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Abstract

In this paper, a new parameter-dependent refinement of the discrete Jensen’s
inequality is given for convex and mid-convex functions. The convergence of the
introduced sequences is also studied. One of the proofs requires an interesting
convergence theorem with probability theoretical background. We apply the results
to define some new quasi-arithmetic and mixed symmetric means and study their
monotonicity and convergence.

1 Introduction and the main results
The considerations of this paper concern

(A1) an arbitrarily given real vector space X, a convex subset C of X, and a finite

subset {x1,..., xn} of C, where n ≥ 1 is fixed;

(A2) a convex function f : C ® ℝ, and a discrete distribution p1,..., pn, which means

that pj ≥ 0 with
n∑
j=1

pj = 1;

(A3) a mid-convex function f : C ® ℝ, and a discrete distribution p1,..., pn with

rational pj (1 ≤ j ≤ n).

The function f : C ® ℝ is called convex if

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y), x, y ∈ C, 0 ≤ α ≤ 1, (1)

and mid-convex if

f
(x + y

2

)
≤ 1

2
f (x) +

1
2
f (y), x, y ∈ C.

For a variety of applications, the discrete Jensen’s inequalities are important:

Theorem A. (see [1]) (a) If (A1) and (A2) are satisfied, then

f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ ≤

n∑
j=1

pjf (xj). (2)

(b) If (A1) and (A3) are satisfied, then (2) also holds.

Let N := {0, 1, 2,...} and let N+ := {1, 2,...}.
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Various attempts have been made to refine inequality (2) in the following ways:

Assume either (A1) and (A2) or (A1) and (A3). Let m ≥ 2 be an integer, and let I

denote either the set {1,..., m} or the set N+.

(B) Create a decreasing real sequence (Bk)kÎI such that Bk = Bk(f, xi, pi) (k Î I) is a

sum whose index set is a subset of {1,..., n}k and

f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ ≤ · · · ≤ Bk ≤ · · · ≤ B1 =

n∑
j=1

pjf (xj), k ∈ I. (3)

(C) Create an increasing real sequence (Ck)kÎI such that Ck = Ck(f, xi, pi) (k Î I) is a

sum whose index set is a subset of {1,..., k}n and

f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ = C1 ≤ · · · ≤ Ck ≤ · · · ≤

n∑
j=1

pjf (xj), k ∈ I. (4)

The next two typical results belong to the group of refinements of type (B).

These examples use p1 = · · · = pn = 1
n. In [2], Pečarić and Volenec have constructed

the sequence

fk :=
1
(nk)

∑
1≤i1<···<ik≤n

f
(xi1 + · · · + xik

k

)
, 1 ≤ k ≤ n, (5)

while the other sequence

f̄k :=
1(

n+k−1
k

) ∑
1≤i1≤···≤ik≤n

f
(xi1 + · · · + xik

k

)
, k ∈ N+

(6)

is due to Pečarić and Svrtan [3]. In a recent work, [4] Horváth and Pečarić define a

lot of new sequences, they generalize and give a uniform treatment a number of well-

known results from this area, especially (5) and (6) are extended. Horváth develops a

method in [5] to construct decreasing real sequences satisfying (3). His paper contains

some improvements of the results in [4] and gives a new approach of the topic. The

description of the sequences in [4,5] requires some work, so we do not go into the

details. The problem (B) has been considered for the classical Jensen’s inequality by

Horváth [6].

We turn now to the group of refinements of type (C). In contrast to the previous

problem, it is not easy to find such results. Recently, Xiao et al. [7] have obtained the

sequence

Fk :=
1(

n + k − 2
k−1

) ∑
i1 + · · · + in = n + k − 1
ij ∈ N + (1 ≤ j ≤ n)

f

⎛
⎝ 1
n + k − 1

n∑
j=1

ijxj

⎞
⎠ , k ∈ N+,

(7)

which satisfies (4) with p1 = · · · = pn = 1
n.

