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Abstract
In this paper, the Hyers-Ulam stability of the Pexider functional equation

filx+y) + fa(x+ o (y)) = f5(x) + fa(y)

in a non-Archimedean space is investigated, where ¢ is an involution in the domain
of the given mapping f.
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1.Introduction
The stability problem for functional equations first was planed in 1940 by Ulam [1]:

Let G; be group and G, be a metric group with the metric d(-). Does, for any ¢ >0,
there exists 0 >0 such that, for any mapping f: G; — G, which satisfies d(flxy), fix)f
(y)) < o for all x, y € G, there exists a homomorphism / : G; — G, so that, for any x
€ Gy, we have d(f (x), h(x)) < &?

In 1941, Hyers [2] answered to the Ulam’s question when G; and G, are Banach
spaces. Subsequently, the result of Hyers was generalized by Aoki [3] for additive map-
pings and Rassias [4] for linear mappings by considering an unbounded Cauchy differ-
ence. The paper of Rassias [4] has provided a lot of influences in the development of
the Hyers-Ulam-Rassias stability of functional equations (for more details, see [5]
where a discussion on definitions of the Hyers-Ulam stability is provided by Moszner,
also [6-12]).

In this paper, we give a modification of the approach of Belaid et al. [13] in non-
Archimedean spaces. Recently, Cieplinski [14] studied and proved stability of multi-
additive mappings in non-Archimedean normed spaces, also see [15-22].

Definition 1.1. The function | - | : K — R is called a non-Archimedean valuation or
absolute value over the field K if it satisfies following conditions: for any a, b € K,

(1) |a] = 0;
(2) |a| = 0 if and only if a = 0;
(3) |ab| = |a| [b]

(4) |a + b| < max{|al, |b|};
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(5) there exists a member gy € K such that |ag| = 0, 1.

A field K with a non-Archimedean valuation is called a non-Archimedean field.

Corollary 1.2. |-1| = |1| = 1 and so, for any a € K, we have |-a| = |a|. Also, if |a| <|
b| for any a, b € K, then |a + b| = |b|.

In a non-Archimedean field, the triangle inequality is satisfied and so a metric is
defined. But an interesting inequality changes the usual Archimedean sense of the
absolute value. For any n € N, we have |n - 1| < R. Thus, for any a € K, n € N and
nonzero divisor k € Z of n, the following inequalities hold:

[na| < lkal < |a <‘a‘<m. (1.1)
k n

Definition 1.3. Let V be a vector space over a non-Archimedean field K. A non-

Archimedean norm over V is a function || - || : V — R satistying the following condi-

tions: for any c € Kand u, ve V,

(1) |||| = 0 if and only if u = 0;
) loa| = fe] ||ell;
() [lu + vl < max{]ful], [[v]]}-

Since 0 = ||0|| = [|v - v|| < max{||v||, ||-V||} = ||v]| for any v € V, we have ||v|| = 0.
Any vector space V with a non-Archimedean norm || - || : V — R is called a non-
Archimedean space. If the metric d(u, v) = ||u - v|| is induced by a non-Archimedean
norm || - || : V= R on a vector space V which is complete, then (V, || - ||) is called a
complete non-Archimedean space.

Proposition 1.4. ([23]) A sequence {x,}oeqin a non-Archimedean space is a Cauchy
sequence if and only if the sequence {Xn.1 — Xn}ocOnverges to zero.

Since any non-Archimedean norm satisfies the triangle inequality, any non-Archime-
dean norm is a continuous function from its domain to real numbers.

Proposition 1.5. Let V be a normed space and E be a non-Archimedean space. Let f :
V' — E be a function, continuous at 0 € V such that, for any x € V, fi2x) = 2f(x) (for
example, additive functions). Then, f = 0.

Proof. Since fl0) = 0, for any ¢ >0, there exists 6 >0 that, for any x € V with ||x|| < 4,

f(x) = fO)II = If()Il < e

X
and, for any x € V;, there exists n € N that H on H < 8 and hence

()l <l (5)

Since this inequality holds for all ¢ >0, it follows that, for any x € V, flx) = 0. This

eI = |

’gs.

completes the proof.

