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Abstract

This article is devoted to the Friedrichs inequality, where the domain is periodically
perforated along the boundary. It is assumed that the functions satisfy homogeneous
Neumann boundary conditions on the outer boundary and that they vanish on the
perforation. In particular, it is proved that the best constant in the inequality
converges to the best constant in a Friedrichs-type inequality as the size of the
perforation goes to zero much faster than the period of perforation. The limit
Friedrichs-type inequality is valid for functions in the Sobolev space H1.
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1 Introduction
This article deals with Friedrichs-type inequalities for functions defined on domains

which have a periodic perforation along the boundary. The size, shape and distribution

of the perforation are described by a small parameter. It is assumed that the perfora-

tion is “rare”, i.e., the size of the local perforation is much smaller than the period of

perforation. Moreover, we consider the case where the functions satisfy a homoge-

neous Neumann condition on the part of the boundary corresponding to the domain

without perforation and vanish on the perforation. The questions we are interested in

are; how does the best constant in the Friedrichs-type inequality depend on the small

parameter and what happens in the limit case where the parameter tends to zero? In

particular, we will prove that the best constant converges to the best constant in a dif-

ferent type of Friedrichs inequality. The limit inequality is valid for all functions in the

Sobolev space H1.

Similar questions, with different types of microheterogeneities in a neighborhood of

the boundary, were studied in [1-5]. In [1] (see also [2]), domains with a periodical

perforation along the boundary were considered and the precise asymptotics of the

best constant in a Friedrichs-type inequality was established. It was assumed that the

size of perforation and the period were of the same order. Two different cases with

non-periodical perforation were considered in [4,5]. The convergence of the constant,

as the size of perforation tends to zero, to the constant in the limit inequality was

proved. In [3], a Friedrichs-type inequality was proved for functions vanishing on small

periodically alternating pieces of the boundary. The length of the pieces where the
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functions vanish was assumed to be of the same order as the length of the period. In

particular, the precise asymptotics of the best constant, with respect to the small para-

meter describing the heterogeneous boundary condition, was derived.

2 Preliminaries and statement of the problem
Let Ω ⊂ ℝ2 be a bounded domain such that the boundary, ∂Ω, is Lipschitz continuous.

Suppose that coordinates (x1, x2) are used in Ω. Introduce local coordinates (s, t) in a

small neighborhood of ∂Ω in the following way: choose the origin O Î ∂Ω and a point

P(s, t) in a neighborhood of ∂Ω. Then, t is the distance from P to the boundary and s

is the counter clock-wise length of the boundary from O to the point P1 (s, t), where

P1 is the point for which t = |PP1| (see Figure 1).

Consider a semi-strip B = {ξ Î ℝ2: 0 <ξ1 < 1, ξ2 > 0} and a closed set Tμ ⊂ B

depending on a small parameter μ Î (0, 1] which characterizes the size and the shape

of the perforation (see Figure 2).

We study the case when Tμ is shrinking in a uniform way as μ goes to zero. More-

over, we assume that Tμ is uniformly bounded with respect to μ, i.e., there exists r Î
ℝ, r > 0 such that Tμ ⊂ {ξ Î ℝ2: 0 <ξ1 < 1, 0 <ξ2 <r} for all μ Î (0, 1].

Let T1
μ be 1-periodic extension of Tμ with respect to ξ1 and Tε

μ is the image of T1
μ

under the mapping s = εξ1, t = εξ2, where ε is a small parameter, 0 < ε � 1,
1
ε

∈ N.

Define the domain �ε = �\Tε
μ (see Figure 2). Further, we assume that μ = μ(ε) and that

μ = μ(ε) → 0 as ε → 0. (1)

Hence, ε > 0 is a parameter which describes both the size of the perforation and the

length of the period.

Consider the following spectral problem:⎧⎪⎨
⎪⎩

−�uε = λεuε in �ε,
uε = 0 on Tε

μ,
∂uε

∂ν
= 0 on ∂�.

