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Abstract

For models of majority voting over fixed-income taxations, we mathematically define
the concept of least core. We provide a sufficient condition on the policy space such
that the least core is not empty. In particular, we show that the least core is not
empty for the framework of quadratic taxation, respectively piecewise linear tax
schedules. For fixed-income quadratic taxation environments with no Condorcet
winner, we prove that for sufficiently right-skewed income distribution functions, the
least core contains only taxes with marginal-rate progressivity.

1 Introduction
The literature of the positive theory of income taxation regards the tax schemes in

democratic societies as emerging, explicitly or implicitly, from majority voting (see

Romer [1,2], Roberts [3], Cukierman and Meltzer [4], Marhuenda and Ortuño-Ortin

[5,6]). A very important mathematical difficulty related to this view is that the exis-

tence of a Condorcet majority winner is not guaranteed, since the policy space of tax

schedules is usually multidimensional (see for example Hindriks [7], Grandmont [8],

Marhuenda and Ortuño-Ortin [6], Carbonell and Ok [9]).

The possible inexistence of a Condorcet winner can be regarded as predicting politi-

cal instability with respect to the taxation system to be agreed on. However, the stabi-

lity of tax schedules in democratic societies is already a well-established stylized fact

(see Grandmont [8], Marhuenda and Ortuño-Ortin [6]). As noted by Grandmont [8],

possible ways out followed in the literature imply restricting to flat taxes (Romer [1],

Roberts [3]), or to quadratic taxations and some tax to be ideal for some voter (Cukier-

man and Meltzer [4]), introducing uncertainty about the tax liabilities of a new propo-

sal (Marhuenda and Ortuño-Ortin [6]), considering solution concepts less demanding

than the core (De Donder and Hindriks [10]).

In a majority game in coalitional form of voting over income distributions, Grand-

mont [8] proves the usual result that the core is empty (no majority Condorcet win-

ner). Also the solution concept of the least core implies no insights, since it contains

just the egalitarian income distribution, in case it is not empty. Therefore, the author

explores two variants of the bargaining set in order to understand the apparent stabi-

lity of tax schedules in democratic societies. Grandmont [8] argues that in his setup,

voting over tax schemes is equivalent to voting directly over income distributions.
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However, most of the literature imposes some fairness principles to the tax sche-

dules, i.e., a tax is increasing with the revenues in such a way that it does not change

the post-tax income ranking (see Marhuenda and Ortuño-Ortin [5], Roemer [11], Hin-

driks [7], Carbonell and Klor [12], De Donder and Hindriks [10], Carbonell and Ok

[9]). Moreover, a tax is not necessarily purely redistributive (Marhuenda and Ortuño-

Ortin [5], Carbonell and Ok [9]). Therefore, even if keeping the feature that a tax is

not distortionary, voting in the above-mentioned taxation models is not equivalent

with voting over income distributions as in Grandmont [8]. Consequently, despite the

fact that the core in such setups is empty, the analysis of the least core may provide

more than trivial results on the stability, as well as on the prevalence of the marginal-

rate progressivity in income taxation. (The latter is one important question that the

positive theory of income taxation tries to answer, see Marhuenda and Ortuño-Ortin

[5,6], Roemer [11], Hindriks [7], Carbonell and Klor [12], De Donder and Hindriks

[10], Carbonell and Ok [9], among many others.)

The contribution of this article is that it defines and analyzes the general properties

of the least core in fixed-income taxation models. Theorem 1 provides a necessary

condition on the policy space U to have at least one tax in the least core, for the case

of (absolutely) continuous income distribution functions. Propositions 2 and 3 prove

that the least core is not empty for the framework of quadratic taxations, respectively

picewise linear tax schedules. In Theorem 2, we show that for fixed-income quadratic

taxation environments with no Condorcet winner, and for sufficiently right-skewed

income distribution functions, the least core is characterized by taxes with marginal-

rate progressivity. This result seems in line with the heuristic argument commonly

invoked to explain the prevalence of the marginal-rate progressivity, that is, the num-

ber of relatively poor (self-interest) voters exceeds that of richer ones. The result also

argues in favor of the fact that analyzing the least core in particular fixed-income taxa-

tion models can provide useful insights on the major questions of the positive theory

of income taxation.

2 The model
2.1 General setup

The economy consists of a large number of individuals who differ in their (fixed)

income. Each individual is characterized by her income x Î [0, 1]. The income distri-

bution can be described by a function F : [0, 1] ® [0, 1], continuous and differentiable

almost everywhere and increasing on the interval [0, 1]. Each individual with income x

Î [0, 1] has strictly increasing preferences on the set of her possible net incomes. The

associated Lebesque-Stieltjes probability measure induced by F is denoted by ν(S) and

ν(S) =
∫
S
dF(x) for any Lebesque-Stieltjes measurable set S ⊆ [0, 1]. The fixed amount

0 ≤ R < ȳ =
∫
[0,1] dF(x) should be collected through means of a tax imposed on the

agents.a When R = 0, the tax is purely redistributive. It is assumed that there is no tax

evasion, respectively there are no distortions induced by the taxation system in the

economy. In one word, the pre-tax income is fixed (in the sense that it is given and

not influenced by the taxation system).