The preceding fact is a special case of a general result for non-Archimedean spaces,
that is, every continuous function from a connected space to a non-Archimedean space
is constant. This is a consequence of totally disconnectedness of every non-Archime-

dean space (see [23]).
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2, Stability of quadratic and Cauchy functional equations

Throughout this section, we assume that V7 is a normed space and V, is a complete
non-Archimedean space. Let ¢ : V; — V} be a continuous involution (i.e, o (x + y) =
o () +0(y)and 0 (0 (x)) = x) and ¢ : V; x V] = R be a function with

lim X, 0
o M0 P 1Y) = (2.1)

and define a function ¢ : V; x V; - R by

¢(x,y)
x—o(x) y+o(y) x+o(x) y+o(y) x—o(x) y—o(y) (2.2)
=i§£{“’< 2 2 )"’( LI )"’( ;o )}
which easily implies
lim ¢(x,y) = 0. (2.3)

(xy)—(0,0)

Theorem 2.1. Suppose that ¢ satisfies the condition 2.1 and let ¢ is defined by Equa-
tion 2.2. If f: V1 — V, satisfies the inequality

|en o) =10 -0)] < ot 24
forall x,y e V,, then there exists a unique solution q : Vi — V, of the functional
equation
f+3) + e o) = 2609+ 26() 25)
such that
() = a()]| < @(xx) (2.6)

forall x e V.

x—o(x) andx+a(x)

Proof. Replacing x and y in Equation 2.4 with , respectively, we

obtain

Hf() f<x+o(x)) f<x—20(x)>H<¢<x—;(x)/x+g(x)>' 07

Replacing x and y in Equation 2.4 with

Hf(x) +];(G(x)) _f<x+<2f(x)> _f<x—;(x)>H <o <x+c27(x)l x—;(x)) 2.8)

, respectively, we obtain

x+0(x) and x—o(x)
2 2

Also, replacing both of x, y in Equation 2.4 with

Hf(x+o(x)) 2f<x+o(x))H <x+0(x)’x+o(x)>

, we get

x+0(x)
2

2 2

and so, for any n € N, we get

Hf (x+a(x)> of (x;ﬁﬂ)” <o (x;ZEX)' x;igx)) 9
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Similarly, replacing both of x, y in Equation 2.4 with X _2

=) o) -ar (7))

2

o (x)

, we get

< H o)+ L f(0) - 2f (xff m)‘

(x—o(x) x—o(x)) 2.10)
<o / .
2 2
Replacing x in Equation 2.7 with X a(x)’ we obtain
x+0(x)
o <o (0" 7)
for all x € V; and so, by assumption Equation 2.1,
lim ¢ (0, x”(x)) - 0.
n—o0o n
Thus, f{0) = 0 and the inequality Equation 2.10 reduces to
x—o(x) x—o(x) x—o(x)
- —4 < ’
re—atn - () <o (T
and so,
x—o(x) x—o(x) x—o(x) x—o(x)
f ( on ) —4f ( on+l ) H S¢ ( on+l ' gn+l : (2.11)

For any n € N, define

ch@)=2”4f<x+003>+2M47<x—2}@>

2"
and
_ x—o(x) y+o(y)
%Mﬂ—gg%( > )w
Then,

Pn(x,y) < B (%)
for all x, ye V.

From Equations (2.9) and (2.11), we get

2"—1f<

[d0(2) = gt ()] < max

("

N

x+a(x) y+o(y) x=o() y=o\]
(520 (70

2! 2! 2! 2!

(2.12)

’

x+;(x)> _ (x;zﬁx))

(1))

; (x +;(x)> oy (x -;on))

’

)42

max o (V5717 7007) 0 (10 7500)
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and so Proposition 1.4 and the hypothesis Equation 2.1 imply that {g.(x)}2; is a
Cauchy sequence. Since V, is complete, the sequence {¢,(x)}32, converges to a point of
V, which defines a mapping g : V; — V5.

Now, we prove

[F&) = du ()] < p(x ) (2.13)
for all n € N. Since Equation 2.7 implies

x—o(x) x+o(x)

Hﬂm—muw<¢( ,

5 N ) < ¢1(x, x).

Assume that ||[flx) -¢,(x)|| < @.(x, x) holds for some # € N. Then, we have

I£(x) = G (x) | < max {[[f(x) = Gu(x) ], [Gn(x) = Gner (%)}
<mu{mumy¢(”“”)y““”)w(x‘UW)y—aw»}

on+l " ogn+l on+l " o+l
=¢n+1(x,x)~

’

Therefore, by induction on #, Equation 2.13 follows from Equation 2.12. Taking the
limit of both sides of Equation 2.13, we prove that g satisfies Equation 2.6.

