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Abstract

For Gaussian hypergeometric functions F(x) = F(a, b; ¢; x), a, b, ¢ >0, we consider the
quotient Qlx, y) = (F(x) + F(y))/F(2) and the difference Dglx, y) = F(x) + F(y) - F(2) for
0 <x y <1 with z=x+ y - xy. We give best possible bounds for both expressions
under various hypotheses about the parameter triple (g, b; ¢).
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1. Introduction
Among special functions, the hypergeometric function has perhaps the widest range of
applications. For instance, several well-known classes of special functions such as com-
plete elliptic integrals, Legendre functions, Chebyshev and Jacobi polynomials, and
some elementary functions, such as the logarithm, are particular cases of it, cf. [1]. In a
recent article [2] the authors studied various extensions of the Bernoulli inequality for
functions of logarithmic type. In particular, the zero-balanced hypergeometric function
F(a, b; a + b; x), a, b >0 occurs in these studies, because it has a logarithmic singularity
at x = 1, see (2.8) below. We now continue the discussion of some of the questions for
quotients and differences of hypergeometric functions that were left open in [2].
Motivated by the asymptotic behavior of the function F(x) = F(a, b; ¢; x) when x — 17,
see (2.8), we define for 0 < x, y <1, a, b, ¢ >0

F(x) + E(y)

R )

Dr(x,y) := F(x) + F(y) — F(x + y — xy). (1.1)

Our task in this article is to give tight bounds for these quotients and differences
assuming various relationships between the parameters a, b, c.

For the general case, we can formulate the following theorem.

Theorem 1.2. For a, b, ¢ >0 and 0 < x, y <1 let Qp be as in (1.1). Then,

0 < Qp(xy) <2. (1.3)
The bounds in (1.3) are best possible as can be seen by taking [1, 15.1.8]

F(x) =F(a,b;b;x) = (1 —x)™* := Fo(x).
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Then,

-0 +0-p" _(Q-0)"+0-p9" _

Qro(%,y) = = =(1 =2+ (1 -y,

(1—x—y+xp)™ (1= -y

and the conclusion follows immediately. Similarly,
Theorem 1.4. For a, b >0, ¢ > a + b and 0 < x, y <1, we have

IDr(x, y)| < A,

with A = A(a, b, c) = Lriea—h) F(a,b;c; 1) as the best possible constant.

I'(c—a)T'(c—b)
Most intriguing is the zero-balanced case. For example,
Theorem 1.6. For a, b >0 and 0 < x, y <1 let Dr be as in (1.1). Then,

R
B < Dp(x,y) <1

with R = R(a, b) = -2y - w(a) - w(b), B = B(a, b).
Both bounding constants are best possible.

In the sequel, we shall give a complete answer to an open question posed in [2].

2. Preliminary results

(1.5)

(1.7)

In this section, we recall some well-known properties of the Gaussian hypergeometric

function F(a, b; c¢; x) and certain of its combinations with other functions, for further

applications.

It is well known that hypergeometric functions are closely related to the classical

gamma function I'(x), the psi function y(x), and the beta function B(x, y). For Re x >0,

Re y >0, these functions are defined by

]

I(x) = / et (x) = FF((;“))
0

(2.1)

respectively (cf. [1, Chap. 6]). It is well known that the gamma function satisfies the

difference equation (1, 6.1.15]
I'(x+1) =x(x),
and the reflection property [1, 6.1.17]
PEr(t-»= " =B(x1-2)
x —x) = =B(x, 1 —x).
sinmx

We shall also need the function
1
R(a,b) = -2y — y(a) — ¥ (b),R(a) =R(a, 1 —a),R <2> =log16,

where y is the Euler-Mascheroni constant given by

n
. 1
y=nll)r§o(z k—logn) =0.577215....

k=1

(2.2)

(2.3)