A set of admissible tax schedules U = U(F, R) contains functions t continuous on [0,

1] that necessarily satisfy, for a given F and R, the following conditionsb:
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t(x) ≤ x, ∀0 ≤ x ≤ 1;

t(x1) ≤ t(x2), ∀0 ≤ x1 ≤ x2 ≤ 1;

x1 - t(x1) ≤ x2 - t(x2), ∀0 ≤ x1 ≤ x2 ≤ 1;∫
[0,1]

t(x)dF(x) = R.

It is noteworthy that the continuity of t is actually implied by the conditions (2) and

(3). Moreover, the tax functions that satisfy the conditions (1)-(4) are uniformly

bounded by the constant 1. A tax schedule t is (marginally) progressive (regressive) if

and only if t(x) is convex (concave).

In the following, we present examples of restricted policy spaces U of income tax

functions, which, as underlined in the introduction, were used in the literature of the

positive theory of income taxation to provide useful insights to specific questions of

this field.

Example 1 (quadratic tax functions)

Consider quadratic functions of the form t : [0, 1] ® (-∞, 1], t(x) = ax2 + bx + c. The

set of quadratic tax functions that satisfy the feasibility conditions (1)-(4) is denoted by

QT = QT(F, R). It can be easily proved that conditions (1)-(4) restrict the set of feasible

taxes to t : [0, 1] ® [-1, 1], t(x) = ax2 + bx + c, where 0 ≤ b ≤ 1, 0 ≤ 2a + b ≤ 1, and c

≤ 0. According to condition (4), we can express c as a function of a and b. Indeed, we

have: R =
∫
[0,1] (ax

2 + bx + c) dF(x) = a(σ 2 + ȳ2) + bȳ + c, wherefrom

c = R − aȳ2 − bȳ ≤ 0 and s2 is the variance of the income distribution. In conclusion,

the feasible conditions, denoted with (FA1), for a quadratic tax function

t : [0, 1] → [−1, 1], t(x) = ax2 + bx + R − aȳ2 − bȳ are as follows:

(FA1)

⎧⎨
⎩
0 ≤ b ≤ 1
0 ≤ 2a + b ≤ 1
aȳ2 + bȳ ≥ R

(1)

Example 2 (piecewise linear tax functions)

Let m ≥ 2 be a natural number and let xj, j = 0, ..., m, be m + 1 fixed real numbers

that satisfy the following inequalities: 0 = x0 <x1 < ... <xm-1 <xm = 1. We consider

PWT = PWT(F, R), the set of m-bracket piecewise linear tax functions that satisfy the

feasibility conditions (1)-(4) and change their definition expression at the points xj, j =

1, ..., m - 1. It can be easily proved that conditions (1)-(4) restrict the set of m-bracket

piecewise linear feasible taxes to functions of the form:

t : [0, 1] → [−1, 1], t(x) =

⎧⎪⎪⎨
⎪⎪⎩

a1x + b1, x ∈ [0, x1)
a2x + b2, x ∈ [x1, x2)

· · ·
amx + bm, x ∈ [xm−1, 1]

, which satisfy the following conditions, denoted with (FA2):

(FA2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ aj ≤ 1, for each j = 1, . . . , m
ajxj + bj = aj+1xj + bj+1, for each j = 1, . . . , m − 1
(1 − aj)xj−1 ≥ bj, for each j = 1, . . . , m, and (1 − am) ≥ bm
m∑
j=1

aj
∫

[xj−1,xj]
xdF(x) +

m∑
j=1

bj[F(xj) − F(xj−1)] = R

(2)
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Remark on Example 2

Note that the first condition above guarantees that every tax and every post-tax func-

tion are increasing, the second condition shows that all considered tax functions are

continuous, the third condition guarantees that the tax payed by each agent is smaller

than the corresponding pre-tax income, and the forth condition assures that the col-

lected tax from the agents is R. Note as well that if 2 ≤ k ≤ m then the class PWT also

contains k-bracket piecewise linear tax functions (that satisfy the conditions (1)-(4))

that change their definition expression at k - 1 points out of the set {x1, ..., xm-1}. We

mention that a m-bracket piecewise linear tax t is progressive if a1 ≤ a2 ≤ ... ≤ am and

regressive if conversely a1 ≥ a2 ≥ ... ≥ am.

2.2 Condorcet majority winner, core, ε-core, and least core

Given a set U of admissible tax schedules and a function t Î U, a tax policy q Î U is

an objection to t if ν{x Î [0, 1] : q(x) <t(x)} >ν{x Î [0, 1] : q(x) >t(x)}. That means ν{x

Î [0, 1] : q(x) ≤ t(x)} > 1/2, thus the tax q is (weakly) preferred by a majority of indivi-

duals to the tax t. A tax function t Î U is a Condorcet majority winner if and only if

there is no objection to it, meaning that it is preferred by a majority of individuals to

any other feasible tax. We denote by ObjU(t) the set of all objections to the taxation t.

Therefore, the above definitions for t being a Condorcet winner are equivalent to the

condition ObjU(t) = ∅. In the corresponding majority game over taxes in coalitional

form, the set of all Condorcet winners represents the core and the inexistence of a

Condorcet majority winner is equivalent to the fact that the core is empty (see Grand-

mont [8]).

Given t, q Î U, the scalar d(t, q) =
∫
{x∈[0,1]:q(x)<t(x)} (t(x) − q(x))dF(x) represents the

total gain of those individuals that are better off if the tax schedule changes from t to q.

