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Abstract
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1 Introduction
Dorn [1] introduced symmetric duality in nonlinear programming by defining a pro-

gram and its dual to be symmetric if the dual of the dual is the original problem. The

symmetric duality for scalar programming has been studied extensively in the litera-

ture, one can refer to Dantzig et al. [2], Bazaraa and Goode [3], Devi [4], Mond and

Weir [5,6]. Mond and Schechter [7] studied non-differentiable symmetric duality for a

class of optimization problems in which the objective functions consist of support

functions. Following Mond and Schechter [7], Hou and Yang [8], Yang et al. [9],

Mishra et al. [10] and Bector et al. [11] studied symmetric duality for such problems.

Weir and Mond [6] presented two models for multiobjective symmetric duality. Several

authors, such as the ones of [12-14], studied multiobjective second and higher order

symmetric duality, motivated by Weir and Mond [6].

Very recently, Mishra et al. [10] presented a mixed symmetric dual formulation for a

non-differentiable nonlinear programming problem. Bector et al. [11] introduced a

mixed symmetric dual model for a class of nonlinear multiobjective programming pro-

blems. However, the models given by Bector et al. [11] as well as by Mishra et al. [10]

do not allow the further weakening of generalized convexity assumptions on a part of

the objective functions. Mishra et al [10] gave the weak and strong duality theorems

for mixed dual model under the sublinearity. However, we note that they did not dis-

cuss the converse duality theorem for the mixed dual model.

In this paper, we introduce a model of mixed symmetric duality for a class of non-

differentiable multiobjective programming problems with multiple arguments. We also

establish weak, strong and converse duality theorems for the model and discuss several
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special cases of the model. The results of Mishra et al. [10] as well as that of Bector

et al. [11] are particular cases of the results obtained in the present paper.

2 Preliminaries
Let Rn be the n-dimensional Euclidean space and let Rn

+ be its non-negative orthant.

The following convention will be used: if x, y Î Rn, then x � y ⇔ y − x ∈ Rn
+;

x < y ⇔ y − x ∈ intRn
+; x < y ⇔ y − x ∈ intRn

+; x ≰ y is the negation of x ≰ y.

Let f(x, y) be a real valued twice differentiable function defined on Rn × Rm. Let

∇1f (x̄, ȳ) and ∇2f (x̄, ȳ) denote the gradient vector of f with respect to x and y at (x̄, ȳ).

Also let ∇11f (x̄, ȳ) denote the Hessian matrix of f (x, y) with respect to the first variable

x at (x̄, ȳ). The symbols ∇22f (x̄, ȳ), ∇12f (x̄, ȳ) and ∇21f (x̄, ȳ) are defined similarly.

Consider the following multiobjective programming problem (VP):

min f (x) = (f1(x), f2(x), . . . , fp(x))

s.t. h(x) � 0, x ∈ X,

where X is an open set of Rn, fi : X ® R, i = 1, 2,..., p and h : X ® Rm.

Definition 2.1 A feasible solution x̄ is said to be an efficient solution for (VP) if

there exists no other x Î X such that f (x) ≤ f (x̄).

Let C be a compact convex set in Rn. The support function of C is defined by

s(x|C) := max{xTy : y ∈ C}.

A support function, being convex and everywhere finite, has a subdifferential [7], that

is, there exists z Î Rn such that

s(y|C) � s(x|C) + zT(y − x) ∀y ∈ C.

The subdifferential of s(x|C) is given by

∂s(x|C) := {z ∈ C : zTx = s(x|C).

For any set D ⊂ Rn, the normal cone to D at a point x Î D is defined by

ND(x) := {y ∈ Rn : yT(z − x) � 0 ∀z ∈ D}.

It is obvious that for a compact convex set C, y Î NC(x) if and only if s(y|C) = xTy,

or equivalently, x Î ∂s(y|C).

Let us consider a function F : X × X × Rn ® R (where X ⊂ Rn) with the properties

that for all (x, y) Î X × X, we have

(i)F(x, y; ·) is a convex function, (ii)F(x, y; 0) ≧ 0.

If F satisfies (i) and (ii), we obviously have F(x, y; -a) ≧ - F(x, y; a) for any a Î Rn.