In this paper, we establish a new solution of the problem (C). The constructed

sequence (Ck(l))k≥0 depends on a parameter l belonging to [1, ∞[, and we can use

arbitrary discrete distribution p1,..., pn, not just the appropriate discrete uniform distri-

bution. We give the limit of the sequence under fixed parameter. We also study the
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convergence of the sequence when the parameter varies and k Î N is fixed. Finally,

some applications are given which concern the theme of means.

The next theorems are the main results of this paper. We need some further

hypotheses:

(A4) Let l ≥ 1.

(A5) Let l ≥ 1 be rational.

First, we give a refinement of the discrete Jensen’s inequality (2).

Theorem 1 Suppose either (A1), (A2), and (A4) or (A1), (A3), and (A5). Introduce the

sets

Sk :=

⎧⎨
⎩ (i1, . . . , in) ∈ Nn|

n∑
j=1

ij = k

⎫⎬
⎭ , k ∈ N,

and for k Î N define the numbers

Ck(λ) = Ck(x1, . . . , xn; p1, . . . , pn;λ)

: =
1

(n + λ − 1)k
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

⎛
⎝ n∑

j=1

λij pj

⎞
⎠ f

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠ .

(8)

Then,

f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ = C0(λ) ≤ C1(λ) ≤ · · · ≤ Ck(λ) ≤ · · · ≤

n∑
j=1

pjf (xj), k ∈ N.

Remark 2 (a) It follows from the definition of Sk that Sk ⊂ {0,..., k}n (k Î N).

(b) It is easy to see that

Ck(1) = f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ , k ∈ N. (9)

Finally, we establish two convergence theorems.

Theorem 3 Suppose (A1), (A2), and (A4). Suppose × is a normed space and f is con-

tinuous. Then,

(a) For every fixed l >1

lim
k→∞

Ck(λ) =
n∑
j=1

pjf (xj).

(b) The function l ® Ck(l) (l ≥ 1) is continuous for every k Î N.

The proof of Theorem 3(a) requires a lemma (see Lemma 15), which is interesting in

its own right. Probability theoretical technique will be used to handle this problem.
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Remark 4 In the previous theorem, it suffices to consider the case when (A1), (A2),

and (A4) are satisfied. Really, if f is mid-convex and continuous, then convex.

By (9)

lim
k→∞

Ck(1) = f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ .

We come now to the second convergence theorem.

Theorem 5 Suppose either (A1), (A2), and (A4) or (A1), (A3), and (A5). For each fixed

k Î N+

lim
λ→∞

Ck(λ) =
n∑
j=1

pjf (xj).

2 Discussion and applications
Suppose either (A1), (A2), and (A4) or (A1), (A3), and (A5). First, we give three special

cases of (8).

(a) k = 1, n Î N+:

C1(λ) =
1

n + λ − 1

n∑
i=1

(1 + (λ − 1)pi)f

⎛
⎜⎜⎜⎝

n∑
j=1

pjxj + (λ − 1)pixi

1 + (λ − 1)pi

⎞
⎟⎟⎟⎠ .

(b) k Î N, n = 2:

Ck(λ) =
1

(λ + 1)k

k∑
i=0

(
k
i

)(
λip1 + λk−ip2

)
f
(

λip1x1 + λk−ip2x2
λip1 + λk−ip2

)
.

(c) p1 = · · · = pn := 1
n:

Ck(λ) =
1

n(n + λ − 1)k
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

⎛
⎝ n∑

j=1

λij

⎞
⎠ f

⎛
⎜⎜⎜⎝

n∑
j=1

λij xj

n∑
j=1

λij

⎞
⎟⎟⎟⎠ .

Assume further that f is strictly convex (strictly mid-convex) that is strict inequality

holds in (1) whenever x ≠ y and 0 < a <1. In this case, equality is satisfied in (2) if

and only if x1 = ··· = xn, and therefore, it comes from the third part of the proof of

Theorem 1 that

Ck(λ) <

n∑
j=1

pjf (xj), k ∈ N, (10)
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if not all xi are equal.

If p1 = · · · = pn := 1
n and f is strictly convex (strictly mid-convex), then the analysis of

the proof of Theorem 1 shows that

f

⎛
⎝1
n

n∑
j=1

xj

⎞
⎠ = C0(λ) < C1(λ) < · · · < Ck(λ) < · · · <

1
n

n∑
j=1

f (xj), k ∈ N,

whenever not all xi are equal.

