfies yR'N
0Q = I, and so there is an arc py C D such that o (py) = R’ and py has an end-point
in T.
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Hence, each n € T is contained in a prime end of ¢(D) and

¢(D) = D\ U Oo-

He®, isolated

The result follows. ©

3 Multiply connected domains

The geometric arguments of the previous section potentially lend themselves to multi-
ply connected domains in the following way. Suppose that Q is a domain in C with 0
e Q and YQ < Q for some y € D\{0}. Let o be a universal covering map of D onto Q
with 6(0) = 0. Then ¢’(0) # 0 and we may define ¢ via (2). Now we have

1—|z|?
1 —lp(2)?

ra(yw)

¢’ (2)] = || ra(w)

However, if Q is not simply connected, then o is an infinitely sheeted covering of Q
and therefore the equation o (z) = 0 has infinitely many distinct solutions, z,, n = 0, 1,

Now, since

1- |Zn|2

| oyl =1y 0
n

for all 1 > 0, we see that ¢ ¢ B}t. Thus, we have proved the following result.

Proposition 1. Suppose that Q € C is a domain satisfying 0 € Q and yQ € Q, and
let o : D — Qbe a universal covering map with c(0) = 0.

If ¢, as defined by (2) is in Bltthen Q is simply connected.
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