For example, F(x, y; a) = M1||a|| + M2||a||2, where a depends on x and y, M1, M2

are positive constants. This function satisfies (i) and (ii), but it is neither subadditive,

nor positive homogeneous, that is, the relations

(i’)F(x, y; a + b) ≦ F(x, y; a) + F(x, y; b), (ii’)F(x, y; ra) = rF(x, y; a) are not fulfilled for

any a, b Î Rn and r Î R+. We may conclude that the class of functions that verify (i)

and (ii) is more general than the class of sublinear functions with respect the third

argument, i.e. those which satisfy (I’) and (ii’). We notice that till now, most results in
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optimization theory were stated under generalized convexity assumptions involving the

functions F which are sublinear. The results of this paper are obtained by using weaker

assumptions with respect to the above function F.

Throughout the paper, we always assume that F, G : X × X × Rn ® R satisfy (i)

and (ii).

Definition 2.2 Let X ⊂ Rn, Y ⊂ Rm. f(·, y) is said to be F-convex at x̄ ∈ X, for fixed

y Î Y, if

f (x, y) − f (x̄, y) � F(x, x̄;∇1f (x̄, y)) ∀x ∈ X.

Definition 2.3 Let X ⊂ Rn, Y ⊂ Rm. f(x,·) is said to be F-concave at ȳ ∈ Y , for fixed

x Î X, if

f (x, ȳ) − f (x, y) � F(y, ȳ;−∇2f (x, ȳ)) ∀y ∈ Y.

Definition 2.4 Let X ⊂ Rn, Y ⊂ Rm. f(·, y) is said to be F-pseudoconvex at x̄ ∈ X, for

fixed y Î Y, if

F(x, x̄;∇1f (x̄, y)) � 0 ⇒ f (x, y) � f (x̄, y) ∀x ∈ X.

Definition 2.5 Let X ⊂ Rn, Y ⊂ Rm. f(x,·) is said to be F-pseudoconcave at ȳ ∈ Y , for

fixed x Î X, if

F(y, ȳ;∇2f (x, ȳ)) � 0 ⇒ f (x, ȳ) � f (x, y) ∀y ∈ Y.

3 Mixed type multiobjective symmetric duality
For N = {1, 2,..., n} and M = {1, 2,..., m}, let J1 ⊂ N, K1 ⊂ M and J2 = N\J1 and K2 = M

\K1. Let |J1| denote the number of elements in the set J1. The other numbers |J2|, |K1|

and |K2| are defined similarly. Notice that if J1 = ∅, then J2 = N, that is, |J1| = 0 and |

J2| = n. Hence, R|J1| is zero-dimensional Euclidean space and R|J2| is n-dimensional

Euclidean space. It is clear that any x Î Rn can be written as x = (x1, x2), x1 ∈ R|J1|,

x2 ∈ R|J2|. Similarly, any y Î Rm can be written as y = (y1, y2), y1 ∈ R|K1|, y2 ∈ R|K2|. Let

f : R|J1| × R|K1| → Rl and g : R|J2| × R|K2| → Rl be twice continuously differentiable

functions and e = (1, 1,..., 1) Î Rl.

Now we can introduce the following pair of non-differentiable multiobjective pro-

grams and discuss their duality theorems under some mild assumptions of generalized

convexity.

Primal problem (MP):

Min H(x1, x2, y1, y2, z1, z2,λ) = (H1(x1, x2, y1, y2, z1, z2,λ), . . . ,Hl(x1, x2, y1, y2, z1, z2,λ))

s.t. (x1, x2, y1, y2, z1, z2,λ) ∈ R|J1| × R|J2| × R|K1| × R|K2| × R|K1| × R|K2| × Rl
+,

l∑
i=1

λi[∇2fi(x1, y1) − z1i ] � 0, (1)

l∑
i=1

λi[∇2gi(x2, y2) − z2i ] � 0, (2)
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(y1)T
l∑

i=1

λi[∇2fi(x1, y1) − z1i ] � 0, (3)

(y2)T
l∑

i=1

λi[∇2gi(x2, y2) − z2i ] � 0, (4)

(x1, x2) � 0, (5)

z1i ∈ D1
i , z

2
i ∈ D2

i , i = 1, 2, . . . , l, (6)

λ > 0, λTe = 1. (7)

Dual problem (MD):

Max G(u1, u2, v1, v2,w1,w2,λ) = (G1(u1, u2, v1, v2,w1,w2,λ), . . . ,Gl(u1, u2, v1, v2,w1,w2,λ))

s.t. (u1, u2, v1, v2,w1,w2,λ) ∈ R|J1| × R|J2| × R|K1| × R|K2| × R|K1| × R|K2| × Rl
+,

l∑
i=1

λi[∇1fi(u1, v1) + w1
i ] � 0, (8)

l∑
i=1

λi[∇1gi(u2, v2) + w2
i ] � 0, (9)