If the inequality (10) holds, X is a normed space and f is continuous (see Remark 4),

then Theorem 3(b) and Theorem 5 insure that the range of the function l ® Ck(l)
(k Î N+) is the interval⎡

⎣f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ ,

n∑
j=1

pjf (xj)

⎡
⎣ .

Conjecture 6 Suppose either (A1), (A2), and (A4) or (A1), (A3), and (A5).

The function l ® Ck(l) (l ≥ 1) is increasing for every k Î N.

Next, we define some new quasi-arithmetic means and study their monotonicity and

convergence. About means see [8].

Definition 7 Let I ⊂ ℝ be an interval, let xj Î I (1 ≤ j ≤ n), let p1,..., pn be a discrete

distribution, and let g, h : I ® ℝ be continuous and strictly monotone functions. Let

l ≥ 1. We define the quasi-arithmetic means with respect to (8) by

Mh,g(k, λ) := h−1

⎛
⎝ 1

(n + λ − 1)k
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

⎛
⎝ n∑

j=1

λij pj

⎞
⎠

· (h ◦ g−1)

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjg(xj)

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ , k ∈ N.

(11)

Some other means are also needed.

Definition 8 Let I ⊂ ℝ be an interval, let xj Î I (1 ≤ j ≤ n), and let p1,..., pn be a

discrete distribution. For a continuous and strictly monotone function z : I ® ℝ, we

introduce the following mean

Mz := z−1

⎛
⎝ n∑

j=1

pjz(xj)

⎞
⎠ . (12)

We now prove the monotonicity of the means (11) and give limit formulas.

Proposition 9 Let I ⊂ ℝ be an interval, let xj Î I (1 ≤ j ≤ n), let p1,..., pn be a dis-

crete distribution, and let g, h : I ® ℝ be continuous and strictly monotone functions.

Let l ≥ 1. Then,

(a)

Mg = Mh,g(0, λ) ≤ · · · ≤ Mh,g(k, λ) ≤ · · · ≤ Mh, k ∈ N,
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if either h ○ g-1 is convex and h is increasing or h ○ g-1 is concave and h is decreasing.

(b)

Mg = Mh,g(0, λ) ≥ · · · ≥ Mh,g(k, λ) ≥ · · · ≥ Mh, k ∈ N,

if either h ○ g-1 is convex and h is decreasing or h ○ g-1 is concave and h is increasing.

(c) Moreover, in both cases

lim
k→∞

Mh,g(k, λ) = Mh

for each fixed l >1, and

lim
λ→∞

Mh,g(k, λ) = Mh

for each fixed k Î N+.

Proof. Theorem 1 can be applied to the function h○g-1, if it is convex (-h○g 1, if it is

concave) and the n-tuples (g (x1),..., g(xn)), then upon taking h-1, we get (a) and (b). (c)

comes from Theorems 3(a) and 5. ■
As a special case, we consider the following example.

Example 10 If I :=]0, ∞[, h := ln, and g(x):= x (x Î]0, ∞[), then by Proposition 9(b),

we have the following inequality. for every xj >0 (1 ≤ j ≤ n), l ≥ 1 , and k Î N+

n∑
j=1

pjX j ≥
∏

(i1,...,in)∈Sk

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠

1

(n + λ − 1)k
k!

i1! . . . in!
n∑
j=1

λ
ij pj

≥
n∏
j=1

x
pj
j ,

which gives a sharpened version of the arithmetic mean - geometric mean inequality

1
n

n∑
j=1

xj ≥
∏

(i1,...,in)∈Sk

⎛
⎜⎜⎜⎝

n∑
j=1

λij xj

n∑
j=1

λij

⎞
⎟⎟⎟⎠

1

n(n + λ − 1)k
k!

i1! . . . in!
n∑
j=1

λ
ij

≥
n∏
j=1

x
1
n
j .

Finally, we investigate some mixed symmetric means.

