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Abstract

In this paper, we prove the stability of the functional equation min {f(x + y), f(x - y)} =
|f(x) - f(y)| in the class of real, continuous functions of real variable.
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1. Introduction
In the paper [1], Simon and Volkmann examined functional equations connected with

the absolute value of an additive function, that is,

max{f (x + y), f (x − y)} = f (x) + f (y), x, y ∈ G, (1:1)

min{f (x + y), f (x − y)} = |f (x) − f (y), x, y ∈ G, (1:2)

and

max{f (x + y), f (x − y)} = f (x)f (y), x, y ∈ G, (1:3)

where G is an abelian group and f : G ® ℝ. The first two of them are satisfied by f

(x) = |a(x)|, where a: G ® ℝ is an additive function; moreover, the first one charac-

terizes the absolute value of additive functions. The solutions of Equation (1.2) are

appointed by Volkmann during the Conference on Inequalities and Applications in

Noszwaj (Hungary, 2007), under the assumption that f : ℝ ® ℝ is a continuous func-

tion. Namely, we have

Theorem 1.1 (Jarczyk and Volkmann [2]). Let f : ℝ ® ℝ be a continuous function

satisfying Equation (1.2). Then either there exists a constant c ≥ 0 such that f(x) = c|x|,

x Î ℝ, or f is periodic with period 2p given by f(x) = c|x| with some constant c > 0, x Î
[-p, p].

Actually, it is enough to assume continuity at a point, since this implies continuity

on ℝ, see [2]. Moreover, some measurability assumptions force continuity. Baron in [3]

showed that if G is a metrizable topological group and f : G ® ℝ is Baire measurable

and satisfies (1.2) then f is continuous. Kochanek and Lewicki (see [4]) proved that if

G is metrizable locally compact group and f : G ® ℝ is Haar measurable and satisfies

(1.2), then f is continuous.

As already mentioned in [2], Kochanek noticed that every function f defined on an

abelian group G which is of the form f = g ∘ a, where g : ℝ ® ℝ is a solution of (1.2)
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described by Theorem 1.1 and a: G ® ℝ is an additive function, is a solution of

Equation (1.2).

Solutions of the Equation (1.3), according to [1], with the additional assumption that G

is divisible by 6, are either f ≡ 0 or f = exp(|a|), where a: G ® ℝ is an additive function.

Without this additional assumption, however, we have the following remark (see [5]).

Remark 1.1. Let f : G ® ℝ, where G is an abelian group. Then, f satisfies

max{f (x + y), f (x − y)} = f (x)f (y)

if and only if

• f ≡ 0

or

• f = exp ∘|a|, for some additive function a

or

• there is a subgroup G0 of G, such that

x, y /∈ G0 ⇒ (x + y ∈ G0 ∨ x − y ∈ G0), x, y ∈ G,

and

f (x) =
{

1, x ∈ G0;
−1, x /∈ G0.

The result concerning stability of (1.1) was presented by Volkmann during the 45th

ISFE in Bielsko-Biala (Poland, 2007) (for the proof see [2]) and superstability of (1.3)

was proved in [6].

In this paper, we deal with the stability of Equation (1.2) in the class of continuous

functions from ℝ to ℝ.

2. Main Result
We are going to prove

Theorem 2.1. If δ ≥ 0 and f : ℝ ® ℝ is a continuous function satisfying

|min{f (x + y), f (x − y)} − |f (x) − f (y)|| ≤ δ, x, y ∈ R, (2:1)

then either f is bounded (and in such a case is “close” to the solution F ≡ 0 of (1.2)) or

there exists a constant c > 0 such that

|f (x) − c|x|| ≤ 21δ, x ∈ R, (2:2)

that is, f is “close” to the solution F(x) = c|x| of (1.2).

We will write α
δ∼ β instead of |a - b | ≤ δ to shorten the notation.