(u1)T
l∑

i=1

λi[∇1fi(u1, v1) + w1
i ] � 0, (10)

(u2)T
l∑

i=1

λi[∇1gi(u2, v2) + w2
i ] � 0, (11)

(v1, v2) � 0, (12)

w1
i ∈ C1

i , w
2
i ∈ C2

i , i = 1, 2, . . . , l, (13)

λ > 0, λTe = 1. (14)

where
Hi(x1, x2, y1, y2, z,λ) = fi(x1, y1) + gi(x2, y2) + s(x1|C1

i ) + s(x2|C2
i ) − (y1)Tz1i − (y2)Tz2i ,-

Gi(u1, u2, v1, v2,w,λ) = fi(u1, v1)+gi(u2, v2)−s(v1|D1
i )−s(v2|D2

i )+(u
1)Tw1

i +(u
2)Tw2

i , and C1
i is a compact and con-

vex subset of R|J1| for i = i = 1, 2,..., l and C2
i is a compact and convex subset of R|J2| for

i = 1, 2,..., l. Similarly, D1
i is a compact and convex subset of R|K1| for i = 1, 2,..., l and

D2
i is a compact and convex subset of R|K2| for i = 1, 2,..., l.

Theorem 3.1(Weak duality). Let (x1, x2, y1, y2, z1, z2, l) be feasible for (MP) and (u1,

u2, v1, v2, w1, w2, l) be feasible for (MD). Suppose that for i = 1, 2,..., l,

fi(·, v1) + (·)Tw1
i is F1-convex for fixed v1, fi(x1, ·) − (·)Tz1i is F2-concave for fixed x1,

gi(·, v2) + (·)Tw2
i is G1-convex for fixed v2 and gi(x2, ·) − (·)Tz2i is G2-concave for fixed

x2, and the following conditions are satisfied:
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(I) F1(x
1, u1; a) + (u1)Ta ≧ 0 if a ≧ 0;

(II) G1(x
2, u2; b) + (u2)Tb ≧ 0 if b ≧ 0;

(III) F2(v
1, y1; c) + (y1)Tc ≧ 0 if c ≧ 0; and

(IV) G2(v
2, y2; d) + (y2)Td ≧ 0 if d ≧ 0.

Then H(x1, x2, y1, y2, z1, z2, l) ≰ G(u1, u2, v1, v2, w1, w2, l).
Proof. Assume that the result is not true, that is H(x1, x2, y1, y2, z1, z2, l) ≤ G(u1, u2,

v1, v2, w1, w2, l). Then, since l > 0, we have

n∑
i=1

λi[fi(x1, y1) + gi(x2, y2) + s(x1|C1
i ) + s(x2|C2

i ) − (y1)Tz1i − (y2)Tz2i ]

<

n∑
i=1

λi[fi(u1, v1) + gi(u2, v2) − s(v1|D1
i ) − s(v2|D2

i ) + (u1)Tw1
i + (u2)Tw2

i ].

(15)

By the F1-convexity of fi(·, v1) + (·)Tw1
i , we have

(fi(x1, v1) + (x1)Tw1
i ) − (fi(u1, v1) + (u1)Tw1

i ) � F1(x1, u1;∇1fi(u1, v1) + w1
i ), for i = 1,2,..., l.

From (7), (14) and F1 satisfying (i) and (ii), the above inequality yields

l∑
i=1

λi[(fi(x1, v1)+(x1)Tw1
i )−(fi(u1, v1)+(u1)Tw1

i )] � F1

(
x1, u1;

l∑
i=1

λi[∇1fi(u1, v1) + w1
i ]

)
. (16)

By the duality constraint (8) and conditions (I), we get

F1(x1, u1;
l∑

i=1

λi[∇1fi(u1, v1) + w1
i ]) � −(u1)T

l∑
i=1

λi[∇1fi(u1, v1) + w1
i ].

From (10), (16) and the above inequality, we obtain

l∑
i=1

λi[(fi(x1, v1) + (x1)Tw1
i ) − (fi(u1, v1) + (u1)Tw1

i )] � 0. (17)

By the F2-concavity of fi(x1, ·) − (·)Tz1i , we have, for i = 1, 2,..., l,

(fi(x1, y1) − (y1)Tz1i ) − (fi(x1, v1) − (v1)Tz1i ) � F2(v1, y1;−[∇2fi(x1, y1) − z1i ]).