(2)

Here ν denotes the unit outward normal to Ω. The limit problem for (2) depends on

how fast the size of the perforation goes to zero relative the length of the period. It

was proved in [6] (see also [7]) that if the perforation is “rare”, i.e., the size of the local

perforation goes to zero much faster than the period of perforation, then the limit pro-

blem for (2) is the Robin boundary value problem

� (�� �)

�

� �1 (�� �)
�

� �
�

��

�

Figure 1 The local coordinate system.
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{−�u0 = λ0u0 in �,
∂u0
∂ν

+ pu0 = 0 on ∂�,
(3)

where 0 <p < ∞. The precise meaning of that the perforation is rare is given in (14)

later on. The faster the size of the local perforation goes to zero the smaller p will be.

There is a critical speed which gives that p is equal to zero, see [6,7]. In such situations

the limit problem is of Neumann type. The limit problem is of Dirichlet type (p = ∞)

when the size of the local perforation does not go to zero “fast enough” relative the

period of perforation.

According to the general theory of elliptic operators, there exist countable sets {λk
ε}

and {λk
0} of eigenvalues of (2) and (3) which satisfy

0 < λ1
ε ≤ λ2

ε ≤ · · · ≤ λk
ε ≤ · · · , 0 < λ1

0 ≤ λ2
0 ≤ · · · ≤ λk

0 ≤ · · · .

Using the same arguments as in [4], it follows that λ1
ε > 0. This together with the

variational formulation of the smallest eigenvalue of (2) lead to the following Frie-

drichs-type inequality for functions u Î H1(Ω) which vanish on Tε
μ:∫

�ε

u2dx ≤ Kε

∫
�ε

|∇u|2dx, (4)

where Kε is the best constant and is given by

Kε =
1
λ1

ε

. (5)

In the case with p = ∞ (Dirichlet boundary conditions in the limit problem) the

smallest eigenvalue λ1
0 for the limit problem is related to the best constant in the Frie-

drichs inequality for functions in H1
0(�). Indeed, via the variational formulation of λ1

0

we have that∫
�

u2dx ≤ K0

∫
�

|∇u|2dx, (6)

where the best constant is given by K0 = 1/λ1
0.

�
2

�
1§

�

��

1

�
�

0

Figure 2 Geometry of the perforated domain.
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A geometrical proof of that Kε ® K0 was presented in [4] for the case p = ∞. The

goal of this article is to answer the following questions, in the case 0 <p < ∞: (1) Is

there a Friedrichs-type inequality related to the limit Robin boundary value problem?

(2) If the answer on the first questions is yes, how is then Kε related to the best con-

stant, K0, in this Friedrichs-type inequality. We will see that there is such a Friedrichs-

type inequality and we present a result describing the asymptotic relation between Kε

and K0. Moreover, as a result of our analysis we also obtain the convergence of the

eigenvalues, λk
ε → λk

0, for the case 0 <p < ∞.

3 The main results
The following Friedrichs-type inequality holds for functions in H1 (Ω):

Proposition 1 There exists a constant K0 > 0 such that

∫
�

u2dx ≤ K0

⎛
⎝∫

�

|∇u|2dx + p
∫
∂�

u2ds

⎞
⎠ (7)

for any u Î H1 (Ω). Moreover, the best constant is K0 = 1/λ1
0, where λ1

0is the smallest

eigenvalue in the limit problem (3).

Proof. The variational formulation of the smallest eigenvalue of the limit problem (3)

is

λ1
0 = min

u∈H1(�)\{0}

⎧⎪⎨
⎪⎩

∫
�

|∇u|2dx + p
∫
∂�

u2ds∫
�

u2dx

⎫⎪⎬
⎪⎭ .

For details, see paragraph 2.5 in [8]. From this, it is clear that the inequality (7)

holds. It also follows that the best constant is 1/λ1
0.

Let us define the following set of functions:

W =
{
u ∈ H1(�) :

∂u
∂ν

+ pu = 0 on ∂�, 0 < p < ∞
}
.

Note that solutions of the limit problem (3) belong to W. We remark that an

inequality of the form (6) cannot be valid for functions in W. Indeed,

Proposition 2 There is no C > 0 such that the inequality∫
�

u2dx ≤ C
∫
�

|∇u|2dx (8)

holds for all functions in W.

Proof. We prove the statement by a counter example. Let

Km = {x ∈ � : dist(x, ∂�) ≥ 1/m, m ∈ N}.