The power means of order r Î ℝ are defined as follows:

Definition 11 Let xj Î]0, ∞[ (1 ≤ j ≤ n), and let p1,..., pn be a discrete distribution

with pj >0 (1 ≤ j ≤ n).

Mr = Mr(x1, . . . , xn; p1, . . . , pn) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
n∑
j=1

pjxrj

) 1
r

, r �= 0(
n∏
j=1

x
pj
j

)
, r �= 0

.

If r ≠ 0, then the power means of order r belong to the means (12) (z : ]0, ∞[® ℝ, z

(x) := xr), while we get the power means of order 0 by taking limit. Supported by the

power means, we can introduce mixed symmetric means corresponding to (8):
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Definition 12 Let xj Î]0, ∞[ (1 ≤ j ≤ n), and let p1,..., pn be a discrete distribution

with pj >0 (1 ≤ j ≤ n). Let l ≥ 1, and k Î N. We define the mixed symmetric means

with respect to (8) by

Ms,t(k, λ)

:=

⎛
⎝ 1

(n + λ − 1)k
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

⎛
⎝ n∑

j=1

λij pj

⎞
⎠

·Ms
t

⎛
⎜⎜⎜⎝x1, ..., xn;

λi1p1
n∑
j=1

λij pj

, ...,
λin pn
n∑
j=1

λij pj

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

1
s

,

if s, t Î ℝ and s ≠ 0, and

M0,t(k, λ) :=
∏

(i1,...,in)∈Sk

⎛
⎜⎜⎜⎝Mt

⎛
⎜⎜⎜⎝x1, ..., xn;

λi1p1
n∑
j=1

λij pj

, ...,
λin pn
n∑
j=1

λij pj

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

1

(n + λ − 1)k
k!

i1! . . . in!

(
n∑
j=1

λ
ij pj

)

,

where t Î ℝ.

The monotonicity and the convergence of the previous means are studied in the next

result.

Proposition 13 Let xj Î]0, ∞[ (1 ≤ j ≤ n), and let p1,..., pn be a discrete distribution

with pj >0 (1 ≤ j ≤ n). Let l ≥ 1, and k Î N. Suppose s, t Î ℝ such that s ≤ t. Then,

(a)

Mt = Ms,t(0, λ) ≥ · · · ≥ Ms,t(k, λ) ≥ · · · ≥ Ms, k ∈ N.

(b) In case of s, t ≠ 0

lim
k→∞

Ms,t(k, λ) = Ms

for each fixed l >1, and

lim
λ→∞

Ms,t(k, λ) = Ms

for each fixed k Î N+.

Proof. Assume s, t ≠ 0. Then, Proposition 9 (b) can be applied with g, h :]0, ∞[® ℝ,

g(x) := xt, and h(x) := xs. If s = 0 or t = 0, the result follows by taking limit. ■

3 Some lemmas and the proofs of the main results
Lemma 14 Let k Î N and (i1,..., in) Î Sk+1 be fixed. If we set

z(i1, . . . , in) := {j ∈ {1, . . . , n}|ij �= 0},
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then

∑
j∈z(i1,...,in)

k!
i1!...ij−1!(ij − 1)!ij+1!...in!

=
(k + 1)!
i1!...in!

.

Proof. The lowest common denominator is i1!... in!. Combined with
n∑
j=1

ij = k + 1, the

result follows. ■
The proof of Theorem 1.

Proof. (a) We separate the proof of this part of the theorem into three steps.

Let l ≥ 1 be fixed.

I. Since S0 = {(0,..., 0)}

C0(λ) =

⎛
⎝ n∑

j=1

λ0pj

⎞
⎠ f

⎛
⎜⎜⎜⎝

n∑
j=1

λ0pjxj

n∑
j=1

λ0pj

⎞
⎟⎟⎟⎠ = f

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ .

II. Next, we prove that Ck(l) ≤ Ck+1(l) (k Î N).

It is easy to check that for every (i1,..., in) Î Sk

n∑
j=1

λij pjxj

n∑
j=1

λij pj

=
1

n + λ − 1

.
n∑
l=1

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj+(λ − 1)λil plxl

n∑
j=1

λij pj + (λ − 1)λil pl

.

n∑
j=1

λij pj+(λ − 1)λil pl

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠ .

