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Abstract

Recently, we introduced a new coefficient as a generalization of the modulus of
smoothness and Pythagorean modulus such as JX, p(t). In this paper, We can
compute the constant JX, p(1) under the absolute normalized norms on ℝ2 by means
of their corresponding continuous convex functions on [0, 1]. Moreover, some
sufficient conditions which imply uniform normal structure are presented.
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1. Introduction and preliminaries
We assume that X and X* stand for a Banach space and its dual space, respectively. By

SX and BX we denote the unit sphere and the unit ball of a Banach space X, respec-

tively. Let C be a non-empty bounded closed convex subset of a Banach space X. A

mapping T : C ® C is said to be non-expansive provided the inequality∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥
holds for every x, y Î C. A Banach space X is said to have the fixed point property if

every non-expansive mapping T : C ® C has a fixed point, where C is a non-empty

bounded closed convex subset of a Banach space X.

Recall that a Banach space X is called uniformly non-square if there exists δ > 0 such

that ||x + y||/2 ≤ 1 - δ or ||x - y||/2 ≤ 1 - δ whenever x, y Î SX. A bounded convex

subset K of a Banach space X is said to have normal structure if for every convex sub-

set H of K that contains more than one point, there exists a point x0 Î H such that

sup{∥∥x0 − y
∥∥ : y ∈ H} < sup{∥∥x − y

∥∥ : x, y ∈ H}.

A Banach space X is said to have uniform normal structure if there exists 0 <c < 1

such that for any closed bounded convex subset K of X that contains more than one

point, there exists x0 Î K such that

sup{∥∥x0 − y
∥∥ : y ∈ K} < c sup{∥∥x − y

∥∥ : x, y ∈ K}.

It was proved by Kirk that every reflexive Banach space with normal structure has

the fixed point property.
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There are several constants defined on Banach spaces such as the James [1] and von

Neumann-Jordan constants [2]. It has been shown that these constants are very useful

in geometric theory of Banach spaces, which enable us to classify several important

concept of Banach spaces such as uniformly non-squareness and uniform normal

structure [3-8]. On the other hand, calculation of the constant for some concrete

spaces is also of some interest [2,5,6,9].

Recently, we introduced a new coefficient as a generalization of the modulus of

smoothness and Pythagorean modulus such as JX, p(t).

Definition 1.1. Let x Î SX, y Î SX. For any t > 0, 1 ≤ p < ∞ we set

JX, p(t) = sup

⎧⎪⎨⎪⎩
( ||x + ty||p + ||x − ty||p

2

)1
p

⎫⎪⎬⎪⎭ .

Some basic properties of this new coefficient are investigated in [6]. In particular, we

compute the new coefficient in the Banach spaces lr, Lr, l1, ∞ and give rough estimates

of the constant in some concrete Banach spaces. In fact, the constant JX, p(1) is also

important from the below Corollary in [6].

Corollary 1.2. If JX, p(1) < 2
1− 1

p (1 + ω(X)p)
1
p. Then R(X) < 2, where R(X) and ω(X)

stand for García-Falset constant and the coefficient of weak orthogonality, respectively

(see [10,11]). It is well known that a reflexive Banach space X with R(X) < 2 enjoys the

fixed property (see [10]).

In this paper, we compute the constant JX, p(1) under the absolute normalized norms

on ℝ2, and give exact values of the constant JX, p(1) in some concrete Banach spaces.

Moreover, some sufficient conditions which imply uniform normal structure are

presented.

Recall that a norm on ℝ2 is called absolute if ||(z, w)|| = ||(|z|, |w|)|| for all z, w Î ℝ

and normalized if ||(1,0)|| = ||(0,1)||. Let Na denote the family of all absolute normal-

ized norms on ℝ2, and let Ψ denote the family of all continuous convex functions on

[0, 1] such that ψ (1) = ψ (0) = 1 and max{1 - s, s} ≤ ψ(s) ≤ 1(0 ≤ s ≤ 1). It has been

shown that Na and Ψ are a one-to-one correspondence in view of the following propo-

sition in [12].

