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Abstract

In this paper, we present the Schur convexity and monotonicity properties for the
ratios of the Hamy and generalized Hamy symmetric functions and establish some
analytic inequalities. The achieved results is inspired by the paper of Hara et al. [J.
Inequal. Appl. 2, 387-395, (1998)], and the methods from Guan [Math. Inequal. Appl.
9, 797-805, (2006)]. The inequalities we obtained improve the existing corresponding
results and, in some sense, are optimal.
2010 Mathematics Subject Classification: Primary 05E05; Secondary 26D20.

Keywords: Hamy symmetric function, generalized Hamy symmetric function, Schur
convex, Schur concave

1 Introduction
Throughout this paper, we denote Rn

+ = {x = (x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . ,n}.. For
x ∈ Rn

+, the Hamy symmetric function [1] is defined as

Fn(x, r) = Fn(x1, x2, . . . , xn; r) =
∑

1≤i1<i2<···<ir≤n

⎛
⎝ r∏

j=1

xij

⎞
⎠
1
r
, (1:1)

where r is an integer and 1 ≤ r ≤ n.

The generalized Hamy symmetric function was introduced by Guan [2] as follows

F∗
n(x, r) = F∗

n(x1, x2, . . . , xn; r) =
∑

i1+i2+···+in=r

(
xi11 x

i2
2 . . . xinn

)1
r , (1:2)

where r is a positive integer.

In [2], Guan proved that both Fn(x,r) and F∗
n(x, r) are Schur concave in Rn

+. The main

of this paper is to investigate the Schur convexity for the functions
Fn(x, r)

Fn(x, r − 1)
and

F∗
n(x, r)

F∗
n(x, r − 1)

and establish some analytic inequalities by use of the theory of

majorization.

For convenience of readers, we recall some definitions as follows, which can be

found in many references, such as [3].
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Definition 1.1. The n-tuple x is said to be majorized by the n-tuple y (in symbols

x ≺ y), if

k∑
i=1

x[i] ≤
k∑
i=1

y[i],
n∑
i=1

x[i] =
n∑
i=1

y[i],

where 1 ≤ k ≤ n - 1, and x[i] denotes the ith largest component of x.

Definition 1.2. Let E ⊆ ℝn be a set. A real-valued function F : E ® ℝ is said to be

Schur convex on E if F(x) ≤ F(y) for each pair of n-tuples x = (x1,..., xn) and y = (y1,...,

yn) in E, such that x ≺ y. F is said to be Schur concave if -F is Schur convex.

The theory of Schur convexity is one of the most important theories in the fields of

inequalities. It can be used in combinatorial optimization [4], isoperimetric problems

for polytopes [5], theory of statistical experiments [6], graphs and matrices [7], gamma

functions [8], reliability and availability [9], optimal designs [10] and other related

fields.

Our aim in what follows is to prove the following results.

Theorem 1.1. Let x ∈ Rn
+, 2 ≤ r ≤ n is an integer, then the function

φr(x) =
Fn(x, r)

Fn(x, r − 1)
is Schur concave in Rn

+ and increasing with respect to xi (i=1,2, ...,

n).

Theorem 1.2. Let x ∈ Rn
+, 2 ≤ r ≤ n is an integer, then the function

φ∗
r (x) =

F∗
n(x, r)

F∗
n(x, r − 1)

is Schur concave inRn
+ and increasing with respect to xi (i=1,2,... n).

Corollary 1.1. If xi > 0, i = 1, 2, . . . ,n,
∑n

i=1 xi = s and that c ≥ s, then

Gn(x)
Gn(c − x)

=
Fn(x,n)

Fn(c − x,n)
≤ Fn(x,n − 1)

Fn(c − x,n − 1)
≤ · · · ≤ Fn(x, 1)

Fn(c − x, 1)
=

An(x)
An(c − x)

and

Gn(x)
Gn(c + x)

=
Fn(x,n)

Fn(c + x,n)
≤ Fn(x,n − 1)

Fn(c + x,n − 1)
≤ · · · ≤ Fn(x, 1)

Fn(c + x, 1)
=

An(x)
An(c + x)

,

where An(x) = 1
n

∑n

i=1
xi, Gn(x) =

(∏n

i=1
xi

)1
n are the arithmetic and geo-metric

means of x, respectively.