With the help of Theorem A, this yields that

f

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠ ≤ 1

n + λ − 1

n∑
l=1

⎛
⎜⎜⎜⎝

n∑
j=1

λij pj + (λ − 1)λil pl

n∑
j=1

λij pj

. f

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj + (λ − 1)λil plxl

n∑
j=1

λij pj + (λ − 1)λil pl

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .
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Consequently,

Ck(λ) ≤ 1

(n + λ − 1)k+1
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

.
n∑
l=1

⎛
⎜⎜⎜⎝

⎛
⎝ n∑

j=1

λij pj + (λ − 1)λil pl

⎞
⎠ f

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj + (λ − 1)λil plxl

n∑
j=1

λij pj + (λ − 1)λil pl

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠.

(13)

By Lemma 14, it is easy to see that the right-hand side of (13) can be written in the form

1

(n + λ − 1)k+1
∑

(i1,...,in)∈Sk+1

(k + 1)!
i1!...in!

⎛
⎝ n∑

j=1

λij pj

⎞
⎠ f

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠

which is just Ck+1(l).

III. Finally, we prove that

Ck(λ) ≤
n∑
j=1

pjf (xj), k ∈ N+· (14)

It follows from Theorem A that

Ck(λ) ≤ 1

(n + λ − 1)k
∑

(i1,...,in)∈Sk

⎛
⎝ k!
i1! . . . in!

n∑
j=1

λij pjf (xj)

⎞
⎠

=
1

(n + λ − 1)k

n∑
j=1

⎛
⎝ ∑

(i1,...,in)∈Sk

k!
i1! . . . in!

λij

⎞
⎠ pjf (xj), k ∈ N+·

(15)

The multinomial theorem shows that

∑
(i1,...,in)∈Sk

k!
i1! . . . in!

λij = (n + λ − 1)k, 1 ≤ j ≤ n,

hence (15) implies (14). ■
The proof of Theorem 3 (a) is based on the following interesting result. The s-alge-

bra of Borel subsets of ℝn is denoted by Bn.

Lemma 15 Let p1,..., pn be a discrete distribution with n ≥ 2, and let l >1. Let l Î
{1,..., n} be fixed. el denotes the vector in ℝn that has 0s in all coordinate positions

except the lth, where it has a 1. Let q1,..., qn be also a discrete distribution such that

qj >0 (1 ≤ j ≤ n) and

ql > max(q1, . . . ql−1, ql+1, . . . , qn). (16)

If

g :

⎧⎨
⎩ (t1, . . . , tn) ∈ Rn|tj > 0 (1 ≤ j ≤ n),

n∑
j=1

tj = 1

⎫⎬
⎭ → R
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is a bounded function for which

τl := lim
el

g

exists in ℝ and pl >0, then

lim
k→∞

∑
(i1,...,in)∈Sk

k!
i1! . . . in!

qi11 . . . qinn g

⎛
⎜⎜⎜⎝ λi1p1

n∑
j=1

λij pj

, . . . ,
λin pn
n∑
j=1

λij pj

⎞
⎟⎟⎟⎠ = τl. (17)

Proof. To prove the result, we can obviously suppose that l = 1.

For the sake of clarity, we shall denote the element (i1,..., in) of Sk by (i1k,..., ink)

(k Î N+).

Let ξk := (ξ1k,..., ξnk) (k Î N+) be a (ℝn, Bn)-random variable on a probability space

(�,A,P) such that ξk has multinomial distribution of order k and with parameters

q1,..., qn. A fundamental theorem of the statistics (see [9], Theorem 5.4.13), which is

based on the multidimensional central limit theorem and the Cochran-Fisher theorem,

implies that

lim
k→∞

P

⎛
⎝ n∑

j=1

(ξjk − kqj)
2

kqj
< t

⎞
⎠ = Fn−1(t), t ∈ R, (18)

where Fn-1 means the distribution function of the Chi-squared distribution (c2-distri-
bution) with n - 1 degrees of freedom.