Notice that

• if α
δ1∼ β

δ2∼ γ then α
δ1+δ2∼ γ,

• if α ≤ β
δ∼ γ then a ≤ g +δ,
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• if α
δ∼ β ≤ γthen a ≤ g +δ,

• if α
δ∼ β then for an arbitrary g we have |α − γ | δ∼ |β − γ |.

In the following lemma, we list some properties of functions satisfying (2.1) in more

general settings.

Lemma 2.1. Let G be an abelian group, δ, ε ≥ 0 and let f : G ® ℝ be an arbitrary

function satisfying

min{f (x + y), f (x − y)} δ∼|f (x) − f (y)|, x, y ∈ G. (2:3)

Then

(i) f(x) ≥ -δ, x Î G,

(ii) f (0)
δ∼ 0,

(iii) f (x)
2δ∼ f (−x), x Î G,

(iv) f (x)
2δ∼ |f (x)|, x Î G,

(v) for every x, p Î G it holds

f (p)
ε∼0 ⇒ [f (x + p)

3δ+ε∼ f (x) and f (x − p)
3δ+ε∼ f (x)].

Proof. The first assertion follows from

f (x) = min{f (x + 0), f (x − 0)} δ∼|f (x) − f (0) ≥ 0, x ∈ G. (2:4)

The second one we get putting x = 0 in (2.4). Next, notice that, using (ii), we have

|f (x) − f (−x)| δ∼min{f (0), f (2x)} ≤ f (0) ≤ δ, x ∈ G,

which proves (iii). Moreover,

|f (x)| δ∼ |f (x) − f (0)| δ∼min{f (x), f (x)} = f (x), x ∈ G,

so we obtain (iv). To prove (v), let us assume that f (p)
ε∼ 0 and choose an arbitrary

x Î G. Since

f (x)
2δ∼ |f (x)| ε∼ |f (x) − f (p)| δ∼min{f (x − p), f (x + p)},

we have either

f (x)
3δ+ε∼ f (x + p) ≤ f (x − p) (2:5)

or

f (x)
3δ+ε∼ f (x − p) ≤ f (x + p).

Let us consider the first possibility, the second can be dealt with in the analogous

way. Notice that

f (x − p) ≤ |f (x − p)| ε∼ |f (x − p) − f (p)| δ∼min{f (x − 2p), f (x)} ≤ f (x),
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which yields

f (x − p) ≤ f (x) + δ + ε.

The last inequality together with (2.5) finishes the proof of (v). □
Proof of Theorem 2.1. First, we notice that for every x,y, z Î ℝ such that x <y <z, we

have

(f (x) = f (z) > f (y) + 4δ) ⇒ (∃p≥y+xf (p)
δ∼ 0). (2:6)

Indeed, assume that x, y, z Î ℝ, x <y <z and f(x) = f(z) >f(y) + 4δ. Let us choose the

greatest x’ Î [x, y] with f(x’) = f(x) and the smallest z’ Î [y, z] with f(z’) = f(z). The

continuity of f assures the existence of x’’, z’’ Î [x’, z’], x’’ <z’’, such that f(x’’) = f(z’’)

and z’’ - x’’ = y - x’. Of course,

z′′ + x′′ = y + (x′′ − x′) + x′′ ≥ y + x.

Moreover, in view of (2.1), we have

0 = |f (z′′) − f (x′′)| δ∼min{f (z′′ − x′′), f (z′′ + x′′)}. (2:7)

So, if f (z′′ − x′′)
δ∼ 0, by Lemma 2.1(v), we would have

f (x) = f (x′)
4δ∼ f (x′ + (z′′ − x′′)) = f (x′ + y − x′) = f (y)

which is impossible. Therefore, (2.7) implies f (z′′ + x′′)
δ∼ 0. Now, it is enough to put

p = z’’ + x’’.