Corollary 1.2. If xi > 0, i = 1, 2, . . . ,n,
∑n

i=1 xi = s and that c ≥ s, then

F∗
n(x, r)

F∗
n(c − x, r)

≤ F∗
n(x, r − 1)

F∗
n(c − x, r − 1)

≤ · · · ≤ F∗
n(x, 2)

F∗
n(c − x, 2)

≤ F∗
n(x, 1)

F∗
n(c − x, 1)

=
An(x)

An(c − x)

and

F∗
n(x, r)

F∗
n(c + x, r)

≤ F∗
n(x, r − 1)

F∗
n(c + x, r − 1)

≤ · · · ≤ F∗
n(x, 2)

F∗
n(c + x, 2)

≤ F∗
n(x, 1)

F∗
n(c + x, 1)

=
An(x)

An(c + x)
.

2 Lemmas
In order to establish our main results, we need several lemmas, which we present in

this section.
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Lemma 2.1 (see [3]). Let E ⊆ ℝn be a symmetric convex set with nonempty interior

intE and � : E ® ℝ be a continuous symmetric function. If � is differentiable on intE,

then � is Schur convex (or Schur concave, respectively) on E if and only if

(xi − xj)
(

∂ϕ

∂xi
− ∂ϕ

∂xj

)
≥ 0 (or ≤ 0, respectively)

for all i,j = 1,2,...,n and x = (x1,...,xn) Î intE.

The rth elementary symmetric function (see [11]) is defined as

En(x, r) = En(x1, x2, . . . , xn; r) =
∑

1≤i1<i2<···<ir≤n

⎛
⎝ r∏

j=1

xij

⎞
⎠, (2:1)

where 1 ≤ r ≤ n is a positive integer, and En(x, 0) = 1.

By (2.1) and simple computations, we have the following lemma.

Lemma 2.2. Let x ∈ Rn
+, 1 ≤ i ≤ n, if

xi = (x1, x2, . . . , xi−1, xi+1, . . . , xn).

Then,

En(x1, x2, . . . , xn; r) = xiEn−1(xi, r − 1) + En−1(xi, r). (2:2)

Lemma 2.3 (see [11]). Let x ∈ Rn
+, r is an integer and 1 ≤ r ≤ n - 1.

Then,

(En(x, r))2 > En(x, r − 1)En(x, r + 1). (2:3)

Another important symmetric function is the complete symmetric function (see [3]),

which is defined by

Cr(x) = Cr(x1, x2, . . . , xn) =
∑

i1+i2+···+in=r
xi11 x

i2
2 . . . xinn ,

where i1, i2,..., in are non-negative integer, r Î {1, 2,...} and C0(x) = 1.

Lemma 2.4 (see [12]). Let xi > 0, i = 1, 2,..., n, and xi = (x1, x2, . . . , xi−1, xi+1, . . . , xn).

Then,

Cr(x) = xiCr−1(x) + Cr(xi).

Lemma 2.5 (see [13]). If 0 < r < s, x ∈ Rn
+, then

Cr(x)Cs−1(x) > Cr−1Cs(x).

Lemma 2.6 (see [14]). If xi > 0, i = 1, 2, . . . ,n,
∑n

i=1 xi = s and c ≥ s, then

(1)
c − x
nc
s

− 1
=

⎛
⎜⎝ c − x1

nc
s

− 1
,
c − x2
nc
s

− 1
, . . . ,

c − xn
nc
s

− 1

⎞
⎟⎠ ≺ (x1, x2, . . . , xn) = x,,

(2)
c + x

s + nc
=

( c + x1
s + nc

,
c + x2
s + nc

, . . . ,
c + xn
s + nc

)
≺

(x1
s
,
x2
s
, . . . ,

xn
s

)
=
x

s
.

3 Proof of Theorems
Proof of Theorem 1.1. It is obvious that jr(x) is symmetric and has continuous partial

derivatives in Rn
+. By Lemma 2.1, we only need to prove that
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(x1 − x2)
(

∂φr(x)
∂x1

− ∂φr(x)
∂x2

)
≤ 0. (3:1)

For any fixed 2 ≤ r ≤ n, let ui = r
√
xi, i = 1, 2, . . . ,n and u = (u1, u2, . . . , un) ∈ Rn

+, we

have

φr(x) =
Fn(x, r)

Fn(x, r − 1)
=

En(u, r)
En(u, r − 1)

.

Differentiating jr(x) with respect to x1 yields

∂φr(x)
∂x1

=
1

E2n(u, r − 1)

[
En(u, r − 1)

∂En(u, r)
∂u1

∂u1
∂x1

− En(u, r)
∂En(u, r − 1)

∂u1

∂u1
∂x1

]
. (3:2)

Using Lemma 2.2 repeatedly, we get

En(u, r) = u1u2En−2(u3, . . . , un; r − 2) + (u1 + u2)En−2(u3, . . . , un; r − 1)

+ En−2(u3, . . . , un; r).
(3:3)

Equations (3.2) and (3.3) lead to

∂φr(x)
∂x1

=
1

rE2n(u, r − 1)
(u1−r

1 u2A + u1−r
1 B), (3:4)

where

A = En(u, r − 1)En−2(u3, . . . , un; r − 2) − En(u, r)En−2(u3, . . . , un; r − 3)

and

B = En(u, r − 1)En−2(u3, . . . , un; r − 1) − En(u, r)En−2(u3, . . . , un; r − 2).