Because both taxes collect the same amount, the other interpretation is that d(t, q) repre-

sents the total loss of those individuals that are worse off if the tax schedule changes from

t to q. The value d(t, q) is equal to d(q, t) =
∫
{x∈[0,1]:t(x)<q(x)} (q(x) − t(x))dF(x) and it is

equal as well with1/2
∫
[0,1] |t(x) − q(x)|dF(x). It should be noted that d is a metric that is

the restriction to the tax function space U of the L1 metric:

||t − q||1 =
∫
[0,1] |t(x) − q(x)|dν(x) =

∫
[0,1] |t(x) − q(x)|dF(x) on the measurable space ([0,

1], ν). Since in L1 ([0, 1], ν), t = q if and only if t(x) = q(x) a.e., the same convention applies

to the space of interest U. This convention also subscribes to a certain economic logic. In

any voting game, either in a coalitional setup or a non-cooperative one, the behavior of

tax schedules on those income intervals that are represented by zero measure groups of

individuals does not have any influence on the final outcome of the game.

Given ε > 0, the set C(ε) contains all the taxes for which there is no objection such

that the total gain of the better off agents under the objection is strictly greater than ε.

In the simple majority game in coalitional form associated to our setup, the set C(ε) is

the ε-core. It contains those taxes for which it is impossible to find objections such

that the supporting coalition remains strictly better off even after paying the cost ε of

forming it.

In Grandmont [8], a way to understand the stability of a status quo income distribu-

tion is to be in all ε-cores, ε > 0, whenever they are not empty (i.e., the least core, as in

Einy et al. [13]). Similarly, we define here the set
⋂

{ε>0:C(ε) �=∅} C(ε). Within a static
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coalitional framework, Litan [14] argues that this is a concept of taxation stability. He

also discusses some directions to establish the non triviality of the concept in income

taxation environments with non-distortionary taxes.

In this article, in the results section, we analyze the general properties of the least

core, and under what conditions this set is not empty in fixed-income taxation models.

We analyze as well the implications of the concept for the quadratic taxation model.

This is among the models that are very used in the literature to provide powerful

insights on the questions raised by the positive theory of income taxation (see Hindriks

[7], De Donder and Hindriks [10,15], Cukierman and Meltzer [4], etc.).

3 Results
3.1 Some properties and the non triviality of the least core in fixed-income taxation

environments

The next proposition states two important properties of the least core, as defined in

our general taxation setup. First, in the case the core is not empty, then the least core

reduces to the core concept. Second, the taxes in the least core can be found by sol-

ving a min sup problem expressed in terms of the distance d. These results are in line

with properties that the least core has, when it is defined for discrete policy spaces (see

Einy et al. [13]).

Proposition 1. Let U be a set of tax functions that satisfy the conditions (1)-(4). If the

set
⋂

{ε>0:C(ε) �=∅} C(ε)is not empty then the following assertions are true:

If we denote by ε− = inf{ε>0:C(ε) �=∅}ε, then
⋂

{ε>0:C(ε) �=∅} C(ε) = C(ε−)ε− = inft∈Usupq∈ObjU(t)d(t, q)

ε− = 0 if and only if
⋂

{ε>0:C(ε) �=∅} C(ε)is the set of Condorcet majority

winnersinf t∈Usup q∈ObjU(t)d(t, q) = min t∈Usup q∈ObjU(t)d(t, q)

Proof. We note that all the supremums and infimums of d(t, q) are taken over sub-

sets of ℝ+, hence the supremum over the empty set is 0 and the infimum over the

empty set is ∞.

(i), (ii) The proofs can be left to the reader since they are immediate consequences

of the definitions of infimum and supremum of a given set.

(iii) Suppose first that ε= 0. We have to prove (see (i)) that C(0) coincides to the set

of all Condorcet winners. Since it is obvious that every Condorcet winner t belongs

to C(0) (due to the convention made above: supqÎ∅ d(t, q) = 0), it remains to show

that every function in C(0) is a Condorcet winner. Suppose by contrary, that there

is t Î C(0) such that ObjU(t) ≠ ∅. For t Î C(0) and q Î ObjU(t) the distance d(t.q)

is 0 wherefrom we get that t
a.e.= q, which is a contradiction with q Î ObjU(t).

Suppose now that C(ε) is the set of all Condorcet majority winners. In order to

prove that ε− = inf{ε>0:C(ε) �=∅}ε = 0 it is sufficient to prove that for every ε > 0 the set

C(ε) is not empty, which is obviously true, due to the inclusion C(ε) ⊇ C(0) ≠ ∅.

(iv) It is left to the reader, being an immediate consequence of the definitions and

of the hypothesis that C(ε) ≠ ∅. ■

For the next theorem and throughout the rest of the section, we will assume that

every distribution function F that generates a Lebesque-Stieltjes measure is absolutely

continuous, hence it has a density that is the a.e. derivative with respect to the Lebes-

gue measure on [0, 1], l, of the given distribution function. Also, we suppose that the
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density function is almost everywhere continuous with respect to l. It should be

noticed that many distribution functions used to model the repartition of income

among the individuals of a society have the required properties (see for instance the

beta distributions in De Donder and Hindriks [10,15], or the examples of income dis-

tribution functions from Carbonell and Ok [9]). The next theorem provides a necessary

condition on the policy space U to have at least one tax in the least core, for the case

of (absolutely) continuous income distribution functions.