Proposition 1.3. If ||·||Î Na, then ψ(s) = ||(1 - s, s)|| Î Ψ. On the other hand, if ψ(s)

ÎΨ, defined a norm ||·||ψ as

∥∥(z,ω)∥∥
ψ
:=

⎧⎨⎩ (|z| + |ω|)ψ
( |ω|

|z| + |ω|
)
, (z,ω) �= (0, 0),

0, (z,ω) = (0, 0).

then the norm ||·||ψÎ Na.

A simple example of absolute normalized norm is usual lr(1 ≤ r ≤ ∞) norm. From

Proposition 1.3, one can easily get the corresponding function of the lr norm:

ψr(s) =

{
{(1 − s)r + sr}1/r, 1 ≤ r < ∞,

max{1 − s, s}, r = ∞.

Also, the above correspondence enable us to get many non-lr norms on ℝ2. One of

the properties of these norms is stated in the following result.

Zuo Journal of Inequalities and Applications 2011, 2011:16
http://www.journalofinequalitiesandapplications.com/content/2011/1/16

Page 2 of 10



Proposition 1.4. Let ψ, � Î Ψ and � ≤ ψ. Put M = max0≤s≤1
ψ(s)
ϕ(s)

, then

‖ · ‖ϕ ≤ ‖ · ‖ψ ≤ M‖ · ‖ϕ .

The Cesàro sequence space was defined by Shue [13] in 1970. It is very useful in the

theory of matrix operators and others. Let l be the space of real sequences.

For 1 < p <∞, the Cesàro sequence space cesp is defined by

cesp =

⎧⎨⎩x ∈ l : ‖x‖ =
∥∥(x(i))∥∥ =

( ∞∑
n=1

(
1
n

n∑
i=1

| x(i) |
)p)1/p

< ∞
⎫⎬⎭

The geometry of Cesàro sequence spaces have been extensively studied in [14-16].

Let us restrict ourselves to the two-dimensional Cesàro sequence space ces(2)p which is

just ℝ2 equipped with the norm defined by

∥∥(x, y)∥∥ =
(

|x|p +
( |x| + |y|

2

)p)1/p

2. Geometrical constant JX, p(1) and absolute normalized norm
In this section, we give a simple method to determine and estimate the constant JX, p
(1) of absolute normalized norms on ℝ2. For a norm || · || on ℝ2, we write JX, p(1)(|| ·

||) for JX, p(1)(ℝ
2, || · ||). The following is a direct result of Proposition 2.4 in [6].

Proposition 2.1. Let X be a non-trivial Banach space. Then

JX, p(t) = sup

⎧⎨⎩
( ||x + ty||p + ||x − ty||p

2max(||x||p, ||y||p)
)1

p
x, y ∈ X, ||x|| + ||y|| �= 0

⎫⎬⎭ .

Proposition 2.2. Let X be the space lr or Lr[0, 1] with dimX ≥ 2 (see [6])

(1) Let 1 < r ≤ 2 and 1/r + 1/r’ = 1. Then for all t >0

if 1 < p < r’ then JX, p(t) = (1 + tr)
1
r .

if r’ ≤ p <∞ then JX, p(t) ≤ (1 + Ktr)
1
r , for some K ≥ 1.

(2) Let 2 ≤ r <∞, 1 ≤ p <∞ and h = max{r, p}. Then

JX, p(t) =
(
(1+t)h+|1−t|h

2

) 1
h for all t > 0.

Proposition 2.3. Let � Î Ψ and ψ(s) = � (1 - s). Then

JX, p(t)(|| · ||ϕ) = JX, p(t)(|| · ||ψ )

Proof. For any x = (a, b) Î ℝ2 and a ≠ 0, b ≠ 0, put x̃ = (b, a). Then

||x||ϕ = (|a| + |b|)ϕ
( |b|

|a| + |b|
)
= (|b| + |a|)ψ

( |a|
|a| + |b|

)
= ||x̃||ψ .
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Consequently, we have

JX, p(t)(|| · ||ϕ) = sup

⎧⎨⎩
( ||x + ty||p + ||x − ty||p

2max(||x||p, ||y||p)
) 1

p
x, y ∈ X, ||x|| + ||y|| �= 0

⎫⎬⎭
= sup

⎧⎨⎩
( ||x̃ + tỹ||p + ||x̃ − tỹ||p

2max(||x̃||p, ||ỹ||p)
)1

p
x̃, ỹ ∈ X, ||x̃|| + ||ỹ|| �= 0

⎫⎬⎭
= JX, p(t)(|| · ||ψ ).