Similarly, we can deduce that

∂φr(x)
∂x2

=
1

rE2n(u, r − 1)
(u1u1−r

2 A + u1−r
2 B). (3:5)

From (3.4) and (3.5), one has

(x1 − x2)
(

∂φr(x)
∂x1

− ∂φr(x)
∂x2

)

=
x1 − x2

rE2n(u, r − 1)

⎡
⎢⎣x

1
r
1 x

1
r
2 (x−1

1 − x−1
2 )A + (x

1
r

−1

1 − x

1
r

−1

2 )B

⎤
⎥⎦ .

(3:6)

It follows from (3.3) and Lemma 2.3 that

A = (u1 + u2)[E2n−2(u3, . . . , un; r − 2) − En−2(u3, . . . , un; r − 1)

× En−2(u3, . . . , un; r − 3)] + En−2(u3, . . . , un; r − 1)En−2(u3, . . . , un; r − 2)

− En−2(u3, . . . , un; r)En−2(u3, . . . , un; r − 3)

> 0.

Similarly, we can get B > 0.
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It follows from the function
x

k − r
r (k = 0, 1)

is decreasing in (0, +∞) that

(x1 − x2)

⎛
⎜⎝x

k − r
r

1 − x

k − r
r

2

⎞
⎟⎠ ≤ 0, (k = 0, 1). (3:7)

Therefore, inequality (3.1) follows from (3.6) and (3.7) together with A > 0 and B > 0.

Next, we prove that φr(x) =
Fn(x, r)

Fn(x, r − 1)
is increasing with respect to xi (i=1,2,...,n).

By the symmetry of jr(x) with respect to xi (i = 1, 2,..., n), we only need to prove that

∂φr(x)
∂x1

≥ 0,

which can be derived directly from A > 0 and B > 0 together with Equation (3.4).

Proof of Theorem 1.2. It is obvious that φ∗
r (x) is symmetric and has continuous par-

tial derivatives in Rn
+. By Lemma 2.1, we only need to prove that

(x1 − x2)
(

∂φ∗
r (x)

∂x1
− ∂φ∗

r (x)
∂x2

)
≤ 0. (3:8)

For any fixed 2 ≤ r ≤ n, let ui = r
√
xi, i = 1, 2, . . . ,n and u = (u1, u2, . . . , un) ∈ Rn

+.

Then,

φ∗
r (x) =

F∗
n(x, r)

F∗
n(x, r − 1)

=
Cr(u)
Cr−1(u)

. (3:9)

Differentiating φ∗
r (x) with respect to x1, we have

∂φ∗
r (x)

∂x1
=

1

C2
r−1(u)

[
Cr−1(u)

∂Cr(u)
∂u1

∂u1
∂x1

− Cr(u)
∂Cr−1(u)

∂u1

∂u1
∂x1

]
. (3:10)

It follows from Lemma 2.4 that

∂Cr(u)
∂u1

= Cr−1(u) + u1
∂Cr−1(u)

∂u1

= Cr−1(u) + u1

[
Cr−2(u) + u1

∂Cr−2(u)
∂u1

]

= Cr−1(u) + u1Cr−2(u) + u21
∂Cr−2(u)

∂u1
= · · · · · ·
= Cr−1(u) + u1Cr−2(u) + u21Cr−3(u) + · · · + ur−2

1 C1(u) + ur−1
1 .

(3:11)

Equations (3.10) and (3.11) lead to

∂φ∗
r (x)

∂x1
=

1

C2
r−1(u)

{
[C2

r−1(u) − Cr(u)Cr−2(u)] + u1[Cr−1(u)Cr−2(u)

− Cr(u)Cr−3(u)] + · · · + ur−2
1 [Cr−1(u)C1(u) − Cr(u)C0(u)]

+Cr−1(u)u
r−1
1

} 1
r
u1−r
1 .

(3:12)
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Similarly, we have

∂φ∗
r (x)

∂x2
=

1

C2
r−1(u)

{[C2
r−1(u) − Cr(u)Cr−2(u)] + u2[Cr−1(u)Cr−2(u)

− Cr(u)Cr−3(u)] + · · · + ur−2
2 [Cr−1(u)C1(u) − Cr(u)C0(u)]

+ Cr−1(u)u
r−1
2 }1

r
u1−r
2 .

