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Abstract

In this paper, we give sufficient conditions or realizability criteria for the existence
of a row stochastic matrix with a given spectrum Λ = {l1, ..., ln} = Λ1 ∪ ... ∪ Λm ∪
Λm+1, m >0; where �k = {λk1,λk2, ...,λkpk } = {λk1,ωke2π i/pk ,ωke4π i/pk , ...,ωke2(pk−1)π i/pk} (pk is
an integer greater than 1), lk1 = lk >0, 1 = l1 ≥ ωk >0, k = 1, ..., m; Λm+1 =
{lm+1}, ωm+1 ≡ l1 + ..., +ln ≤ l1, ωk ≥ lk, ω1 ≥ lk, k = 2, ..., m + 1. In the case
when p1, ..., pm are all equal to 2, Λ becomes a list of 2m + 1 real numbers for any
positive integer m, and our result gives sufficient conditions for a list of 2m + 1
real numbers to be realizable by a row stochastic matrix.
AMS classification: 15A18.
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1 Introduction and preliminaries
A list of complex numbers Λ is realizable by a matrix A if Λ is the spectrum of A. An

n × n nonnegative matrix A = (amk) = is a row stochastic matrix if
∑n

k=1 amk = 1, m =

1, ..., n. The row stochastic inverse eigenvalue problem is the problem of characterizing

all possible spectrum of row stochastic matrices. Since row stochastic matrices are

important in applications this kind of inverse eigenvalue problems should be interest-

ing. There are also some papers that contribute to the study of the doubly stochastic

inverse eigenvalue problem (e.g., [1,2] and references therein).

In this paper, we give sufficient conditions for some lists of complex numbers,

including lists of 2m + 1 real numbers, to be realizable by a row stochastic matrix.

We use A ∈ CSr to denote the fact that the n × n real square matrix A = (amk) satis-

fies
∑n

k=1 amk = r, m = 1, ..., n; use A = diag(A1, ..., At) to denote the fact that A is a

block diagonal matrix with diagonal blocks A1, ..., At; use s(A) to denote the spectrum

of A; use P (n) to denote the permutation matrix of order n the kth row of which is

the (k + 1)th row of In with the first row being (1, 0, ..., 0). Later, we will make use of

the fact that the spectrum of ωP(n) is {ω, ωe2πi/n, ωe4πi/n, ..., ωe(n-1)πi/n}.

Since our results are based on the following theorem from [3], we restate it with the

proof.

Theorem 1 (Brauer extended) [3] Let A be an n × n arbitrary matrix with eigenva-

lues l1, ..., ln and X = (x1, ..., xt) be such that rank(X) = t and Axk = lkxk, k = 1, ..., t,

t ≤ n. Let C be a t × n arbitrary matrix. Then the matrix A + XC has eigenvalues

μ1, ..., μt, lt+1, ..., ln, where μ1, ..., μt are eigenvalues of the matrix D + CX with D =

diag(l1, ..., lt).
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Proof Let S = (X, Y ) be a nonsingular matrix with S−1 =
(
U
V

)
. Then UX = It, V Y =

In-t, VX = UY = 0. Let C = C1, C2), X =
(
X1

X2

)
, Y =

(
Y1
Y2

)
where both C1, X1 are both t

× t and Y1 is t × (n - t). since AX = XD, we have

S−1AS =
(
U
V

)
(XD AY) =

(
D UAY
0 V AY

)

S−1XCS =
(
It
0

)
(C1 C2)S =

(
C1 C2

0 0

)(
X1 Y1
X2 Y2

)
=

(
CX CY
0 0

)

S−1(A + XC)S = S−1AS + S−1XCS =
(
D + CX UAY + CY

0 V AY

)
.

(1)

Now from ([?]) we have s(V AY ) = s(A)\s(D) and therefore

σ (A + XC) = σ (D + CX)
⋃

(σ (A)\σ (D)).

◊

Lemma 1 If

0 ≤ ωk ≤ λ1 = 1, k = 1, . . . , t; (2)

ω1 + · · · + ωt = λ1 + · · · + λt; (3)

ωk ≥ λk, ω1 ≥ λk, k = 2, . . . , t, (4)

then the following matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

ω1 ω2 − λ2 ω3 − λ3 · · · ωt − λt

ω1 − λ2 ω2 ω3 − λ3 · · · ωt − λt

ω1 − λ3 ω2 − λ2 ω3 · · · ωt − λt
...

...
. . .

. . .
...

ω1 − λt ω2 − λ2 ω3 − λ3 · · · ωt

⎞
⎟⎟⎟⎟⎟⎠

(5)

is a row stochastic matrix with eigenvalues l1, ..., lt and diagonal entries ω1, ..., ωt.

Proof It is clear that B ∈ CSλ1 = CS1 has diagonal entries ω1, ..., ωt and is a nonnega-

tive matrix by (2) and (4). In addition, the eigenpolynomial of B is factorized as

det(λI − B) = (λ − λ1)det

⎛
⎜⎜⎜⎝
1 λ2 − ω2 · · · λt − ωt

1 λ − ω2 · · · λt − ωt
...