Define the function um such that um = m + p on Km and um = m on ∂Ω. It is possi-

ble to construct a smooth transition from Km to ∂Ω such that ∂um/∂ν + pum = 0 on

∂Ω and

|∇um|2 ≤ k
(
m + p − m

1/m

)2

= kp2m2
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in Ω\Km for some constant k. Note that ∇um = 0 on Km and that |Ω\Km| ~ 1/m (~

means asymptotically equal to). We get that∫
�

|∇um|2dx∫
�

u2mdx
≤ kp2m2|�\Km|∫

�

u2mdx
≤ kp2m2|�\Km|

m2|�| → 0

as m ® ∞. Thus, (8) cannot hold.

We will now consider how to estimate the difference between the best constants, K0

and Kε, in the inequalities (7) and (4). First, observe that by Proposition 1 and (5) we

have that

|Kε − K0| =
∣∣∣∣ 1λ1

ε

− 1

λ1
0

∣∣∣∣ . (9)

To estimate |1/λ1
ε − 1/λ1

0| we will use the ideas in the general method for estimating

the difference between eigenvalues and eigenvectors of two operators defined on differ-

ent spaces, which was introduced by Oleinik et al. [9], see also [10].

For the readers convenience, we review the main ideas in the method mentioned

above. Indeed, let Hε and H0 be separable Hilbert spaces with the inner products

(uε, vε)Hε
, (u, v)H0 and norms ||uε||Hε

, ||u||H0, respectively; assume that Aε Î L(Hε) and

A0 Î L(H0) are linear continuous operators and Im A0 ⊆ V ⊆ H0, where V is a linear

subspace of H0. The following conditions are supposed to hold:

C1 There exist linear continuous operators Rε: Hε ® H0 and a constant c > 0 such

that

(Rεf ,Rεf )Hε
→ c(f , f )H0 as ε → 0

for any f Î V.

C2 The operators Aε: Hε ® Hε and A0: H0 ® H0 are positive, compact and self-

adjoint. Moreover, supε||Aε||L(Hε) < +∞.

C3 For all f ÎV it holds that ||AεRεf − RεA0f ||Hε
→ 0 as ε → 0.

C4 The sequence of operators Aε is uniformly compact in the following sense: if we

take a sequence {fε}, where fε Î Hε, such that supε||fε||Hε
< +∞, then there exist a sub-

sequence {fεk} and vector w0 Î V such that ||Aεk fεk − Rεkw0||Hεk
→ 0 as εk ® 0.

Let us also introduce the spectral problems for operators Aε, A0:

Aεu
k
ε = μk

εu
k
ε, μ1

ε ≥ μ2
ε ≥ · · · , k = 1, 2, . . . (ulε, u

m
ε ) = δlm, (10)

A0u
k
0 = μk

0u
k
0, μ1

0 ≥ μ2
0 ≥ · · · , k = 1, 2, . . . (ul0, u

m
0 ) = δlm, (11)

where δlm is the Kronecker symbol, the eigenvalues μk
ε,μ

k
0 are repeated according to

their multiplicities. The following lemma holds true (see [9, Chapter III]).

Lemma 3 Suppose that the conditions C1-C4 are valid. Then, there is a sequence

{βk
ε }such that βk

ε → 0 as ε → 0, 0 < βk
ε < μk

0and the following estimate:

|μk
ε − μk

0| ≤ μk
0c

−
1
2

μk
0 − βk

ε

sup
v∈N(μk

0,A0),||v||H0=1

||AεRεv − RεA0v||Hε

(12)
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holds, where N(μk
0,A0) = {v ∈ H0 : A0v = μk

0v}.
Let us now give a more precise definition of that the perforation is rare. Indeed,

introduce the space Vμ(ε) as the closure of the set of functions in v Î C∞ (ℝ2 ∩ {ξ2 >

0}) which are 1-periodic with respect to ξ1, vanishing on Tμ(ε) and with finite∫
B |∇v|2dξ. The closure is with respect to the norm ‖v‖ =

∫
B |∇v|2dξ +

∫
∑ v2dξ1. More-

over, define the value

ημ(ε) = inf
v∈Vμ(ε)\{0}

∫
B

|∇v|2dξ∫
∑ v2dξ1

, (13)

where Σ: = ∂B ∩ {ξ2 = 0} (see Figure 2). Moreover, we define the number p as

lim
ε→0

ημ(ε)

ε
= p. (14)

In fact, the number p corresponds to the ratio between measure of small set Tμ and

the length of period, i.e., it describes how much of the Dirichlet condition per cell of

periodicity we have.