Theorem 1. Let U be a set of tax functions that satisfy the conditions (1)-(4). If the

set U is complete with respect to metric d, then
⋂

{ε>0:C(ε) �=∅} C(ε)is not empty.

Proof. Remember that the metric d is the restriction to the tax function space U of

the L1 metric: ||t − q||1 =
∫
[0,1] |t(x) − q(x)|dν(x) =

∫
[0,1] |t(x) − q(x)|dF(x) on the mea-

surable space ([0, 1], ν). Moreover, since F is an absolutely continuous function, we

also have d(t, q) =
∫
[0,1] |t(x) − q(x)|F′(x)dλ(x).

The conclusion of the theorem can be obtained by applying the well-known result

that asserts that in any topological compact space, any family of closed subsets with

the finite intersection property has non-empty intersection (see Edwards [[16], p. 17]).

We apply the above-mentioned result for the metric space (U, d) and the family of

sets: {C(ε)}{ε>0:C(ε) �=∅}.
We start by proving that for each ε > 0 such that C(ε) ≠ ∅, C(ε) is a closed subset of

(U, d). For this, let t ∈ C(ε) ⊂ Ū = U (the previous equality is true because any com-

plete subspace of a metric space is closed). Since t ∈ C(ε), there exists a sequence (tn)n

⊆ C(ε) such that tn
L1−→ t. From the L1 convergence of the (tn)n sequence of taxes results

the existence of a subsequence (tnk)k ⊆ (tn)n such that tnk
a.e.→ t. (see Ash [[17], pp. 92-

93, Theorems 2.5.1 and 2.5.3]). Let M ⊂ [0, 1] be the set for which ν(M) = 1, (ν ([0, 1]

\M) = 0) and tnk(x) → t(x) for any x Î M.

In order to prove that t Î C(ε) it is sufficient to show that d(t, q) ≤ ε for each q Î
ObjU(t). Let q Î ObjU(t). Then, ν(A) > 1/2, where A = {x Î [0, 1] : (q - t)(x) < 0}. In

the following, we shall prove that there exists k0 Î N such that q is an objection to tnk
for any k > k0. For this, it is sufficient to show that there exists k0 Î N such that

ν(Ank) > 1/2, where Ank = {x ∈ [0, 1] : (q − tnk)(x) < 0}. The previous statement results

as a straightforward consequence of the Lebesque’s dominated convergence theorem

applied to the sequence of measurable functions {χAnk
∩A}k = {χAnk

χA}k, dominated by

the constant unit function on the finite measure space L1([0, 1], ν). We check now that

all the conditions of the Lebesque dominated convergence theorem are fulfilled. The

measurability conditions are trivially fulfilled by the involved functions. For the almost

everywhere convergence consider x Î M. If x Î A ∩ M, since

limk→∞(q − tnk)(x) = (q − t)(x) < 0, it results that there exists, k’ Î N such that for

every k ≥ k’ we have (q − tnk)(x) < 0, i.e, x ∈ Ank. It follows that if x Î M ∩ A then

χAnk
(x) = χA(x) = 1, k ≥ k’, which implies χAnk

∩A(x) → χA(x). If x Î ([0, 1]\A) ∩ M then

χAnk
∩A(x) = χA(x) = 0, hence χAnk

∩A(x) → χA(x). By applying the Lebesque’s dominated

convergence theorem, we get
∫
[0,1] χAnk

∩A(x)dF(x) → ∫
[0,1] χA(x)dF(x) wherefrom

ν(Ank) ≥ ν(Ank ∩ A) → ν(A) > 1/2. It follows that there exists k0 Î N such that for

any k ≥ k0, we have ν(Ank) > 1/2 and in consequence q is an objection to tnk, for each
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k ≥ k0, so d(q, tnk) ≤ ε. Hence, d(q, t) ≤ d(q, tnk) + d(tnk , t) ≤ ε + d(tnk , t). Taking the

limit after k ® ∞, we obtain that d(t, q) ≤ ε as desired.

Since for each ε1 <ε2, we have C(ε1) ⊆ C(ε2), then {C(ε)}{ε>0:C(ε)≠∅} is a family of

closed sets, which has the finite intersection property.

It remains for us only to justify the compactness of U. Since U is closed, it is suffi-

cient to show that U is relatively compact in (L1, ||·||1) (meaning that it’s closure is

compact). For this, we apply the following variation (see Simon [[18], p. 74]) of Kolmo-

gorov-Riesz-Fréchet theorem (the “Lp-version” of the Ascoli-Arzela theorem):

The set G is relatively compact in L1([0, 1], l) if and only if:

(i)There is 0 ≤ a1 <a2 ≤ 1 such that
∫
[a1,a2]

g(x)dλ(x) is bounded uniformly for g Î

G.

(ii)
∫
[0,1−h] |g(x + h) − g(x)|dλ(x) → 0 as h ® 0 uniformly for g Î G.