Assume that f is unbounded. We will show that

f (x) ≤ f (y) + 6δ, 0 < x < y. (2:8)

Suppose on the contrary that there exist x, y Î ℝ, 0 <x <y, with f(x) >f(y) + 6δ. From

the unboundness of f and parts (i) and (iii) of Lemma 2.1, we infer that limx®∞ f(x) = ∞.

So we can find z1 >y with f(z1) = f(x). From (2.6) (with z = z1), we deduce that there

exists p1 ≥ y + x such that f (p1)
δ∼ 0. Let us suppose that we have already defined p1,

p2, ..., pn in such a way that f (pk)
δ∼0 and pk ≥ y + kx, k = 1, 2, ..., n. Notice that, in view

of Lemma 2.1(i),

f (x) > f (y) + 6δ ≥ −δ + 6δ = δ + 4δ ≥ f (pn) + 4δ

so we can find zn >pn with f(zn) = f(x). By (2.6) (with y = pn and z = zn), we obtain

that there exists pn+1 ≥ pn + x ≥ y + (n + 1)x such that f (pn+1)
δ∼ 0. Hence, we proved

that there is a sequence (pn)nÎN increasing to infinity such that f (pn)
δ∼0 for n Î N.

Choose p > 0 satisfying f (p)
δ∼ 0 and such that

M := max f ([0, p]) > 7δ. (2:9)

Let this maximum be taken at an x Î (0, p). Notice that f(2x) ≤ M + 4δ. This is

obvious if 2x ≤ p, in the opposite case, if 2x >p, it follows from Lemma 2.1 part (v)

and the fact that in such a case 2x -p Î [0, p), more precisely,

f (2x) = f (2x − p + p)
4δ∼ f (2x − p) ≤ max f ([0, p]) = M.
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Let us now choose y >p with f(y) = 2M. We have

M = |f (y) − f (x)
δ∼ min{f (y − x), f (y + x)},

whence either f (y − x)
δ∼M or f (y + x)

δ∼M. Let us consider the first possibility, the

second is analogous. From min{f (y - 2x), 2M) = min{f (y - 2x),

f (y)} δ∼|f (y − x) − f (x)| = |f (y − x) − M| ≤ δ we deduce that f(y - 2x) ≤ 2δ. But 2δ ≥ f

(y - 2x) ≥ min {f(y - 2x), f (y + 2x)} δ∼|f (y) − f (2x)| ≥ M − 4δ which contradicts (2.9)

and, thereby, ends the proof of (2.8).

We infer that

f (y − x) ≤ f (y + x) + 6δ, 0 < x < y,

whence

min{f (y − x), f (y + x)} 6δ∼ f (y − x), 0 < x < y.

Notice that (2.8) implies

|f (x) − f (y)| 12δ∼ f (y) − f (x), 0 < x < y.

Thereby,

f (y − x)
6δ∼min{f (y − x), f (y + x)} δ∼ |f (x) − f (y)

12δ∼ f (y) − f (x), for 0 <x <y, whence

f (y − x)
19δ∼ f (y) − f (x) for 0 <x <y. Consequently,

f (x + y)
19δ∼ f (x) + f (y), x, y > 0.

Since f restricted to (0, ∞) is 19δ -approximately additive, there is an additive

function a: (0, ∞) ® ℝ such that f (x)
19δ∼ a(x) (see [7]). Moreover, since f is continuous,

a(x) = cx for some positive c. Assertions (ii) and (iii) of Lemma 2.1 finish the proof of

(2.2). □
Remark. Kochanek noticed (oral communication) that we can decrease easily 21δ

appearing in (2.2) to 19δ, by repeating the consideration from the proof, which we did

for positive real halfline, for the negative real halfline. We would obtain f (x)
19δ∼ cx, for

x > 0, f (0)
δ∼ 0, and f (x)

19δ∼ −c′x, for x < 0, where c, c’ are some positive constants.

But, since f (x)
21δ∼ c|x|, x Î ℝ, we can deduce that c’ = c.
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