...
. . .

...
1 λ2 − ω2 · · · λ − ωt

⎞
⎟⎟⎟⎠ =

t∏
k=1

(λ − λk).

◊

2 Main results
Since the set Λ in Theorem 2 is assumed to be a list of complex numbers, it could be

considered as a generalization of Theorem 8 of [3] (Λ in Theorem 8 of [3] is assumed

to be a real list). But the representation and the proof of these two theorems almost

have no difference.
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Theorem 2 [3] Let Λ = {l1, ..., ln} be a list of complex numbers. If there exists a par-

tition Λ = Λ1 ∪ ... ∪ Λt, �k = {λk1,λk2, . . . ,λkpk} k = 1, . . . , t with l11 = l1 ≥ l21 ≥ l31 ≥
... ≥ lt1 > 0 and for each Λk we associate a corresponding list �k = {ωk,λk2, . . . ,λkpk},
0 ≤ ωk ≤ ω1 which is realizable by a nonnegative matrix Ak ∈ CSωk of order pk, k = 1,

..., t, as well as there exists a nonnegative matrix B ∈ CSλ1 of order t, which has eigen-

values {l1, l21, ..., lt1} and diagonal entries {ω1, ..., ωt}, then Λ is realizable by an n × n

nonnegative matrix M ∈ CSλ1.

Proof Note the pk-dimensional vector (1, ..., 1)T is an eigenvector of Ak ∈ CSωk corre-

sponding to the eigenvalue ωk. Let X = (X1, ..., Xt), where Xk = (0, ... 0, 1, ..., 1, 0, ..., 0)T is

an n-dimensional vector with pk ones from the position p1 + ... + pk-1 + 1 to p1 + ... + pk
and zeros elsewhere. Let A = diag(A1, ..., At), D = diag(ω1, ..., ωt), then X is of rank t and

AX = XD.

Let C = (C1, ..., Ct), where Ck is the t × pk matrix whose first column is (c1k, c2k, ..., ctk)
T

and whose other entries are all zero. Then

CX =

⎛
⎜⎜⎜⎝
c11 c12 · · · c1t
c21 c22 · · · c2t
...

...
. . .

...
ct1 ct2 · · · ctt

⎞
⎟⎟⎟⎠ , XC =

⎛
⎜⎜⎜⎝
c11 c12 · · · c1t
c21 c22 · · · c2t
...

...
. . .

...
ct1 ct2 · · · ctt

⎞
⎟⎟⎟⎠ ,

where Cmk is the pm × pk matrix whose first column is (cmk, cmk, ..., cmk)
T and whose

other entries are all zero. Now we chose C with c11, ..., ctt = 0 so that the matrix

D + CX = B ∈ CSλ1. Then for this choice of C, we conclude that M = A + XC ∈ CSλ1 is

nonnegative with spectrum Λ by Theorem 1. ◊

Theorem 3 Let a list of complex numbers Λ = {l1, ..., ln} = Λ1 ∪ ... ∪ Λm ∪ Λm+1, m

>0; �k = {λk1,λk2, ...,λkpk } = {λk1,ωke2π i/pk ,ωke4π i/pk , ...,ωke2(pk−1)π i/pk} (pk is an integer greater

than 1), lk1 = lk >0, k = 1, ..., m; Λm+1 = {lm+1} be such that 1 = l1 ≥ ωk >0, k = 1, 2,

..., m. Let

ωm+1 = s = λ1 + · · · + λn, pm+1 = 1. (6)

If

λ1 ≥ s, (7)

ωk ≥ λk, ω1 ≥ λk, k = 2, . . . ,m + 1, (8)

then Λ is realizable by the following n × n row stochastic matrix

M =

⎛
⎜⎜⎜⎝

M11 M12 · · · M1,m+1

M21 M22 · · · M2,m+1
...

...
. . .

...
Mm+1,1 Mm+1,2 · · · Mm+1,m+1

⎞
⎟⎟⎟⎠ , (9)

where Mkk = ωkP(pk), k = 1, ..., m + 1; Mkj is the pk × pj matrix whose first column is

(ωj - lj, ..., ωj - lj)T, k ≠ j, j = 2, ..., m + 1 and whose other entries are all zero; Mk1 is

the pk × p1 matrix whose first column is (ω1 - lk, ..., ω1 - lk)T, k = 2, ..., m + 1 and

whose other entries are all zero.