We apply the previous result for G = {tF’ : t Î U} ⊂ L1([0, 1], l).
The conditions from the above mentioned result are fulfilled, due to the properties

of the tax functions. Indeed, if we take a1 = 0 and a2 = 1 then for each t Î U, we have∫
[0,1] t(x)F

′(x)dλ(x) =
∫
[0,1] t(x)dν(x) = R. Therefore, the condition (i) is fulfilled. For f

Î U, by using the properties (1), (3), and the uniform boundness of the tax functions,

we get

≤ hF(1 − h) +
∫
[0,1−h] |F′(x + h) − F′(x)|dλ(x) → 0-

≤ hF(1 − h) +
∫
[0,1−h] |F′(x + h) − F′(x)|dλ(x) → 0-

≤ hF(1 − h) +
∫
[0,1−h] |F′(x + h) − F′(x)|dλ(x) → 0, as h ® 0. The convergence to 0 of

the previous integral is a straightforward application of the Lebesque’s convergence

theorem for the sequence of functions defined by: |F’(x + hn) - F’(x)|, if x Î [0, 1 - hn],

and 0, if x Î [1 - hn, 1]. In consequence, G is relatively compact in (L1[0, l], ||·||1) and
hence U is relatively compact in (L1[0, ν], ||·||1), as required. ■
Notice that Theorem 1 does not say anything about the cardinality of the least core.

In fact, there may be cases in which the cardinality is not finite. However, as it can be

seen in the next subsections, the theorem insures that in many instances in which the

core is empty, the least core is actually not (for example the quadratic taxation case, or

the piecewise linear taxation case). Once the non-emptiness of least core is established,

only then the analysis of its structure can be performed.

3.2 Least core non triviality for quadratic and piecewise linear taxes

As already mentioned, the framework of quadratic taxations represents a workhorse

model, providing useful insights into the specific questions of the positive theory of

income taxation. The quadratic taxation model was first used by Cukierman and Melt-

zer [4], then Roemer [11], and subsequently by Hindriks [7], De Donder and Hindriks

[10,15] to derive interesting results. The next proposition has as direct corollary the

fact that for quadratic taxations our analyzed setup has a non-empty least core.

Proposition 2. Let QT(F, R) = QT be the set of quadratic tax functions defined in

Example 1. Then (QT, d) is complete.

Proof. Consider a Cauchy sequence {tn}n≥1 in (QT, d). Suppose that

tn(x) = an(x2 − ȳ2) + bn(x − ȳ) + R, x Î [0, 1]. Since {tn}n≥1 is a Cauchy sequence in the

Curt et al. Journal of Inequalities and Applications 2011, 2011:138
http://www.journalofinequalitiesandapplications.com/content/2011/1/138

Page 7 of 15



complete metric space (L1[0, 1], d), it will be convergent to some t Î L1[0, 1]. Since

the convergence tn
L1−→ t implies the a.e. convergence to t of a subsequence of the given

sequence (without loss of generality we can denote the a.e. convergent subsequence by

{tn}n≥1), there exist at least two distinct points, x1 ≠ x2, such that limn®∞ tn(xi) = t(xi),

i = 1, 2. Due to the convergence of the sequences {tn(xi)}n≥1, i = 1, 2, and of the fact

that x1 ≠ x2, it results the convergence of the sequences (an)n and (bn)n. If a and b are

the limits of these sequences, then for every x Î [0, 1] we have

limn→∞tn(x) = limn→∞[an(x2− ȳ2)+bn(x− ȳ)+R] = a(x2− ȳ2)+b(x− ȳ)+R
not.= t̄(x). The feasi-

bility conditions (FA1) for the function t̄ are easy consequences of the similar proper-

ties of the tax functions tn, n Î N, hence t̄ ∈ QT. Because tn
L1−→ t and t̄

a.e.= t, we get

that tn
L1−→ t̄. Therefore (QT, d) is complete. ■

The framework of piecewise linear taxations was used in the literature to analyze

questions regarding the preponderant marginal-rate progressive taxations in democra-

cies (see for instance Carbonell and Klor [12] and Klor [19]). The next proposition has

as direct corollary the fact that for piecewise linear taxations, our analyzed setup has a

non-empty least core.

Proposition 3. Let m ≥ 2 and PWT(F, R) = PWT be the set of m-bracket piecewise

tax functions defined in Example 2. Then, (PWT, d) is complete.

Proof. Consider a Cauchy sequence {tn}n≥1 in (PWT, d). Suppose that tn(x) = anj x + bnj ,

x Î (xj-1, xj], j = 1,m. Since {tn}n≥1 is a Cauchy sequence in the complete metric space

(L1[0, 1], d), it will be convergent to some t Î L1[0, 1]. The L1 convergence implies the

a.e. convergence to t of a subsequence of the given sequence. Without loss of general-

ity we can denote the a.e. convergent subsequence by {tn}n≥1.

If j Î {1, ..., m} is such that ν(xj-1, xj] > 0, then there exist at least two distinct points

in (xj−1, xj], x
j
1 �= xj2, such that limn→∞tn(x

j
i) = t(xji), i = 1, 2. Due to the convergence of

the sequences {tn(xji)}n≥1, i = 1, 2, and of the fact that xj1 �= xj2, it results the convergence

of the sequences (anj )n and (bnj )n. If aj and bj are the limits of these sequences, then for

each x Î (xj-1, xj], we have limn→∞tn(x) = limn→∞(anj x + bnj ) = ajx + bj
not.= t̄(x).