Choose 0 < ε < 1. Since Fn-1 is continuous and strictly increasing on ]0, ∞[, there

exists a unique tε >0 such that

Fn−1(tε) = 1 − ε.

Define

S1k :=

⎧⎪⎪⎨
⎪⎪⎩ (i1k, . . . , ink) ∈ Sk|

n∑
j=1

k
(
ijk
k

− qj)
2

qj
< tε

⎫⎪⎪⎬
⎪⎪⎭ .

The definition of the set S1k shows that∑
(i1k,...,ink)∈S1k

k!
i1k! . . . ink!

qi1k1 . . . qinkn = P
(
(ξ1k, . . . , ξnk) ∈ S1k

)
(19)

= P

⎛
⎜⎜⎝

n∑
j=1

k
(
ξjk

k
− qj)

2

qj
< tε

⎞
⎟⎟⎠ = P

⎛
⎝ n∑

j=1

(ξjk − kqj)
2

kqj
< tε

⎞
⎠

= Fn−1(tε) +

⎛
⎝P

⎛
⎝ n∑

j=1

(ξjk − kqj)
2

kqj
< tε

⎞
⎠ − Fn−1(tε)

⎞
⎠

= 1 − ε + δε(k), k ∈ N+,

(20)
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where by (18)

lim
k→∞

δε(k) = 0. (21)

For j = 1,..., n construct the sequences (Ijk)k≥1 by

Ijk := i∗jk, if

∣∣∣∣∣
i∗jk
k

− qj

∣∣∣∣∣ = max
{∣∣∣∣ ijkk − qj

∣∣∣∣ |(i1k, . . . , ink) ∈ S1k

}
, k ∈ N+· (22)

We claim that

lim
k→∞

Ijk
k
= qj, 1 ≤ j ≤ n. (23)

Fix 1 ≤ j ≤ n. If (23) is false, then (22) yields that we can find a positive number r, a
strictly increasing sequence (ku)u≥1 and points

(i1ku , . . . , inku) ∈ S1ku , u ∈ N+ (24)

such that∣∣∣∣ ijkuku − qj

∣∣∣∣ ≥ ρ, u ∈ N+,

and therefore,

ku

(
ijku
ku

− qj

)2

qj
≥ ku

ρ2

qj
→ ∞ as u → ∞,

contrary to (24).

Let

q := max (q2, . . . , qn).

It follows from (16) that

γ :=
1
3
(q1 − q) > 0. (25)

By (22) and (23), we can find an integer kg such that for each k > kg∣∣∣∣ ijkk − qj

∣∣∣∣ ≤
∣∣∣∣∣ I

j
k

k
− qj

∣∣∣∣∣ < γ , (i1k, . . . , ink) ∈ S1k , 1 ≤ j ≤ n.

Thus, for every k > kg

i1k
k

> q1 − γ and
ijk
k

< qj + γ , 2 ≤ j ≤ n, (i1k, . . . , ink) ∈ S1k ,

and hence, we get from (25) that

i1k − ijk > kγ 2 ≤ j ≤ n, (i1k, . . . , ink) ∈ S1k , k > kγ . (26)

We can see that

i1k − ijk → ∞ as k → ∞, 2 ≤ j ≤ n, (i1k, . . . , ink) ∈ S1k . (27)
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Now, set S2k := Sk\S1k(k ∈ N+), and consider the sequences

a1k :=
∑

(i1k,...,ink)∈S1k

k!
i1k! . . . ink!

qi1k1 . . . qinkn g

⎛
⎜⎜⎜⎝ λi1k p1

n∑
j=1

λijk pj

, . . . ,
λink pn
n∑
j=1

λijkpj

⎞
⎟⎟⎟⎠ ,

and

a2k :=
∑

(i1k,...,ink)∈S2k

k!
i1k! . . . ink!

qi1k1 . . . qinkn g

⎛
⎜⎜⎜⎝ λi1k p1

n∑
j=1

λijk pj

, . . . ,
λink pn
n∑
j=1

λijkpj

⎞
⎟⎟⎟⎠ ,

where k Î N+. The sum of these sequences is just the studied sequence in (17).