From (7), (14) and F2 satisfying (i) and (ii), the above inequality yields

l∑
i=1

λi[(fi(x1, y1)−(y1)Tz1i )−(fi(x1, v1)−(v1)Tz1i )] � F2(v1, y1;−
l∑

i=1

λi[∇2fi(v1, y1)−z1i ]). (18)

By the primal constraint (1) and conditions (III), we get

F2(v1, y1;−
l∑

i=1

λi[∇2fi(x1, y1) − z1i ]) � (y1)T
l∑

i=1

λi[∇1fi(x1, y1) − z1i ].

From (3), (18) and the above inequality, we obtain

l∑
i=1

λi[(fi(x1, y1) − (y1)Tz1i ) − (fi(x1, v1) − (v1)Tz1i )] � 0. (19)

Using (v1)Tz1i � s(v1|D1
i ) and (x1)Tw1

i � s(x1|C1
i ) for i = 1, 2,..., l, it follows from (17)

and (19), that
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l∑
i=1

λi[fi(x1, y1) + s(x1|C1
i )) − (u1)Tw1

i ) − fi(u1, v1) + s(v1|D1
i ) − (y1)Tz1i ] � 0. (20)

Similarly, by the G1-convexity of gi(·, v2) + (·)Tw2
i and G2-concavity of

gi(x2, ·) − (·)Tz2i , for i = 1, 2,..., l, and condition (II) and (IV), we get

l∑
i=1

λi[gi(x2, y2) + s(x2|C2
i ) − (y2)Tz2i − gi(u2, v2) + s(v2|D2

i ) − (u2)Tw2
i ] � 0. (21)

From (20) and (21), we have

n∑
i=1

λi[fi(x1, y1) + gi(x2, y2) + s(x1|C1
i ) + s(x2|C2

i ) − (y1)Tz1i − (y2)Tz2i ]

�
n∑
i=1

λi[fi(u1, v1) + gi(u2, v2) − s(v1|D1
i ) − s(v2|D2

i ) + (u1)Tw1
i + (u2)Tw2

i ],

which is a contradiction to (15). Hence H(x1, x2, y1, y2, z1, z2, l) ≰ G(u1, u2, v1, v2,

w1, w2, l).
Remark 3.1. Theorem 3.1 can be established for more general classes of functions

such as F1-pseudoconvexity and F2-pseudoconcavity, and G1-pseudoconvexity and

G2-pseudoconcavity on the functions involved in the above theorem. The proofs will

follow the same lines as that of Theorem 3.1.

Strong duality theorem for the given model can be established on the lines of the

proof of Theorem 2 of Yang et al. [9].

Theorem 3.2(Strong duality). Let (x1, x2, y1, y2, z1, z2, λ̄) be an efficient solution for

(MP), fix λ = λ̄ in (MD), and suppose that

(A1) either the matrices
∑l

i=1 λi∇22fi(x1, y1) and
∑l

i=1 λi∇22gi(x2, y2) are positive

definite; or
∑l

i=1 λi∇22fi(x1, y1) and
∑l

i=1 λi∇22gi(x2, y2) are negative definite; and

(A2) the sets {∇2f1(x1, y1) − z11, . . . ,∇2fl(x1, y1) − z1l } and

{∇2g1(x2, y2) − z21, . . . ,∇2gl(x2, y2) − z2l } are linearly independent.

Then (x1, x2, y1, y2, z1, z2, λ̄) is feasible for (MD) and the corresponding objective

function values are equal. If in addition the hypotheses of Theorem 3.1 hold, then

there exist w1, w2 such that (u1, u2, v1, v2,w1,w2,λ) = (x1, x2, y1, y2,w1,w2, λ̄) is an effi-

cient solution for (MD).

Mishra et al. [10] gave weak and strong duality theorems for the mixed model. How-

ever, we note that they did not discuss the converse duality theorem for the mixed

dual model. Here, we will give a converse duality theorem for the model under some

weaker assumptions.

