RESEARCH Open Access

Any two-dimensional Normed space is a generalized Day-James space

Javier Alonso

Correspondence: jalonso@unex.es Department of Mathematics, University of Extremadura, 06006 Badajoz, Spain

Abstract

It is proved that any two-dimensional normed space is isometrically isomorphic to a generalized Day-James space ℓ_w - ℓ_{ϕ} , introduced by W. Nilsrakoo and S. Saejung.

Keywords: Normed space, Day-James space, Birkhoff orthogonality

1991 Mathematics Subject Classification 46B20

The Day-James space ℓ_p - ℓ_q is defined for $1 \le p, \ q \le \infty$ as the space \mathbb{R}^2 endowed with the norm

$$||x||_{p,q} = \begin{cases} ||x||_p \text{ if } x_1 x_2 \ge 0, \\ ||x||_q \text{ if } x_1 x_2 \le 0, \end{cases}$$

where $x=(x_1,x_2)$. James [1] considered the space ℓ_p - ℓ_q with 1/p+1/q=1 as an example of a two-dimensional normed space where Birkhoff orthogonality is symmetric. Recall that if x and y are vectors in a normed space then x is said to be Birkhoff orthogonal to y, $(x \perp_B y)$, if $||x + \lambda y|| \ge ||x||$ for every scalar λ [2]. Birkhoff orthogonality coincides with usual orthogonality in inner product spaces. In arbitrary normed spaces Birkhoff orthogonality is in general not symmetric (e.g., in \mathbb{R}^2 with $||\cdot||_\infty$), and it is symmetric in a normed space of three or more dimension if and only if the norm is induced by an inner product. This last significant property was obtained in gradual stages by Birkhoff [2], James [1,3], and Day [4]. The first reference related to the symmetry of Birkhoff orthogonality in two-dimensional spaces seems to be Radon [5] in 1916. He considered plane convex curves with conjugate diameters (as in ellipses) in order to solve certain variational problems.

The procedure that James used to get two-dimensional normed spaces where Birkhoff orthogonality is symmetric was extended by Day [4] in the following way. Let $(X, ||\cdot||_X)$ be a two-dimensional normed space and let $u, v \in X$ be such that $||u||_X = ||v||_X = 1$, $u \perp_B v$, and $v \perp_B u$ (see Lemma below). Then, taking a coordinate system where u = (1, 0) and v = (0, 1) and defining

$$||(x_1,x_2)||_{X,X^*} = \begin{cases} ||(x_1,x_2)||_X & \text{if } x_1x_2 \ge 0, \\ ||(x_1,x_2)||_{X^*} & \text{if } x_1x_2 \le 0, \end{cases}$$

one gets that in the space $(X, ||\cdot||_{X,X}^*)$ Birkhoff orthogonality is symmetric. Moreover, Day also proved that surprisingly the norm of any two-dimensional space where Birkhoff orthogonality is symmetric can be constructed in the above way.

A norm on \mathbb{R}^2 is called absolute if $||(x_1, x_2)|| = ||(|x_1|, |x_2|)||$ for any $(x_1, x_2) \in \mathbb{R}^2$. Following Nilsrakoo and Saejung [6] let AN_2 be the family of all absolute and normalized (i.e., ||(1, 0)|| = ||(0, 1)|| = 1) norms on \mathbb{R}^2 . Examples of norms in AN2 are ℓ_p norms. Bonsall and Duncan [7] showed that there is a one-to-one correspondence between AN_2 and the family Ψ_2 of all continuous and convex functions $\psi: [0, 1] \to \mathbb{R}$ such that $\psi(0) = \psi(1) = 1$ and $\max\{1-t, t\} \le \psi(t) \le 1$ $(0 \le t \le 1)$. The correspondence is given by $\psi(t) = ||(1-t, t)||$ for $||\cdot||$ in AN_2 , and by

$$||(x_1,x_2)||_{\psi} = \begin{cases} (|x_1| + |x_2|) \, \psi\left(\frac{|x_2|}{|x_1| + |x_2|}\right) & \text{if } (x_1,x_2) \neq (0,0), \\ 0 & \text{if } (x_1,x_2) = (0,0). \end{cases}$$

for ψ in Ψ_2 .

In [6] the family of norms $||\cdot||_{p,q}$ of Day-James spaces ℓ_p - ℓ_q is extended to the family N_2 of norms defined in \mathbb{R}^2 as

$$||(x_1, x_2)||_{\psi, \varphi} = \begin{cases} ||(x_1 + x_2)||_{\psi} & \text{if } x_1, x_2 \ge 0, \\ ||(x_1 + x_2)||_{\varphi} & \text{if } x_1, x_2 \le 0, \end{cases}$$

for ψ , $\phi \not = \Psi_2$. The space \mathbb{R}_2 endowed with the above norm is called an ℓ_{ψ} - ℓ_{ϕ} space.