If j Î {1, ..., m} is such that ν(xj-1, xj] = 0, then for every g Î L1[0, 1], we have∫
[xj−1,xj]

g(x)dF(x) = 0. In this case, if j ≠ 1 and j ≠ m, we define the function t̄ on [xj-1,

xj] to be the linear function whose graph is the segment that connects in the plane the

points (xj-1, aj-1xj-1 + bj-1) to (xj, aj+1xj + bj+1). For j = 1 or j = m, the graph of t̄ con-

nects the points (0.0) and (x1, a2x1 + b2), respectively, (xm-1, am-1xm-1 + bm-1) and (1,

1).

The feasibility conditions (FA2) for the function t̄ are easy consequences of the prop-

erties of the tax functions tn, n Î N, hence t̄ ∈ PWT. Because tn
L1−→ t and t̄

a.e.= t, we get

that tn
L1−→ t̄. Therefore (PWT, d) is complete. ■

3.3 Marginal progressivity and the least core in fixed-income quadratic taxation

environments

De Donder and Hindriks [15] and Curt et al. [20] provide a complete mathematical

description of those fixed-income distributions for which a majority winning tax exists

(or does not exist), in the quadratic taxation model à la Roemer [11], with tax
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schedules that are purely redistributive. Curt et al. [21] analyze the same problem for

tax schedules that are not purely redistributive. For income distributions with the med-

ian less than the mean, in case a Condorcet winner exists then it implies maximum

marginal progressivity. In the next theorem, we prove that, when a Condorcet winner

does not exist, for sufficiently right-skewed income distribution functions, the least

core is characterized by marginal progressivity as well (however, not necessarily maxi-

mal). The proof is for purely redistributive taxations, however it can be adapted for tax

schedules that are not purely redistributive.

We introduce first some notation, according to Curt et al. [21]. Let

h : [0, 1] → R, h(x) = ux2 + vx − uȳ2 − vȳ, u Î ℝ*, v Î ℝ, and let α = − v
2uȳ. Then, for

each a Î ℝ, the quadratic function h has two real roots

x1(α) = αȳ −
√
(α − 1)2ȳ2 + σ 2 and x2(α) = αȳ +

√
(α − 1)2ȳ2 + σ 2, which vary as

functions of a. The conditions on the income distribution function for the existence/

non existence of a majority winning tax are expressed in terms of x1(a) and x2(a) (see
De Donder and Hindriks [15], Curt et al. [20,21]).

Theorem 2. Let F be a distribution function such that 1 −
√
(1 − ȳ)2 + σ 2 < ym < ȳ.

If F
(
ȳ2
ȳ

)
− F

(
ȳ−ȳ2
1−ȳ

)
< 1

2 and there is α0 ∈
(

1
2ȳ ,

1−ȳ2
2ȳ(1−ȳ)

)
such that

F(x2(α0)) − F(x1(α0)) < 1
2, then the core is empty (there is no Condorcet majority

winner).

If in addition to the above conditions, F(x2(a)) - F (x1(a)) > 1/2 for each α ∈
(
ȳ2
ȳ ,

1
2ȳ

]
,

then the set
⋂

{ε>0:C(ε) �=∅} C(ε) contains only progressive tax functions.

Proof. The proof of item (i) can be found in Curt et al. [20]. We prove below item

(ii).

For each tax function t = (a, b), we shall determine and represent geometrically the

feasibility area FA = {(u, v) : u = ā − a, v = b̄ − b, q = (ā, b̄) ∈ ObjQT(t)}.
From the feasibility conditions (FA1) for the objection function q, we obtain that the

coefficients u and v must satisfy the inequalities: -b ≤ v ≤ 1 - b, -(2a + b) ≤ 2u + v ≤ 1

- (2a + b), and uȳ2 + vȳ ≥ −(aȳ2 + bȳ). Hence the geometric representation (see Figures

1 and 2) will be the interior and the sides of the parallelogram whose vertices are A, B,

C, D (for a regressive tax function) or A’, B’, C’, D’ (for a progressive tax function). We

remark that the budget constraint condition generates a line that passes through A

(respectively A’) and the vertices B, C, and D (respectively B’, C’ and D’) are situated

above the budget line.

Next, we shall deduce the expression of the distance d(q, t), q Î ObjQT(t), as a func-

tion of u, v, and α = −v/(2uȳ).

We analyze first the case when u ≠ 0.

• For α ∈ (∞, ȳ2/(2ȳ2)) since (see Lemma 1 in Curt et al. [21])

x1(α) ≤ 0 < ym < ȳ ≤ x2(α) < 1, we get that q = (ā, b̄) ∈ ObjQT(t) for each (ā, b̄)

for which (u, v) = (ā − a, b̄ − b) ∈ F and u > 0. Elementary computations give us

d(q, t) = u
∫
[0,x2(α)]

h(x,α)dF(x), where h(x,α) = −x2 + 2αȳx + ȳ2 − 2αȳ2.

• For α ∈ (ȳ2/(2ȳ2), (1 − ȳ2)/(2ȳ(1 − ȳ))), we have 0 < x1(α) < ym < ȳ < x2(α) < 1.
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In this case

- if F(x2(a))-F(x1(a)) < 1/2 then q Î ObjQT(t) for u < 0 and

d(q, t) = −u
∫
[0,x2(α)

h(x,α)dF(x). For the sake of simplicity we suppose that the

open set {a : F(x2(a)) - F(x1(a)) < 1/2} consists of only one open interval (the

same type of arguments apply in the general case, when the set is an union of

open intervals).