We now consider the constant JX, p(1) of a class of absolute normalized norms on

ℝ2. Now let us put

M1 = max
0≤s≤1

ψr(s)
ψ(s)

and M2 = max
0≤s≤1

ψ(s)
ψr(s)

.

Theorem 2.4. Let ψ Î Ψ and ψ ≤ ψr (2 ≤ r <∞). If the function ψr(s)
ψ(s) attains its maxi-

mum at s = 1/2 and r ≥ p, then

JX, p(1)(|| · ||ψ) = 1

ψ(1
/
2)

.

Proof. By Proposition 1.4, we have || · ||ψ ≤ || · ||r ≤ M1|| · ||ψ. Let x, y Î X, (x, y) ≠

(0, 0), where X = ℝ2. Then

||x + ty||pψ + ||x − ty||pψ ≤ ||x + ty||pr + ||x − ty||pr
≤ 2JpX, p(t)(|| · ||r)max{||x||pr , ||y||pr }
≤ 2JpX, p(t)(|| · ||r)Mp

1 max{||x||pψ , ||y||pψ }

from the definition of JX, p(t), implies that

JX, p(t)(|| · ||ψ ) ≤ JX, p(t)(|| · ||r)M1.

Note that r ≥ p and the function ψr(s)
ψ(s) attains its maximum at s = 1/2, i.e.,M1 = ψr(1/2)

ψ(1/2) .

From Proposition 2.2, implies that

JX, p(1)(|| · ||ψ) ≤ JX, p(1)(|| · ||r)M1 =
1

ψ(1
/
2)

. (1)

On the other hand, let us put x = (a, a), y = (a, -a), where a = 1
2ψ(1/2). Hence ||x||ψ =

||y||ψ = 1, and

( ||x + y||pψ + ||x − y||pψ
2

) 1
p

= 2a =
1

ψ(1
/
2)

. (2)

From (1) and (2), we have

JX, p(1)(|| · ||ψ) = 1

ψ(1
/
2)

.

Theorem 2.5. Let ψ Î Ψ and ψ ≥ ψr (1 ≤ r ≤ 2). If the function ψ(s)
ψr(s)

attains its maxi-

mum at s = 1/2 and 1 ≤ p < r’, then
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JX, p(1)(|| · ||ψ ) = 2ψ(1
/
2).

Proof. By Proposition 1.4, we have || · ||r ≤ || · ||ψ ≤ M2|| · || r. Let x, y Î X, (x, y) ≠

(0, 0), where X = ℝ2. Then

||x + ty||pψ + ||x − ty||pψ ≤ Mp
2(||x + ty||pr + ||x − ty||pr )

≤ 2JpX, p(t)(|| · ||r)Mp
2 max{||x||pr , ||y||pr }

≤ 2JpX, p(t)(|| · ||r)Mp
2 max{||x||pψ , ||y||pψ }.

From the definition of JX, p(t), it implies that

JX, p(t)(|| · ||ψ) ≤ JX, p(t)(|| · ||r)M2

note that 1 ≤ p < r’ and the function ψ(s)
ψr(s)

attains its maximum at s = 1/2, i.

e.,M2 = ψ(1/2)
ψr(1/2). From Proposition 2.2, it implies that

JX, p(1)(|| · ||ψ ) ≤ JX, p(1)(|| · ||r)M2 = 2ψ(1
/
2). (3)

On the other hand, let us put x = (1, 0), y = (0, 1). Then ||x||ψ = ||y||ψ = 1, and

( ||x + y||pψ + ||x − y||pψ
2

) 1
p

= 2ψ(1
/
2). (4)

From (3) and (4), we have

JX, p(1)(|| · ||ψ ) = 2ψ(1
/
2).

Lemma 2.6 (see [6]). Let || · || and |.| be two equivalent norms on a Banach space.