(3:13)

From (3.12) and (3.13), one has

(x1 − x2)
(

∂φ∗
r (x)

∂x1
− ∂φ∗

r (x)
∂x2

)

=
x1 − x2
rC2

r−1(u)

⎧⎪⎨
⎪⎩[C2

r−1(u) − Cr(u)Cr−2(u)]

⎛
⎜⎝x

1 − r
r

1 − x

1 − r
r

2

⎞
⎟⎠ + [Cr−1(u)Cr−2(u)

− Cr(u)Cr−3(u)]

⎛
⎜⎝x

2 − r
r

1 − x

2 − r
r

2

⎞
⎟⎠ + · · · + [Cr−1(u)C1(u) − Cr(u)C0(u)]

×

⎛
⎜⎝x

(r − 1) − r
r

1 − x

(r − 1) − r
r

2

⎞
⎟⎠

⎫⎪⎬
⎪⎭ .

(3:14)

By Lemma 2.5, we know that

C2
r−1(u) − Cr(u)Cr−2(u) > 0,

Cr−1(u)Cr−2(u) − Cr(u)Cr−3(u) > 0,

· · · · · · ,
Cr−1(u)C1(u) − Cr(u)C0(u) > 0.

(3:15)

The monotonicity of the function
x

j − r
r (1 ≤ j ≤ r − 1)

in (0, +∞) leads to the con-

clusion that

(x1 − x2)(x

j − r
r

1 − x

j − r
r

2 ) ≤ 0.
(3:16)

Therefore, inequality (3.8) follows from (3.14)-(3.16).

Next, we prove that φ∗
r (x) =

F∗
n(x, r)

F∗
n(x, r − 1)

is increasing with respect to xi (i=1,2,...,n).

From (3.12) and (3.15), we clearly see that

∂φ∗
r (x)

∂x1
≥ 0. (3:17)

Inequality (3.17) implies that φ∗
r (x) is increasing with respect to x1, then from the

symmetry of φ∗
r (x) with respect to xi (i = 1, 2,..., n) we know that φ∗

r (x) is increasing

with respect to each xi (i = 1, 2,..., n).

Proof of Corollary 1.1. By Theorem 1.1 and Lemma 2.6, we have

φr

⎛
⎜⎝ c − x

nc
s

− 1

⎞
⎟⎠ ≥ φr(x) and φr

( c + x

s + nc

)
≥ φr

( x
s

)
which imply Corollary 1.1.
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Remark 1. Let 0 < xi ≤ 1
2
, i = 1, 2, . . . , n, then

Gn(x)
Gn(1 − x)

≤ An(x)
An(1 − x)

, (3:18)

where (1 - x) = (1 - x1, 1 - x2,... , 1 - xn), commonly referred to as Ky Fan inequality

(see [15]), which has attracted the attention of a considerable number of mathemati-

cians (see [16-20]).

Letting
∑n

i=1
xi ≤ 1 and taking c = 1 in Corollary 1.1, we get

Gn(x)
Gn(1 − x)

=
Fn(x,n)

Fn(1 − x,n)
≤ Fn(x,n − 1)

Fn(1 − x,n − 1)
≤ · · · ≤ Fn(x, 1)

Fn(1 − x, 1)
=

An(x)
An(1 − x)

. (3:19)

It is obvious that inequality (3.19) can be called Ky Fan-type inequality.

Remark 2. Let xi > 0, i = 1, 2,..., n, the following inequalities

n∏
i=1

(x−1
i − 1) ≥ (n − 1)n

and

n∏
i=1

(x−1
i + 1) ≥ (n + 1)n

are the well-known Weierstrass inequalities (see [11]).

Taking c = s = 1 in Corollary 1.1, one has

n∏
i=1

(x−1
i − 1) ≥

(
Fn(1 − x,n − 1)
Fn(x,n − 1)

)n

≥ · · · ≥
(
Fn(1 − x, 2)
Fn(x, 2)

)n

≥ (n − 1)n

and

n∏
i=1

(x−1
i + 1) ≥

(
Fn(1 + x,n − 1)
Fn(x,n − 1)

)n

≥ · · · ≥
(
Fn(1 + x, 2)
Fn(x, 2)

)n

≥ (n + 1)n.

It is obvious that our inequalities can be called Weierstrass-type inequalities.

Proof of Corollary 1.2. By Theorem 1.2 and Lemma 2.6, we have

φ∗
r

⎛
⎜⎝ c − x

nc

s
− 1

⎞
⎟⎠ ≥ φ∗

r (x) and φ∗
r

( c + x

s + nc

)
≥ φ∗

r

(x
s

)
, which imply Corollary 1.2.
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