- if F(x2(a))-F(x1(a)) > 1/2 then q Î ObjQT(t) for u > 0 and

d(q, t) = u
∫
[x1(α),x2(α)]

h(x,α)dF(x). We remark the fact that if

α ∈ (ȳ2/(2ȳ2), 1/(2ȳ)] then the previous condition is realized.

- if F(x2(a)) - F(x1(a)) = 1/2 then there is no objection of t.

Figure 1 The feasibility area when b > 1
2 and αr ≤ (ȳ2 − ym)/(2ȳ(ȳ − ym)).
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• For α ∈ ((1 − ȳ2)/(2ȳ(1 − ȳ)), (ȳ2 − ym)/(2ȳ(ȳ − ym))) since 0 <x1(a) <ym <1 <x2
(a) we get that q is an objection if u = ā − a > 0. In this case,

d(q, t) = u
∫
[x1(α),1]

h(x,α)dF(x).

• For α = (ȳ2 − ym)/(2ȳ(ȳ − ym)), since x1(a) = ym and x2(a) > 1, there is no objec-

tion of t.

• For α ∈ ((ȳ2 − ym)/(2ȳ(ȳ − ym)),∞) since ym < x1(α) < ȳ < 1 < x2(α), we get

that q is an objection if u < 0. In this case, d(q, t) = −u
∫
[x1(α),1]

h(x,α)dF(x).

Finally, if u = 0 then q = (a, b̄) is an objection of t for each (a, b̄) in (FA1), and

d(q, t) = |v| ∫[0,ȳ] (ȳ − x)dF(x).

For a given a (which represent a direction that passes through the origin), since d(t,

q) is given by one of the following expressions: |u| ∫[0,x2(α)] h(x,α)dF(x),
|u|

∫
[x1(α),1]

h(x,α)dF(x), |u|
∫
[x1(α),1]

h(x,α)dF(x) or

Figure 2 The feasibility area when b > 1
2 and αr > (ȳ2 − ym)/(2ȳ(ȳ − ym)).
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αr > (ȳ2 − ym)/(2ȳ(ȳ − ym)) is obtained for the maximum values of |u| or |v|. Hence it

is sufficient to analyze the behavior of the distance d(q, t) on the border of the feasibil-

ity set.

In order to prove the desired inequality, it is sufficient to prove that for each regres-

sive tax function tr = (ar, br), ar < 0, there exists a progressive tax function tp = (ap, bp)

such that supq∈ObjQT(tp)
d(q, tp) < supq∈ObjQT(tr)

d(q, tr).

First, we prove the conclusion for tr = (ar, br) a regressive tax function for which one

of the following two conditions is fulfilled.

0 ≤ br ≤ 1/2

br > 1/2 and αr = −br/(2arȳ) ≤ (ȳ2 − ym)/(2ȳ(ȳ − ym))

We will present the detailed proof only for the second case (similar arguments apply

for the first case). According to the previous discussion, the set

FAr = {(ur , vr) : ur = ā − ar , vr = b̄ − br , q = (ā, b̄) ∈ ObjQT(tr)} (see Figure 1) is the

union of the interiors polygons GOF, OEAH, and OIBCJ with the segments GF, JC, CB,

BI, and HA.

We shall prove that the progressive tax function tp = (ap, bp), ap = -ar, bp = 1 - br
satisfies the desired inequality (actually in both cases, the progressive tax function is

the same).

Due to the fact that a part of

FAp = {(up, vp) : up = ā − ap, vp = b̄ − bp, q = (ā, b̄) ∈ ObjQT(tp)} is included in FAr, we

have to show that the supremum of the distance on the union of the segments IH’ and

D’E’ is smaller than supq∈ObjQT(tr)
d(q, tr). In fact, it is sufficient to consider only the

part of D’E’ for which vp >0.

By using the well-known formulas regarding the derivative of parameter depending

integrals, we have the following cases (see Figure 1). Also, from now on, we shall use

the following notation h(a) = d(q,tp).

On the segment E’K’, (K’ is the intersection of E’D’ with the ordinate axis),

2up + vp = 1 − (2ap + bp), 2up + vp = 1 − (2ap + bp) and

h′(α) = −(1 − (2a + b))ȳ/(1 − αȳ)2
∫
[x1(α),1]

(−x2 + 2x + ȳ2 − 2)̄dF(x). In the previous

equality, the integrand is the most regressive tax function and since

R =
∫
[0,1] −x2 + 2x + ȳ2 − 2)̄dF(x) = 0 we obtain that h’(a) < 0. Hence, the values of the

distance d(q, tp) are increasing from K’ to E’.

On the part of the segment K’D’ that is situated above the abscissa’s axis, similar

arguments give us that h’(a) < 0; hence, the values of d(q, tp) are decreasing from K’ to

D’.

Combining the previous two results, we see that the supremum of the distance d(q,

tp) on this part of the border is realized at E’. Due to the symmetry of the Figure 1,

the value of d(q, tp) at E’ is the same with the value of d(q, tr) at E (indeed, at E’ and

at E we have the same a and ur(E) = -up(E’)).