(2.5)
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Given complex numbers 4, b, and ¢ with ¢ = 0, -1, -2,...,, the Gaussian hypergeometric
function is the analytic continuation to the slit plane C\[1, ) of the series

n)(b, n) 2"

(cn) a’ lz| < 1. (2.6)

o0
F(a, b;c;z) =»F1(a,b;c;z) = Z (a
n=0
Here (a, 0) = 1 for a = 0, and (a, n) is the shifted factorial function or the Appell
symbol

(an)=a(a+1)(a+2)---(a+n—1)

for n € N\{0}, where N = {0, 1, 2,...}.
The hypergeometric function has the following simple differentiation formula ([1,
15.2.1])

d b
dxF(a, b;cx) = ac Fla+1,b+1;c+1;x). (2.7)

An important tool for our study is the following classification of the behavior of
the hypergeometric function near x = 1 in the three cases a + b < ¢, a + b = ¢, and
a+b>c

oy T@r(c—a—b)
Fabial) = " aorc—b)
B(a,b)F(a,b;a + b;x) +log(1 —x) =R(a,b) + O((1 — x)log(1 — x)),
F(a,b;c;x) = (1 —x)“"*PF(c —a,c — b;c;x),c <a+b.

,a+b<c,
(2.8)

Some basic properties of this series may be found in standard handbooks, see for
example [1]. For some rational triples (a, b, ¢), the functions F(a, b; ¢; x) can be
expressed in terms of well-known elementary function. A particular case that is often
used in this article is [1, 15.1.3]

1
g(x) =«F(1,1;2;x) = log 1—y (2.9)

It is clear that for a, b, ¢ >0 the function F(a, b; ¢; x) is a strictly increasing map
from [0, 1) into [1, =) and that by (2.8) we see that it is onto [1, ) if a + b = c. For a,
b >0 we see by (2.8) that xF(a, b; a + b; x) defines an increasing homeomorphism from
[0, 1) onto [0, ).

Theorem 2.10. [3],[[4], Theorem 1.52] For a, b >0, let B = B(a, b) be as in (2.1), and
let R = R(a, b) be as in (2.4). Then the following are true.

(1) The function fi(x) Fabasbix) =1 ;o strictly increasing from (0, 1) onto (ab/(a +

= log(1/(1-))
b), 1/B).
(2) The function fo(x) = BF (a, b; a + b; x) + log(1 - x) is strictly decreasing from (0,
1) onto (R, B).
(3) The function f3(x) = BF (a, b; a + b; x) + (1/x) log(1 - x) is increasing from (0, 1)
onto (B-1,R) ifa, be (0, 1).
(4) The function f3 is decreasing from (0, 1) onto (R, B - 1) ifa, b € (1, »).
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(5) The function

xF(a, b; a + b; x)

HE= tog(1/(1 -

is decreasing from (0, 1) onto (1/B, 1) ifa, b € (0, 1).

(6) If a, b >1, then f, is increasing from (0, 1) onto (1, 1/B).

(7) If a = b = 1, then fy(x) = 1 for all x € (0, 1).

We also need the following refinement of some parts of Theorem 2.10.

Lemma 2.11. [[5], Cor. 2.14] For a, b >0, let B = B(a, b) be as in (2.1), and let R = R
(a, b) be as in (2.4) and denote

xF(a, b;a + b; x)

0= og1/(1 - )

(1) Ifae (0, ) and b e (0, 1/al, then the function f is decreasing with range (1/B, 1);
(2) If a € (1/2, ) and b > a/(2a - 1), then fis increasing from (0, 1) to the range
(1, 1/B).

(3) Ifa € (0, ) and b € (0, 1/a), then the function h defined by

h(x) := BF(a, b;a + b; x) + (1/x) log(1 — x)

is increasing from (0, 1) onto (B - 1, R).
(4)Ifae (1/3,) and b > (1 + a)/(3a - 1), then h is increasing from (0, 1) onto (R, B - 1).