Theorem 3.3(Converse duality). Let (x1, x2, y1, y2,w1,w2, λ̄) be an efficient solution

for (MD), λ = λ̄ in (MP), and suppose that

(B1) either the matrices
∑l

i=1 λi∇11fi(x1, y1) and
∑l

i=1 λi∇11gi(x2, y2) are positive

definite; or
∑l

i=1 λi∇11fi(x1, y1) and
∑l

i=1 λi∇11gi(x2, y2) are negative definite; and

Li and Gao Journal of Inequalities and Applications 2011, 2011:23
http://www.journalofinequalitiesandapplications.com/content/2011/1/23

Page 6 of 10



(B2) the sets {∇1f1(x1, y1) − w1
1, . . . ,∇1fl(x1, y1) − w1

l } and

{∇1g1(x2, y2) − w2
1, . . . ,∇1gl(x2, y2) − w2

l } are linearly independent.

Then (x1, x2, y1, y2,w1,w2, λ̄) is feasible for (MP) and the corresponding objective

function values are equal. If in addition the hypotheses of Theorem 3.1 hold, then

there exist z1, z2 such that (x1, x2, y1, y2, z1, z2,λ) = (x1, x2, y1, y2, z1, z2, λ̄) is an efficient

solution for (MP).

Proof. Since (x1, x2, y1, y2,w1,w2, λ̄) be an efficient solution for (MD), by the modify-

ing Fritz-John conditions [7], there exist a Î Rl, α1 ∈ R|J1|, α2 ∈ R|J2|, b1 Î R, b2 Î R,

μ2 ∈ R|K2|, μ2 ∈ R|K2|, δ Î Rl such that

l∑
i=1

(−αi + β1λi)[∇1fi(x1, y1) + w1
i ]

T + (β1x1 − α1)T
l∑

i=1

λi∇11fi(x1, y1) = 0, (22)

l∑
i=1

(−αi + β2λi)[∇1gi(x2, y2) + w2
i ]

T + (β2x2 − α2)T
l∑

i=1

λi∇11gi(x2, y2) = 0, (23)

−
l∑

i=1

αi[∇2fi(x1, y1) − z1i ] + (β1x1 − α1)T
l∑

i=1

λi∇12fi(x1, y1) − μ1 = 0, (24)

z1i ∈ D1
i , (z1i )

Ty1 = s(y1|D1
i ), i = 1, 2, . . . , l, (25)

−
l∑

i=1

αi[∇2gi(x2, y2) − z2i ] + (β2x2 − α2)T
l∑

i=1

λi∇12gi(x2, y2) − μ2 = 0, (26)

z2i ∈ D2
i , (z2i )

Ty2 = s(y2|D2
i ), i = 1, 2, . . . , l, (27)

(αTe)x1 + λi(β1x1 − α1) ∈ NC1
i
(w1

i ), i = 1, 2, . . . , l, (28)

(αTe)x2 + λi(β2x2 − α2) ∈ NC2
i
(w2

i ), i = 1, 2, . . . , l, (29)

(β1x1 − α1)T[∇1fi(x1, y1)+w1
i ]+(β2x2 − α2)T[∇1gi(x2, y2)+w2

i ]−δi = 0, i = 1, 2, . . . , l, (30)

αT
1

l∑
i=1

λi[∇1fi(x1, y1) + w1
i ] = 0, (31)

αT
2

l∑
i=1

λi[∇1gi(x2, y2) + w2
i ] = 0, (32)

β1(x1)T
l∑

i=1

λi[∇1fi(x1, y1) + w1
i ] = 0, (33)
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β2(x2)T
l∑

i=1

λi[∇1gi(x2, y2) + w2
i ] = 0, (34)

μT
1y1 = 0, (35)

μT
2y2 = 0, (36)

δT λ̄ = 0, (37)

(α,α1,α2,β1,β2,μ1,μ2, δ) � 0 and (α,α1,α2,β1,β2,μ1,μ2, δ) 	= 0. (38)

From (22) and (23), we get

l∑
i=1

(−αi + β1λi)[∇1fi + w1
i ]

T(β1x1 − α1) + (β1x1 − α1)T
l∑

i=1

λi∇11fi(β1x1 − α1)

+
l∑

i=1

(−αi + β2λi)[∇1gi + w2
i ]

T(β2x2 − α2) + (β2x2 − α2)T
l∑

i=1

λi∇11gi(β2x2 − α2) = 0.