If a|.| ≤ || · || ≤ b|.| (b ≥ a >0), then

a
b
JX, p(t)(|.|) ≤ JX, p(t)(|| · ||) ≤ b

a
JX, p(t)(|.|).

Example 2.7. Let X = ℝ2 with the norm

||x|| = max{||x||2,λ||x||1} (1
/√

2 ≤ λ ≤ 1).

Then

JX, p(1)(|| · ||) = 2λ. (1 ≤ p < 2)

Proof. It is very easy to check that ||x|| = max{||x||2, l||x||1} Î Na and its corre-

sponding function is

ψ(s) = ||(1 − s, s)|| = max{ψ2(s),λ} ≥ ψ2(s).

Therefore,

ψ(s)
ψ2(s)

= max
{
1,

λ

ψ2(s)

}
.

Since ψ2(s) attains minimum at s = 1/2 and hence ψ(s)
ψ2(s)

attains maximum at s = 1/2.

Therefore, from Theorem 2.5, we have
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JX, p(1)(|| · ||) = 2ψ(1
/
2) = 2λ.

Example 2.8. Let X = ℝ2 with the norm

||x|| = max{||x||2,λ||x||∞} (1 ≤ λ ≤
√
2).

Then

JX, p(1)(|| · ||) =
√
2λ. (1 ≤ p ≤ 2)

Proof. It is obvious to check that the norm ||x|| = max{||x||2, l||x||∞} is absolute,

but not normalized, since ||(1, 0)|| = ||(0, 1)|| = l. Let us put

|.| =
|| · ||
λ

= max
{ || · ||2

λ
, || · ||∞

}
.

Then |.| Î Na and its corresponding function is

ψ(s) = ||(1 − s, s)|| = max
{

ψ2(s)
λ

,ψ∞(s)
}

≤ ψ2(s).

Then

ψ2(s)
ψ(s)

= min
{
λ,

ψ2(s)
ψ∞(s)

}
.

Consider the increasing continuous function g(s) = ψ2(s)
ψ(s) (0 ≤ s ≤ 1

/
2). Because g(0)

= 1 and g(1
/
2) =

√
2, there exists a unique 0 ≤ a ≤ 1 such that g(a) = l. In fact g(s) is

symmetric with respect to s = 1/2. Then we have

g(s) =

{
ψ2(s)
ψ(s) , s ∈ [0, a] ∪ [1 − a, a];
λ, s ∈ [a, 1 − a]

Obviously, g(s) attains its maximum at s = 1/2. Hence, from Theorem 2.4 and

Lemma 2.6, we have

JX, p(1)(|| · ||) = JX, p(1)(|.|) = 1

ψ(1
/
2)

=
√
2λ.

Example 2.9. Let X = ℝ2 with the norm

||x|| = (||x||22 + λ||x||2∞) (λ ≥ 0).

Then

JX, p(1)(|| · ||) = 2

√
1 + λ

λ + 2
(1 ≤ p ≤ 2).

Proof. It is obvious to check that the norm ||x|| = (||x||22 + λ||x||2∞) is absolute, but

not normalized, since ||(1, 0)|| = ||(0, 1)|| = (1 + l)1/2. Let us put

|.| =
|| · ||√
1 + λ

.
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Therefore, |.| Î Na and its corresponding function is

ψ(s) = ||(1 − s, s)|| =
{
[(1 − s)2 + s2

/
(1 + λ)]1/2, s ∈ [0, 1

/
2],

[s2 + (1 − s)2
/
(1 + λ)]1/2, s ∈ [1

/
2, 1].

Obvious ψ(s) ≤ ψ2(s). Since λ ≥ 0, ψ2(s)
ψ(s) is symmetric with respect to s = 1/2, it suf-

fices to consider ψ2(s)
ψ(s) for s Î [0, 1/2]. Note that, for any s Î [0, 1/2], put g(s) = ψ2(s)

2

ψ(s)2
.

Taking derivative of the function g(s), we have

g′(s) =
2λ

1 + λ
× s(1 − s)

[(1 − s)2 + s2
/
(1 + λ)]

2 .