The purpose of this paper is to show that any two-dimensional normed space is isometrically isomorphic to an ℓ_{ψ} - ℓ_{ϕ} space. To this end we shall use the following lemma due to Day [8]. The nice proof we reproduce here is taken from the PhD Thesis of del Río [9], and is based on explicitly developing the idea underlying one of the two proofs given by Day.

Lemma 1 [8]. Let $(X, ||\cdot||)$ be a two-dimensional normed space. Then, there exist $u, v \in X$ such that ||u|| = ||v|| = 1, $u \perp_B v$, and $v \perp_B u$.

Proof. Let $e, \ \hat{e} \in X$ be linearly independent, and for $x \in X$ let $(x_1, x_2) \not \mid \mathbb{R}^2$ be the coordinates of x in the basis $\{e, \hat{e}\}$. Let $S = \{x \in X : ||x|| = 1\}$, and for $x \in S$ consider the linear functional f_x : $y \in X \mapsto f_x(y) = x_2y_1 - x_1y_2$. Then it is immediate to see that f_x attains the norm in $y \in S$ (i.e., $|x_2y_1 - x_1y_2| \ge |x_2z_1 - x_1z_2|$, for all $z_1e + z_2\hat{e} \in S$) if and only if $y \perp_B x$. Therefore if $u, v \in S$ are such that $|u_2v_1 - u_1v_2| = \max_{(x, y) \in S \times S} |x_2y_1 - x_1y_2|$ then $u \perp_B v$ and $v \perp_B u$.

Theorem 2 For any two-dimensional normed space $(X, ||\cdot||_X)$ there exist ψ , $\phi \ \ \Psi_2$ such that $(X, ||\cdot||_X)$ is isometrically isomorphic to $(\mathbb{R}^2, ||\cdot||_{\psi, \phi})$.

Proof. By Lemma 1 we can take $u, v \in X$ such that ||u|| = ||v|| = 1, $u \perp_B v$, and $v \perp_B u$. Then u and v are linearly independent and $(X, ||\cdot||_X)$ is isometrically isomorphic to $(\mathbb{R}^2, ||\cdot||_{\mathbb{R}^2})$, where $||(x_1, x_2)||_{\mathbb{R}^2} := ||x_1u + x_2v||_X$. Defining $\psi(t) = ||(1 - t)u + tv||_X$, $\psi(t) = ||(1 - t)u - t$

Acknowledgements

Research partially supported by MICINN (Spain) and FEDER (UE) grant MTM2008-05460, and by Junta de Extremadura grant GR10060 (partially financed with FEDER).

Competing interests

The author declares that they have no competing interests.

Received: 11 February 2011 Accepted: 15 June 2011 Published: 15 June 2011

References

- James, RC: Inner products in normed linear spcaces. Bull Am Math Soc. 53, 559–566 (1947). doi:10.1090/S0002-9904-1947-08831-5
- 2. Birkhoff, G: Orthogonality in linear metric spaces. Duke Math J. 1, 169–172 (1935). doi:10.1215/S0012-7094-35-00115-6
- James, RC: Orthogonality and linear functionals in normed linear spaces. Trans Am Math Soc. 61, 265–292 (1947). doi:10.1090/S0002-9947-1947-0021241-4
- Day, MM: Some characterizations of inner product spaces. Trans Am Math Soc. 62, 320–337 (1947). doi:10.1090/S0002-9947-1947-0022312-9
- 5. Radon, J: Über eine besondere Art ebener konvexer Kurven. Leipziger Berichre, Math Phys Klasse. 68, 23–28 (1916)
- Nilsrakoo, W, Saejung, S: The James constant of normalized norms on R². J Ineq Appl 2006, 1–12 (2006). Article ID 26265
- Bonsall, FF, Duncan, J: Numerical ranges II. Lecture Note Series in London Mathematical Society. Cambridge University Press, Cambridge 10 (1973)
- Day, MM: Polygons circumscribed about closed convex curves. Trans Am Math Soc. 62, 315–319 (1947). doi:10.1090/ S0002-9947-1947-0022686-9
- del Río, M: Ortogonalidad en Espacios Normados y Caracterización de Espacios Prehilbertianos. Dpto. de Análisis Matemático, Univ. de Santiago de Compostela, Spain, Serie B. 14 (1975)

doi:10.1186/1029-242X-2011-2

Cite this article as: Alonso: Any two-dimensional Normed space is a generalized Day-James space. Journal of Inequalities and Applications 2011 2011:2.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com