For brevity, we write R, = (0, ).
Lemma 2.12. (Cf. [4, 1.24, 7.42(1)]) (1) If E(¢)/t is an increasing function on R,, then
E is sub-additive, i.e., for each x, y >0 we have that

E(x) + E(y) < E(x+y).

(2) If E(t)/t decreases on R, then E is a super-additive function, that is
E(x) + E(y) = E(x +v)

forx,ye R,.

3. Main results

By (2.8), the zero-balanced hypergeometric function F(a, b; a + b; x) has a logarithmic
singularity at x = 1. We shall now demonstrate that its behavior is nearly logarithmic
also in the sense that some basic identities of the logarithm yield functional inequalities
for the zero-balanced function.

Next, writing the basic addition formula for the logarithm
logz + logw = log(zw), z, w > 0,
in terms of the function g in (2.9), we have

8(x) +8(y) = g(x +y —xy),x,y € (0, 1).

Page 4 of 10
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Based on this observation and a few computer experiments, we posed in [2] the fol-
lowing question:
Question 3.1. Fix ¢, d >0 and let g(x) = xF(c, d; ¢ + d; x) for x € (0, 1) and set

_ 8(x)+8(y)
BN = sy =)

for x, y e (0, 1).

(1) For which values of ¢ and d, this function is bounded from below and above?
(2) Is it true that

) Qux, ) 2 1,if cd < 1?

b) Qux, y) < 1,if ¢, d >1?

¢) Are there counterparts of Theorem 1.6 for the function

Dg(x,y) = 8(x) + 8(y) — 8(x +y —xy)?

We shall give a complete answer to this question in the sequel.
Note first that the quotient Q, is always bounded. Namely,
Theorem 3.2. For all ¢, d >0 and all x, y € (0, 1) we have that

0 < Qq(xy) < 2.

A refinement of these bounds for some particular (¢, d) pairs is given by the follow-
ing two assertions.
Theorem 3.3. (1) For ¢, d >0, cd < 1 and x, y € (0, 1) we have

B(cl, Q= Qqg(xy) = B(c, d).

(2) For ¢, d >0, 1/c + 1/d < 2 and x, y € (0, 1) we have

1
B(c,d , .
(cd) < Qo) =
Note that parts (1) and (3) of Lemma 2.11 imply that for ¢, d >0, cd < 1, (¢, d) = (1, 1)
we have
R(c¢,d) > 0,B(c,d) > 1. (3.4)

Theorem 3.5. For ¢cd < 1 and x, y € (0, 1) we have

B(c,d) — 1
R(c, d)

2R(c, d)

SN =g 1

We shall prove now the hypothesis from the second part of Question 3.1 under the
condition 1/c¢ + 1/d < 2 in part (b) which, in particular, includes the case ¢ >1, d >1.

Theorem 3.6. Fix ¢, d >0 and let Q and g be as in Question 3.1.

(1) If cd < 1 then Qulx, y) 2 1 for all x, y € (0, 1).
(2) If 1/c + 1/d < 2, then Qqlx, y) < 1 for all x, y € (0, 1).

Counterparts of Theorem 1.6 for the difference D, are given in the next assertion.

Page 5 of 10
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Theorem 3.7. Fix ¢, d >0 and let D be as in Question 3.1.

(1) If cd < 1, then

2R(¢,d) +1
D,(x, -
0=< g(x y) < B(c, d)

forall x, y € (0, 1).
(2) If1/c + 1/d < 2, then

2R(c,d) + 1

— 1 < Dg(x,
B(C,d) < g(x Y) SO

forall x, y e (0, 1).

Combining the results above, we obtain the following two-sided bounds for the quo-
tient Q.
Corollary 3.8. Fix ¢, d >0 and let Q be as in Question 3.1.

(1) If cd < 1, then

1 < Qq(x,y) < min{B(c, d), 2}

forall x, y € (0, 1).
(2) If1/c + 1/d < 2, then

B(c,d) < Qqlxy) < 1

forall x, y € (0, 1).