We always have g’(s) ≥ 0 for 0 ≤ s ≤ 1/2. This implies that the function g(s) is

increased for 0 ≤ s ≤ 1/2. Therefore, the function ψ2(s)
ψ(s) attains its maximum at s = 1/2.

By Theorem 2.4 and Lemma 2.6, we have

JX, p(1)(|| · ||) = JX, p(1)(|.|) = 1

ψ(1
/
2)

= 2

√
1 + λ

λ + 2
.

Example 2.10. (Lorentz sequence spaces). Let ω1 ≥ ω2 >0, 2 ≤ r <∞. Two-dimen-

sional Lorentz sequence space, i.e. ℝ2 with the norm

||(z,ω)||ω,r = (ω1|x∗
1|r + ω2|x∗

2|r)1/r,

where (x∗
1, x

∗
2) is the rearrangement of (|z|, |ω|) satisfying x∗

1 ≥ x∗
2, then

JX, p(1)(||(z,ω)||ω,r) = 2
(

ω1

ω1 + ω2

) 1
r
(1 ≤ p ≤ r)

Proof. It is obvious that |.| = (||(z,ω)||ω,r)
/

ω
1/q
1 ∈ Nα, and the corresponding convex

function is given by

ψ(s) =

{
[(1 − s)r + (ω2

/
ω1)sr]

1/r, s ∈ [0, 1
/
2],

[sr + (ω2
/
ω1)(1 − s)r]

1/r
, s ∈ [1

/
2, 1].

Obviously ψ(s) ≤ ψr(s) and �(s) = ψr(s)
ψ(s) . It suffices to consider F(s) for s Î [0, 1/2]

since F(s) is symmetric with respect to s = 1/2. Note that for s Î [0, 1/2]

�r(s) =
ψ r
r (s)

ψ r(s)
=

(1 − s)r + sr

(1 − s)r + (ω2
/
ω1)sr

=
u(s)
v(s)

.

Some elementary computation shows that u(s) - v(s) = (1-(ω2/ω1))s
r attains its maxi-

mum and v(s) attains its minimum at s = 1/2. Hence,

�r(s) =
u(s) − v(s)

v(s)
+ 1

attains its maximum at s = 1/2 and so does F(s). Then by Theorem 2.4 and Lemma

2.6, we have
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JX, p(1)(||(z,ω)||ω,r) = JX, p(1)(|.|) = 2
(

ω1

ω1 + ω2

)1
r
.

Example 2.11. Let X be two-dimensional Cesàro space ces(2)2
, then

JX, p(1)(ces
(2)
2 ) =

√
2 +

2
√
5

5
. (1 ≤ p < 2).

Proof. We first define

|x, y| = ||
(

2x√
5
, 2y

)
||ces(2)2

for (x, y) Î ℝ2. It follows that ces(2)2
is isometrically isomorphic to (ℝ2, |.|) and |.| is

an absolute and normalized norm, and the corresponding convex function is given by

ψ(s) =

[
4(1 − s)2

5
+

(
1 − s√

5
+ s

)2
] 1

2

Indeed, T : ces(2)2 → (R2, |.|) defined by T(x, y) =
(

x√
5
, 2y

)
is an isometric isomorph-

ism. We prove that ψ(s) ≥ ψ2(s). Note that(
1 − s√

5
+ s

)2

≥
(
1 − s√

5

)2

+ s2.

Consequently,

ψ(s) ≥ ((1 − s)2 + s2)1/2 = ψ2(s).

Some elementary computation shows that ψ(s)
ψ2(s)

attains its maximum at s = 1/2.

Therefore, from Theorem 2.5, we have

JX, p(1)(ces
(2)
2 ) = 2ψ(1

/
2) =

√
2 +

2
√
5

5
.

3. Constant and uniform normal structure
First, we recall some basic facts about ultrapowers. Let l∞(X) denote the subspace of

the product space IInÎNX equipped with the norm ||(xn)|| := supnÎN||xn|| <∞. Let U
be an ultrafilter on N and let

NU =
{
(xn) ∈ l∞(X) : lim

U
||xn|| = 0

}
.