For any n € N and x, y € V3, we have

[4n(x +7) + an(x + 0 (7)) = 24n(x) — 20x (V)
‘f<x+y+a(x+y)> +f<x+cr(y)+a(x)+y> _2f(x+;(x)) _2f<y+;(y))Hl

2n 2n

Hf <x+y—;(x+y)) +f<x+a(}’) Z—na(x) —Y) _of (x —;(x)> _of ()’ —;(J/))”}

< max{w <x+;(x), y+;()')> 0 (x —;(x), y—;(ﬂ)}

<max{

and so, by the continuity of non-Archimedean norm and taking the limit of both
sides of the above inequality, we get
[aGe+y) +a(x+ o (y)) = 2q(x) — 2q(y)| = 0.
Thus, ¢q is a solution of the Equation 2.5 which satisfies Equation 2.6.
+0(x)
2

Then, by replacing x, y with X in Equation 2.5, we obtain the following identi-

ties: for any solution g : V; — V; of the Equation (2.5),

soro@ =26 ("W, g-ow)-ag(*TTY)

and
g(x)=g(x+g(x)>+g<x_;(x)>. (2.14)

By induction on #, one can show that

g(x+o(x))=2"¢ (x +;(x)> (2.15)
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and

g(x—o(x)) =4"g (x _2(: (x)) (2.16)

forall me N.
Now, suppose that ¢’ : V; — V5 is another solution of 2.5 that satisfies the Equation
2.6. It follows from Equations 2.14 to 2.16 that

lax) — ' @)

S max znflq(x +2o,'[(x)) _ znflq/ (x +20n(x)))

) ()
<o (“"f“j) ) ()
x+o(x x+z:!x ,fx+(;x _,x+anx
(f (x(Z)(x)) ?q(zxg(x)‘) ( fzxzn(x)q)gqf(x)i(x))}
<max=¢<x+a(x)2x+cr(x)) ¢<i—a(x) x—a()f))} ’
= no ' om on ' on :
Therefore, since

lim ¢<x+o(x)’x+a(x)> _ lim ¢ <x—o(x)’x—a(x)> _o,

n—o00 n n N— 00 on on

’

’

’

’

we have g(x) = ¢'(x) for all x € V;. This completes the proof.
In the proof of the next theorem, we need a result concerning the Cauchy functional

equation

fle+y) =f(x) +f ). (2.17)

which has been established in [20].
Theorem 2.2. ([20]) Suppose that ¢(x, y) satisfies the condition 2.1 and, for a map-

ping f: Vi = Vs,
If(x+y) —fx) = fW)] < oxy) (2.18)

for all x, y € Vy. Then, there exists a unique solution q : Vi — V, of the Equation
2.17 such that

If(x) = a@) | < ¥ (x %) (2.19)

for all x € V1, where

s -spu (5. ))

forall x,ye

3. Stability of the Pexider functional equation
In this section, we assume that V7 is a normed space and V, is a complete non-Archi-
medean space. For any mapping f: V; — V,, we define two mappings F° and F° as
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follows:

Fo =) .

F(x) — F (o (x))
2

and also define F(x) = fix) -f(0). Then, we have obviously

F(0) = F{(0) = F°(0) = 0, F'(x+0(x)) =Fx+0o(x)), F(x+o(x))=0

P(o(x) = —F(x), F(o(x)) = F(). 6D

Theorem 3.1. Let 0 : V; — V; be a continuous involution and the mappings f; : V;
— V, fori=1,2,3, 4 and J >0, satisfy
IfiGe+y) +fole+ o () = f(x) = fa()] < 8 (3.2)

for all x, y € V1, then there exists a unique solution q : Vi, — V, of the Equation 2.5
and a mapping v : Vi — V5 which satisfies

v(x+y) =v(x+a(y))

for all x, y € Vi and exists two additive mappings Ay, Ay : Vi — V, such that
Aioo =—NA;fori=1,2 and, for all x € Vi,

12619 = £43) = halo) =6 = 05) 26 O)] < 5 (33
(29 = £4(5) + A2 + ) = () = 2600 < ) 8 (3.4
559 220~ a0) O] < ) 5, 65)
WM@—Adﬂ—ﬂﬂ—ﬁmW<|;& (3.6)

Proof. 1t follows from (3.2) that

|Fi(x+y) + Fa(x + 0 (y)) = F3(x) — Fa(y) |
<max {[fi(x+y) + o(x+ o (¥) = f5(x) — fa(y)
1£1(0) + £2(0) — f5(0) — fa(0) ||}
< max{$, 6}
=4

’

and so, for all x, y e V3,
[2F5 (x + ) + 2F5 (x + 0 () — 2F5(x) — 2F5(y) |

< max{||F1(x +y)+Fa(x+o(y)) — Fa(x) — Fa(y)
|Fi(o (%) + o () + Fa(0 (x) + 0 (0 (¥))) = F3(0 (x)) — Fa(a (1))]}

’

< 6.

then,

1
[Fi(x+y) + 3 (x+ 0 () = F5(x) = F ()| < |2|5~ (3.7)
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Similarly, we have