The assertions above represent a valuable tool for estimating quotients and differ-
ences of a hypergeometric function with different arguments. To illustrate this point,
we give an example.

In [2], motivated by the relation g(x) = 2g(1 — +/1 —x) with g as in (2.9), the
authors asked the question about the bounds for the function S(¢) defined by

S(1) = 3(1)

e —t)'t € (0,1),

where g(t):= tF(a, b; a + b; t), a, b >0.
An answer follows instantly applying Corollary 3.8.

Theorem 3.9. LetS(t) := g(1f$)1fz)’ te (0, 1), with g(t):= tF (a, b; a + b; t), a, b >0.

(1) If ab < 1, then

1 <S(t) <2.

Page 6 of 10
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(2) If 1/a + 1/b < 2, then

2 <8(t) < B(;,b)'

4. Proofs

4.1. Proof of Theorem 1.2

The proof is based solely on the monotonicity property of the function F(x) = F(a, b; ¢;
x). Namely, for x, y € (0, 1), putz=x + y - xy, z€ (0, 1). Since

x < max{x, y},y < max{x, y}; z > max{x, y},
and F(u) is monotone increasing in u, we obtain

F(x) + F(y) _ 2F(maxix, 7)) _

Qr(x, y) = F(z) ~ F(max{xy})

The left-hand bound is trivial. &

4.2. Proof of Theorem 1.4
The assertion of this theorem is a consequence of the previous one and (2.8). Indeed,
from (1.3) we get

—F(a, b;c;z) < Dp(x,y) < F(a, b; ¢; z),
that is,

|IDe(x,y)| < F(a,b;¢;z) =F(a,b;c;1 — (1 —x)(1 —y)) <F(abc1)=A.

4.3. Proof of Theorem 1.6
Consider the function

s(x) =F(a,b,a+b;x) —F(a,b,a+b;x+y—xy),

where y, y € (0, 1), is an independent parameter.
Since

sS(x)=F(a,ba+b;x)— (1 —y)F(aba+b;x+y—xp)
b
- a“ G(F@+Lb+avbe 1;x) = (1=PFa+ Lb+Lavb+ Lixey—x),
+
We get (1 - x) s'(x)
= aafb((l—x)F(a+1,b+l,a+b+l;x)—(l—x)(l—y)F(a+ 1,b+l,a+b+1L;x+y—xy))
= aa+bb(F(a,b,a+b+1;x)—F(a,b,a+b+1;x+y—xy)) < 0.

Therefore, s(x) is monotone decreasing on (0, 1) and, consequently,

s(x) < lirgs(x) =1—F(a,b,a+b;y).
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Also, by Theorem 2.10, part 2, we obtain
. 1 R
s(x) > lim s(x) = _log(1—y)> _ —F(a,ba+by).
x—1- B B
Since D07, 0%) = 1 and Dg(1, 17) = R/B, cited bounds are best possible. O

4.4. Proof of Theorem 3.2
Analogously to the proof of Theorem 1.2, we have

_AF@) +yF(y) _ (x+y)F(maxix ) _x+y

Qg% y) ZF(2) ~  zF(max({x, y}) z

4.5, Proof of Theorem 3.3
Lemma 2.11 (1) yields

113 log(1/(1 — u)) < uF(u) < log(1/(1 —u)),

forue (0, 1), cd < 1.
Therefore,

xF(x) + yF(y) _ log 1ix +log 11_y

= = B(c, d).
(x+y—x)Fx+y—xy) = Llog iy “

The lower bound is proved in the same way.
Applying part (2) of Lemma 2.11, we bound Q, similarly in the case 1/c + 1/d < 2.0
Remark 4.1. From parts (1) and (3) of Lemma 2.11, we conclude that

R(c,d) > B(c,d) — 1 >0,

forc,d >0, cd < 1, (¢, d) = (1, 1).