Proof It is clear that �k = {ωk,λk2, . . . ,λkpk} is realizable by the nonnegative

matrix Ak = ωkP(pk) ∈ CSωk, k = 1, ..., m + 1. Since
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ωke2π i/pk + ωke4π i/pk + · · · + ωke2(pk−1)π i/pk = −ωk, k = 1, ..., m, we have ωm+1 = s = l1 +

... + ln = l1 - ω1 + ... + lm - ωm + lm+1 by Condition (6) and hence l1 + ... + lm
+1 = ω1 + ... + ωm+1. Meanwhile if (7) and (8) hold, then all conditions of Lemma 1

are satisfied and hence the row stochastic matrix B defined in (5) with t = m + 1 has

eigenvalues {l1, l2, ..., lm+1} and diagonal entries {ω1, ..., ωm+1}. Therefore, the list Λ

must be realizable by an n × n row stochastic matrix M by Theorem 2. Applying

Theorem 2, we compute the solution matrix M and get the result as defined in (9). ◊

When pk ≤ 2 for all k = 1, ..., m + 1, the set Λ in Theorem 3 becomes a list of real

numbers. In this case, applying Theorem 3, we have the following result for real row

stochastic inverse eigenvalues problem.

Theorem 4 If a list of real numbers Λ = {l1, ..., l2m+1} = Λ1∪ ... ∪Λm∪{lm+1}; Λk =

{lk, l2m+2-k}, k = 1, ..., m satisfies

1 = λ1 ≥ λ2 ≥ · · · ≥ λm+1 > 0 > λm+2 ≥ · · · ≥ λ2m+1 ≥ −1, (10)

s = λ1 + λ2 + · · · + λ2m+1 > λm+1 (11)

λ2m+2−k > λk, k = 2, . . . ,m, (12)

then Λ is realizable by the following row stochastic matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

M11 M12 · · · M1m M1,m+1

M21 M22 · · · M2m M1,m+1
...

...
. . .

...
...

Mm1 Mm2 · · · Mmm Mm,m+1

Mm+1,1 Mm+2,2 · · · Mm+1,m s

⎞
⎟⎟⎟⎟⎟⎠

(13)

where

Mkk =
(

0 −λ2m+2−k

−λ2m+2−k 0

)
, k = 1, . . . ,m;

Mk1 =
(−λ2m+1 − λk 0

−λ2m+1 − λk 0

)
, k = 2, . . . ,m; Mm+1,1 =

(−λ2m+1 − s 0
)
,

Mkj =
(−λ2m+2−j − λj 0

−λ2m+2−j − λj 0

)
; Mm+1,j =

(−λ2m+2−j − λj 0
)
,

j = 2, . . . ,m, j �= k; Mk,m+1 =
(
s − λm+1

s − λm+1

)
, k = 1, . . . ,m.

Proof Let μk = lk, ωk = -l2m+2 - k, pk = 2, k = 1, ..., m, ωm+1 = s, pm+1 = 1, then all

the conditions of Theorem 3 are satisfied and Λ is realizable by the row stochastic

matrix M defined in (9) by Theorem 3. In the case of Theorem 4, the matrix in (9)

becomes the matrix in (13). Therefore, Λ is realizable by the row stochastic matrix M

in (13). ◊

Remark Theorem 10 of [3] gives sufficient conditions only for a list of 5 real num-

bers to be the spectrum of some 5 × 5 nonnegative matrix M ∈ CSλ1; our Theorem 4

gives sufficient conditions for a list of 2m + 1 real numbers for any integer m >0 to be

the spectrum of some row stochastic matrix. In addition, the conditions of Theorem 4

are more easily handled.
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3 Examples
Example 1 Λ = {l1, ..., l7} = {1, 0.75, 0.7, 0.1, -0.75, -0.8, -0.8} satisfies Conditions (10),

(11) and (12) of Theorem 4 with m = 3, s = 0.2, -l5 - l2 = -l6 - l3 = 0.05, s - l4 = 0.1,

-l7 - l2 = 0.05, -l7 - l3 = 0.1, -l7 - l4 = 0.7. Therefore Λ is realizable by the following

row stochastic matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.8 0.05 0 0.05 0 0.1
0.8 0 0.05 0 0.05 0 0.1
0.05 0 0 0.8 0.05 0 0.1
0.05 0 0.8 0 0.05 0 0.1
0.1 0 0.05 0 0 0.75 0.1
0.1 0 0.05 0 0.75 0 0.1
0.7 0 0.05 0 0.05 0 0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Example 2 Λ = {l1, ..., l6} = {1, 0.2, 0.7e2πi/5, 0.7e4πi/5, 0.7e6πi/5, 0.7e8πi/5} satisfies all

the conditions of Theorem 3 with m = 1, p1 = 5, p2 = 1, ω2 = s = 0.5 < 1 = l1, ω1 =

0.7 >ω2 > 0.2 = l2, ω2 - l2 = 0.3, ω1 - l2 = 0.5. Therefore, Λ is realizable by the

following row stochastic matrix:
⎛
⎜⎜⎜⎜⎜⎜⎝

0 0.7 0 0 0 0.3
0 0 0.7 0 0 0.3
0 0 0 0.7 0 0.3
0 0 0 0 0.7 0.3
0.7 0 0 0 0 0.3
0.5 0 0 0 0 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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