1
|F3(x+y) + By (x+ 0 () — F(x) = ()| < 28 (3.8)
forall x, y e Vi.
Now, first by putting ¥ = 0 in Equation 3.7 and applying Equation 3.2 and second by
putting x = 0 in Equation 3.7 and applying Equation 3.2 once again, we obtain

1

I+ )~ Bl < 5 69
1

IFs () + Fs(v) — Fs()] < 2% (3.10)

for all x, y € V; and so these inequalities with Equation 3.7 imply
[FE (e +y) + Fy(x+ o () = (F§ + F5) (%) = (F§ + F5) () |

< max {||F{(x +y) + F(x + o (y)) — F5(x) — Fi()

[Fi () + B3 (x) = F5 ()

’

Fi(n)+F0) - F0|} (3.11)

’

<18
21

Replacing y with o(y) in Equation 3.11, we get

|Fi (e + 0 () + Fs(x+y) — (F§ + F5)(x) — (F§ + F5) (0 ()
1 5 (3.12)
12|

~

It follows from Equations 3.1, 3.11 and 3.12 that

[ (FS + F) e+ y) + (Ff + F)(x + 0 (v) — 2(F] + F5)(x) — 2(F] + F5) () |
1
2%

X

By Theorem 2.1 of [24], there exists a unique solution g : V; — V; of the functional
Equation 2.5 such that

1
|(F§ + F)(x) — q(x)] < 2 (3.13)

for all x e V.
As a result of the inequalities Equations 3.11 and 3.12, we have

I = PG 9) = (B = F) (s o] < ) 0 (3.14)

It is easily seen that the mapping v : V; — V, defined by

o -5 ) (*7)

is a solution of the functional equation

v(x+y) = v(x+a(y))

Page 8 of 11
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forall v, y e V1.
X
Replacing both of x, y in Equation 3.14 with > We get

1
I(F = F5)(x) — v(x) | < |2|8 (3.15)

for all x € V. Now, Equations 3.13 and 3.15 imply

2F5 (x) — a(x) = v(@) | < [ (F5 + F5)() = qx) + (F = F5)(x) = v()|

< max {[[( + F)() — 4@, | (7 = F) @) — v} 4,
1
2] ’

’

N

and
1
[ 2F5(x) — q(x) + v(x) | < |2|5. (3.17)
Similarly, it follows from the inequalities Equations 3.7, 3.10 and 3.13 that

1
[F5@) —a@)] < 58 (3.18)

1
[F@ —a@)] <, 8. (3.19)
Since Equation 3.8 implies

1
[F5(x) — F{ (x) — F3(x)| < |2|5' (3.20)

1
IF50) —F) - B < 2 (3.21)

for all x, y € V3, we have

1
[ 2F5 (x) — F§(x) — F3(x)| < |2|5, (3.22)

1
| 2F3 (x) — F3(x) + F3(x)]| < |2|5 (3.23)

for all x € V;. Now, from Equations 3.8 and 3.20, we obtain

|F5(x+y) + F(x + 0 (y)) — 2F5(%)||
<max{|F(x+y) —F(x+y) = Fy(x+y)|
|F5(x+0() —F(x+a() - Fs(x+a()],
|FS (e +) + B3 (x + o () — F5(x) — F()
|FS (x+0(y) + F(x+y) = F(x) = Fi(e (») | }

(3.24)

’

< L8
2]
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and so, by interchanging role of x, y in the preceding inequality,
[F(y+2) + F(y + 0 (x)) — 25500 |
1 (3.25)
< )
2]

for all x, y e Vi. Since y + 0 (x) = 0 (x + o (), it follows from Equations 3.1, 3.24
and 3.25 that

1
|25 (x +y) = 25 (x) = 25(y) | < 21 (3.26)

By Theorem 2.2, there exists a unique additive mapping A; : V; — V; such that

IR (x) — 21 (%) < |;|8- (3.27)

Since
1
HAl(x) +A1(a(x))H < |2|8,

for all x € V3, we deduce A;(o(x)) = —A(x) for all x € V7.
By a similar deduction, Equations 3.8 and 3.21 imply that there exists a unique addi-
tive mapping A, : Vi — V; such that

1

[F5(x) — A2 ()| < |2|5.

(3.28)

Moreover, we have A;(o(x)) = —A;(x) for all x € V}. Thus, by Equations 3.16, 3.22,
3.27 and 3.28, we obtain

|2F1 (%) — q(x) — v(x) — A1 (x) — Aa(x)]|
< max { || 2F5 (x) — q(x) — v(x) |, | 2F} (x) — F§(x) — F3(x)| ,
[F5(0) — M@ [ F3 (o) — A2(0)] } (3.29)

1
8
2]

<

This proves Equation 3.3. Similarly, one can prove Equations 3.4 to 3.6.
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