4.6. Proof of Theorem 3.4
Let us write B = B(c, d), R = R(c, d) and L = log(1/((1 - x)(1 - y))) >0. By Lemma 2.11
(3) we have

B—-1 1 1 Rx 1 1
B x+Blogl_x<xF(c,d;c+d;x)< B +Blog1_x. (4.2)

Since x + y <2(x + y - xy) we obtain by (4.2)

R(x+
Oy < B *E _ 2RGey—w)el 2R
g\ _Bgl(x+)/—xy)+lg_(B—l)(x+y_xy)+L—B_1r
and
Quey) = B DE L (B-Dxey—w)+ L B-1

T R(x+y—xy)+L — R(x+y—xy)+L -~ R
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4.7. Proof of Theorem 3.6
By the first part of Lemma 2.11, f is monotone decreasing for cd < 1.
Hence, for 0 < x < y <1 we have

xF(c,d; c + d; x) - vE(c,d;c+d;y)
log(1/(1—x)) ~ log(1/(1—y))
Putting 1 -x =€, 1-y=¢"u,ve (0, =), we get that the inequality
(1—e™F(c,dic+d (1 —e™)) - (1 —eV)F(c, dic+d; (1 —e™))
u - v

holds whenever 0 < u < v <.
This means that the function G(£)/t is monotone decreasing, where

G(t):=(1—e " YF(cdc+d;(1—e"))=g(1—e").
By Lemma 2.12, it follows that G is super-additive, that is
G(u) + G(v) = G(u +v),
which is equivalent to
8(x) +8(y) = g(x +y — ),

and the proof of the first part of Theorem 3.6 is complete.
The proof of the second part is similar. Note that the condition ¢ € (1/2, =), d > ¢/
(2¢ - 1) of Lemma 2.11 is equivalent to the condition 1/¢ + 1/d < 2 of Theorem 3.6. O

4.8. Proof of Theorem 3.7
(1) The left-hand side of this inequality is a direct consequence of part (1) of Theo-
rem 3.6.
Next, from Lemma 2.11, part (3) for u € (0, 1), ¢d < 1, we get

(B —1)u —log(1 — u) < BuF(u) < Ru —log(1 — u).

Hence, by the terminology from Theorem 3.2, we obtain

BDq(x,y) = BxF(x) + ByF(y) — BzF(z) < log(1 —z) — log(1 —x) —log(1 —y) +R(x+y) — (B—1)z
=(R—-B+1)(x+y)+(B—1)xy <2(R—B+1)+(B—1)=2R+1—B,

since Remark 4.1 yields R - B+ 1 >0 and B - 1 >0.

(2) To prove this part we shall use Lemma 2.11, part (4). Because d > ¢/(2c - 1) >
(¢ + 1)/(3c - 1) and (1/2, ) € (1/3, =), we conclude that this assertion is valid
under the condition 1/c + 1/d < 2.

Therefore, for u € (0, 1), 1/c + 1/d < 2, (¢, d) = (1, 1), we get

Ru —log(1 — u) < BuF(u) < (B— 1)u —log(1 —u),

Page 9 of 10
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and, as above,

BDy(x,y) = BxF(x) + ByF(y) — BzF(z) > log(1 — z) — log(1 — x) —log(1 —y) +R(x +y) — (B— 1)z
=(R-B+1)(x+y)+(B—1)xy>2(R—B+1)+(B—1)=2R+1-B,

since parts (1) and (4) of Lemma 2.11 give R - B + 1 <0 and B - 1 <O0.
Because the right-hand inequality is a consequence of Theorem 3.6, part (2), the
proof is complete. O

4.9. Proof of Theorem 3.9
Puttingx =y = 1 — 4/1 — t, we obtain z = x + y - xy = t. Therefore,

Qq(x,¥) = 2/5(1).

The rest is an application of Corollary 3.8. O
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