(39)

From (31)-(34), we have

(β1x1 − α1)T
l∑

i=1

λi[∇1fi + w1
i ] + (β2x2 − α2)T

l∑
i=1

λi[∇1gi + w2
i ] = 0, (40)

Substituting (40) into (39), we obtain

−
l∑

i=1

αi{[∇1fi + w1
i ]

T(β1x1 − α1) + [∇1gi + w2
i ]

T(β2x2 − α2)}

+(β1x1 − α1)T
l∑

i=1

λi∇11fi(β1x1 − α1) + (β2x2 − α2)T
l∑

i=1

λi∇11gi(β2x2 − α2) = 0.

Since l > 0, it follows from (37), that δ = 0. From δ = 0 and (30), the above equation

yields

(β1x1 − α1)T
l∑

i=1

λi∇11fi(β1x1 − α1) + (β2x2 − α2)T
l∑

i=1

λi∇11gi(β2x2 − α2) = 0. (41)

From (A1) and (41), we obtain

α1 = β1x1 and α2 = β2x2. (42)

From (22), (23), (42) and (A2), we get

αi = β1λi and αi = β2λi, i = 1, 2, . . . , l. (43)

If b1 = 0, then from (43) and (42), b2 = 0, a = 0, a1 = 0, a2 = 0, and from (24) and

(26), μ1 = 0, μ2 = 0. This contradicts (38). Hence b1 = b2 > 0 and a > 0.

From (38) and (42), we have

(x1, x2) � 0. (44)
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By (24), (38) and (43), we have

l∑
i=1

λi[∇2fi(x1, y1) − z1i ] � 0. (45)

By (26), (38) and (43), we have

l∑
i=1

λi[∇2gi(x2, y2) − z2i ] � 0. (46)

From (24), (35), (42) and (43), we have

(y1)T
l∑

i=1

λi[∇2fi(x1, y1) − z1i ] = 0. (47)

From (26), (36), (42) and (43), we have

(y2)T
l∑

i=1

λi[∇2gi(x2, y2) − z2i ] = 0. (48)

Hence from (12)-(14) and (44)-(48), (x1, x2, y1, y2,w1,w2, λ̄) is feasible for (MP). Now

from (28), (42) and a > 0, we have x1 ∈ NC1
i
(w1

i ), i = 1, 2,..., l, that is

s(x1|C1
i ) = (w1

i )
Tx1, i = 1, 2, . . . , l. (49)

From (29), (42) and a > 0, we have

s(x2|C2
i ) = (w2

i )
Tx2, i = 1, 2, . . . , l. (50)

Finally, from (25), (27), (49) and (50), for all i = 1, 2,..., l, we give,

fi(x1, y1) + gi(x2, y2) − s(y1|D1
i ) − s(y2|D2

i ) + (x1)Tw1
i + (x2)Tw2

i

= fi(x1, y1) + gi(x2, y2) + s(x1|C1
i ) + s(x2|C2

i ) − (y1)Tz1i − (y2)Tz2i .
(51)

Thus G(x1, x2, y1, y2,w1,w2, λ̄) = H(x1, x2, y1, y2, z1, z2, λ̄). By the weak duality and

(51), (x1, x2, y1, y2, z1, z2, λ̄) is an efficient solution for (MD).

4 Special cases
In this section, we consider some special cases of problems (MP) and (MD) by choos-

ing particular forms of compact convex sets, and the number of objective and con-

straint functions:

(i) If F(x, y; ·) is sublinear, then (MP) and (MD) reduce to the pair of problems

(MP2) and (MD2) studied in Mishra et al. [10].

(ii) If F(x, y; ·) is sublinear, |J2| = 0, |K2| = 0 and l = 1, then (MP) and (MD) reduce

to the pair of problems (P1) and (D1) of Mond and Schechter [7]. Thus (MP) and

(MD) become multiobjective extension of the pair of problems (P1) and (D1) in [7].

(iii) If F(x, y; ·) is sublinear and l = 1, then (MP) and (MD) are an extension of the

pair of problems studied in Yang et al. [9].

(iv) From the symmetry of primal and dual problems (MP) and (MD), we can con-

struct other new symmetric dual pairs. For example, if we take C1
i = {A1

i y : y
TA1

i y � 1}
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and C2
i = {A2

i y : y
TA2

i y � 1}, where A1
i , A

2
i , i = 1,2,,..., l, are positive semi definite

matrices, then it can be easily verified that s(x1|C1
i ) = (xTA1

i x)
1
2, and

s(x1|D1
i ) = (xTB1

i x)
1
2, i = 1, 2,..., l. Thus, a number of new symmetric dual pairs and

duality results can be established.
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