The ultrapower of X, denoted by X̃, is the quotient space l∞(X)/NU equipped with

the quotient norm. Write x̃n to denote the elements of the ultrapower. Note that if U
is non-trivial, then X can be embedded into X̃ isometrically. We also note that if X is

super-reflexive, that is X̃∗ = (X̃)∗, then X has uniform normal structure if and only if X̃
has normal structure (see [17]).
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Theorem 3.1. Let X be a Banach space with

JX, p(t) <

√
4 + t2 + t

2

for some t Î (0, 1]. Then X has uniform normal structure.

Proof. Observe that X is uniform non-square (see [6]) and then X is super-reflexive,

it is enough to show that X has normal structure. Suppose that X lacks normal struc-

ture, then by Saejung [18, Lemma 2], there exist x̃1, x̃2, x̃3 ∈ SX̃ and f̃1, f̃2, f̃3 ∈ SX̃∗
satisfying:

(1) ||x̃i − x̃j|| = 1 and f̃i(x̃j) = 0 for all i ≠ j.

(2) f̃i(x̃i) = 1 for i = 1, 2, 3.

(3) ||x̃3 − (x̃2 + x̃1)|| ≥ ||x̃2 + x̃1||.
Let h(t) = (2 − t +

√
4 + t2)/2 and consider three possible cases.

First, if ||x̃1 + x̃2|| ≤ h(t). In this case, let us put x̃ = x̃1 − x̃2 and ỹ = (x̃1 + x̃2)/h(t). It

follows that x̃, ỹ ∈ BX̃, and

||x̃ + tỹ|| = ||(1 + (t/h(t)))x̃1 − (1 − (t/h(t)))x̃2||
≥ (1 + (t/h(t)))f̃1(x̃1) − (1 − (t/h(t)))f̃1(x̃2)
= 1 + (t/h(t)),

||x̃ − tỹ|| = ||(1 + (t/h(t)))x̃2 − (1 − (t/h(t)))x̃1||
≥ (1 + (t/h(t)))f̃2(x̃2) − (1 − (t/h(t)))f̃2(x̃1)
= 1 + (t/h(t)).

Secondly, if ||x̃1 + x̃2|| ≥ h(t) and ||x̃3 + x̃2 − x̃1|| ≤ h(t). In this case, let us put

x̃ = x̃2 − x̃3 and ỹ = (x̃3 + x̃2 − x̃1)/h(t). It follows that x̃, ỹ ∈ BX̃, and

||x̃ + tỹ|| = ||(1 + (t/h(t)))x̃2 − (1 − (t/h(t)))x̃3 − (t/h(t))x̃1||
≥ (1 + (t/h(t)))f̃2(x̃2) − (1 − (t/h(t)))f̃2(x̃3) − (t/h(t))f̃2(x̃1)
= 1 + (t/h(t)),

||x̃ − tỹ|| = ||(1 + (t/h(t)))x̃3 − (1 − (t/h(t)))x̃2 − (t/h(t))x̃1||
≥ (1 + (t/h(t)))f̃3(x̃3) − (1 − (t/h(t)))f̃3(x̃2) − (t/h(t))f̃3(x̃1)
= 1 + (t/h(t)).

Thirdly, ||x̃1 + x̃2|| ≥ h(t) and ||x̃3 + x̃2 − x̃1|| ≥ h(t). In this case, let us put

x̃ = x̃3 − x̃1 and ỹ = x̃2. It follows that x̃, ỹ ∈ SX̃, and

||x̃ + tỹ|| = ||x̃3 + tx̃2 − x̃1||
≥ ||x̃3 + x̃2 − x̃1|| − (1 − t)

≥ h(t) + t − 1,

||x̃ − tỹ|| = ||x̃3 − (tx̃2 + x̃1)||
≥ ||x̃3 − (x̃2 + x̃1)|| − (1 − t)
≥ h(t) + t − 1.
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Then, by definition of JX, p(t) and the fact JX, p(t) = JX̃, p(t),

JX, p(t) ≥ max{1 + (t/h(t)), h(t) + t − 1}

=

√
4 + t2 + t

2
.

This is a contradiction and thus the proof is complete.
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