Since p1 >0, we obtain from (27) that

lim
k→∞

λi1k p1
n∑
j=1

λijk pj

= 1, (i1k, . . . , ink) ∈ S1k , (28)

and

lim
k→∞

λilk p1
n∑
j=1

λijkpj

= 0, 2 ≤ l ≤ n, (i1k, . . . , ink) ∈ S1k . (29)

According to (26), the convergence is uniform for all the possible sequences in (28)

and (29); hence, for every ε1 >0, we can find an integer kε1 > kγ that for all k > kε1

τ1 − ε1 < g

⎛
⎜⎜⎜⎝ λi1k p1

n∑
j=1

λijk pj

, . . . ,
λink pn
n∑
j=1

λijkpj

⎞
⎟⎟⎟⎠ < τ1 + ε1, (i1k, . . . , ink) ∈ S1k . (30)

Bringing in (19-20), we find that

P
(
(ξ1k, . . . , ξnk) ∈ S2k

)
= ε − δε(k), k ∈ N+,

and therefore, thanks to (19-20), (30) and the boundedness of g (|g| ≤ m)

(1 − ε + δε(k))(τ1 − ε1) − (ε − δε(k))m ≤ a1k + a2k
≤ (1 − ε + δε(k))(τ1 + ε1) + (ε − δε(k))m, k > kε1 .

Consequently, by (21)

(1 − ε)(τ1 − ε1) − εm ≤ lim inf
k→∞

(a1k + a2k) ≤ lim sup
k→∞

(a1k + a2k)

≤ (1 − ε)(τ1 + ε1) + εm,

and this proves the convergence claim (17).

The proof is now complete. ■
The proof of Theorem 3.
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Proof. (a) We have only to observe that for every fixed 1 ≤ l ≤ n

lim
k→∞

1

(n + λ − 1)k
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

λil plf

⎛
⎜⎜⎜⎝

n∑
j=1

λij pjxj

n∑
j=1

λij pj

⎞
⎟⎟⎟⎠ = plf (xl). (31)

The case pl = 0 is trivial.

To prove the case pl >0, define the function

g :

⎧⎨
⎩ (t1, . . . , tn) ∈ Rn|tj > 0 (1 ≤ j ≤ n),

n∑
j=1

tj = 1

⎫⎬
⎭ → R

by

g(t1, . . . , tn) := f

⎛
⎝ n∑

j=1

tjxj

⎞
⎠ .

Consequently, the limit in (31) can be written in the form

lim
k→∞

pl
∑

(i1,...,in)∈Sk

k!
i1! . . . in!

(
1

n + λ − 1

)i1

· · ·
(

1
n + λ − 1

)il−1
(

λ

n + λ − 1

)il

.
(

1
n + λ − 1

)il+1

· · ·
(

1
n + λ − 1

)in

g

⎛
⎜⎜⎜⎝ λi1p1

n∑
j=1

λij pj

, ...,
λin pn
n∑
j=1

λij pj

⎞
⎟⎟⎟⎠ .

Now, we can apply Lemma 15 with

qj =
1

n + λ − 1
, 1 ≤ j ≤ n, j �= l, and ql =

λ

n + λ − 1

and

lim
el

g = f (xl), 1 ≤ l ≤ n.

(b) Elementary considerations show this part of the theorem.

The proof is complete. ■
The proof of Theorem 5.

Proof. Theorem A confirms that f is bounded on the set

G :=

⎧⎨
⎩

n∑
j=1

tjxj ∈ C|tj ≥ 0 (1 ≤ j ≤ n),
n∑
j=1

tj = 1

⎫⎬
⎭ ,

where tj (1 ≤ j ≤ n) is also rational if f is mid-convex.

It is elementary that for every (i1,..., in) Î Sk

lim
λ→∞

λil

(n + λ − 1)k
=

{
1, if il = k
0, if il < k

, 1 ≤ l ≤ n.
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By the definition of the set Sk, (0,..., 0, k, 0,..., 0) (the vector has 0s in all coordinate

positions except the lth) is the only element of Sk for which il = k (1 ≤ l ≤ n). By using

the boundedness of f on G, the previous assumptions imply the result, bringing the

proof to an end. ■
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