On the segment I’H’, α ∈ (ȳ2/(2ȳ2), (1 − ȳ2)/(2ȳ(1 − ȳ))), vp = b, up < 0 and

h′(α) = b/(ȳα2)
∫
x1(α),x2(α)

(x2 − ȳ2)dF(x). Since

x1(ȳ2/(2ȳ2) = 0, x2((1 − ȳ2)/(2ȳ(1 − ȳ))) = 1, the integrand in the above derivative is

the most progressive tax function (for which R =
∫
[0,1] (x

2 − ȳ2)dF(x) = 0) we get that

h′((1 − ȳ2)/(2ȳ(1 − ȳ))) > 0, h′((1 − ȳ2)/(2ȳ(1 − ȳ))) > 0 and the fact that h’ is an

Curt et al. Journal of Inequalities and Applications 2011, 2011:138
http://www.journalofinequalitiesandapplications.com/content/2011/1/138

Page 12 of 15



increasing function on the considered interval. In consequence the equation h’(a) = 0

has a unique root α∗ ∈ (ȳ2/(2ȳ2), (1 − ȳ2)/(2ȳ(1 − ȳ))), h’ is negative at the left-hand

side of a* and positive at the right-hand side of a*.
There are three different cases regarding the position of the point N’(the intersection

of the line that passes through the origin and whose direction is a* with the segment

A’B’)with respect to the segment I’H’: at the left-hand side of I’, in the interior of the

segment I’H’, and at the right-hand side of H’. In all three cases, by using the monoto-

nicity of h, we easily obtain that the supremum of the distance d(q, tp) is the maximum

value of d(q, tp) computed at the points I’ and H’. By using again the symmetry of the

Figure 1, the values of d(q, tp) at the points I’ and H’ are equal to the values of d(q, tr)

at the points I and H. Since supq∈ObjQT(tr)
d(q, tp) is attained at one of the points E, H,

or I, and supq∈ObjQT(tr)
d(q, tr) is attained at one of the points A or C, and the values of

the distance at the points A, C are greater than the values of the distance at the points

E, H, I, we get the desired strict inequality and this part of the proof is complete (see

Figure 1).

The remaining part to prove the inequality for tr = (ar, br), where ar < 0, br > 1/2,

and αr = −br/(2arȳ) > (ȳ2 − ym)/(2ȳ(ȳ − ym)), is trivial. Similar arguments give us the

fact that supq∈ObjQT(tr)
d(q, tr) is attained at one of the points E or C (see Figure 2). If

the supremum is obtained at the point C, by taking tp = (ap, bp), bp = br, ap = ε, with ε

sufficiently small, the desired strict inequality follows immediately. If the supremum is

obtained at the point E, the conclusion follows by taking tp = (ap, bp), bp = br - ε, ap =

3ε/2, with ε sufficiently small. This completes the proof. ■
It should be noted that the above theorem does not have an empty scope. There

exists a class of income distribution functions fulfilling all the conditions in the theo-

rem. Take the example of income distribution function in Curt et al. [20]. The exercise

to check the condition F(ȳ2/ȳ) − F((ȳ − ȳ2)/(1 − ȳ)) < 1/2 is left to the reader. The

rest of the conditions are already checked in that article.

4 Conclusions
In the general setup of fixed-income taxation with (absolutely) continuous income dis-

tributions, we have mathematically defined the concept of least core and provided a

sufficient condition on the policy space such that the former set is not empty. In parti-

cular, the least core is not empty for the framework of quadratic taxations, respectively

picewise linear tax schedules. Moreover, for fixed-income quadratic taxation environ-

ments with no Condorcet winner, we have proved that for sufficiently right-skewed

income distribution functions, the least core is characterized by taxes with marginal-

rate progressivity. Therefore, at least for quadratic taxations, a possible way out from

the vote cycling theorem of Hindriks [7] is to consider this less demanding solution

concept, but very related to the core.

Note that, even if in the purely redistributive case, voting over tax schemes that

satisfy (1)-(4) is not equivalent with voting over income distributions as in Grandmont

[8]. Conditions (2) and (3) insure that every tax is increasing with the revenues in such

a way that it does not change the post-tax income ranking. Thus, issues like progres-

sivity versus regressivity can be put into discussion once the policy space U is large

enough and the least core of the set U is not empty (according to the first theorem in

the present paper, this happens for every policy space U that is complete with respect
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to the L1 metric). This research opens venues to investigating the stability and progres-

sivity prevalence in income taxation by applying concepts neighboring the core. There-

fore, for the future, a more (realistic) case of neither concave nor convex tax functions

should be investigated. Moreover, an interesting line of research is toward discrete

income distribution functions (see also Moreno-Ternero [22]).

Looking at the implications of the least core in fixed-income taxation environments

may provide a real contribution to our understanding of the field; and these implica-

tions should be investigated even before considering other less demanding solution

concepts or before restricting too much the taxation space.

Endnotes
aNotation: For better comprehensibility of the text, any parameter calculated based on

the distribution F is denoted using the letter y, e.g., the mean is ȳ, the median is

denoted by ym, the non-centered moment of second order is ȳ2, etc., while x refers to a

random income in the interval [0, 1]. bWhen there is no danger of confusion, the

explicit dependence on F and R will be dropped.
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