We will now prove the following estimate for |Kε - K0|:

Theorem 4 Let Kε and K0 be the constants in (4) and (7). If 0 <p < ∞ is defined by

(14), then there exists a constant C, independent of ε, such that

|Kε − K0| ≤ C
(√

ημ(ε) +
∣∣∣ημ(ε)

ε
− p

∣∣∣ + √
εημ(ε)

)
. (15)

Proof. By (9) we will have an estimate of |Kε - K0| if we have an estimate of

|1/λ1
ε − 1/λ1

0|. In order to obtain such an estimate we will use the result in Lemma 3.

Indeed, we introduce two auxiliary problems:⎧⎪⎨
⎪⎩

−�uε = f in �ε,
uε = 0 on Tε

μ,
∂uε

∂ν
= 0 on ∂�

(16)

and the corresponding limit problem{−�u0 = f in �,
∂u0
∂ν

+ pu0 = 0 on ∂�,
(17)

where f Î L2(Ω) and p satisfies (14). The fact that (17) is the limit problem for (16)

for any f was established in [6]. More precisely, it was proved that if uε Î H1(Ωε) and

u0 Î H1(Ω) are weak solutions of (16) and (17), then uε ⇀ u0 weakly in H1(Ω) as ε ®
0 which implies the convergence

||uε − u0||L2(�) → 0 as ε → 0. (18)

Note that here and from now on, uε is assumed to be defined in whole Ω and van-

ishing on Tε
μ.

Let us now prove the following estimates for the solutions of (16) and (17):

‖uε‖H1(�ε) ≤ k1
∥∥f∥∥L2(�ε) (19)
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and

||u0||H1(�) ≤ k2||f ||L2(�), (20)

where k1 and k2 are independent of ε. First, we recall that using the technique devel-

oped in [4] (see also [5]), one can prove the following Friedrichs-type inequality for

functions w belonging to H1(Ω) and vanishing on Tε
μ:∫

�

w2dx ≤ K
∫
�

|∇w|2dx, (21)

where K does not depend on ε. In particular, the inequality (21) implies that the

solution of (16) satisfies the estimate∫
�ε

u2εdx ≤ K
∫
�ε

|∇uε|2dx. (22)

By choosing uε as the test function in the weak formulation of (16), we have∫
�ε

|∇uε|2dx =
∫
�ε

f uεdx.

Using the Hölder inequality and (22), we obtain that

||∇uε||L2(�ε) ≤
√
K||f ||L2(�ε).

From this and (22) the estimate (19) follows, with k1 =
√
K(1 + K). Let us now prove

the estimate (20). Indeed, we start by showing that for any w Î H1(Ω)\{0} there exists

a constant M which does not depend on w such that∫
�

|∇w|2dx|p
∫
∂�

w2ds ≥ M||w||2H1(�). (23)

Suppose that the contradiction holds: i.e., that for any m there exists wm Î H1(Ω)\{0}

such that∫
�

|∇wm|2dx + p
∫
∂�

w2
mds <

1
m

||wm||2H1(�).

Denote vm = wm/||wm||H1(�). Then,

||vm||H1(�) = 1 (24)

and ∫
�

|∇vm|2dx + p
∫
∂�

v2mds <
1
m
. (25)

By the inequalities (7) and (25), we have that

∫
�

v2mdx ≤ K0

⎛
⎝∫

�

|∇vm|2dx + p
∫
∂�

v2mds

⎞
⎠ <

K0

m
. (26)
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From (25) and (26), it follows that vm ® 0 in H1 (Ω), which contradicts to (24).

Thus, the estimate (23) is proved. Choosing u0 as a test function in the weak formula-

tion of (17) leads to the identity∫
�

|∇u0|2dx + p
∫
∂�

u20ds =
∫
�

f u0dx. (27)

By applying (23) to u0, using (27) and the Cauchy-Schwarz inequality, we get that

||u0||H1(�) ≤ 1
M

||f ||L2(�), (28)

which is estimate (20) with k2 = 1/M.

To estimate |1/λ1
ε − 1/λ1

0| we will now use the method, which was described above,

for estimating the difference between eigenvalues. Indeed, define the spaces Hε = L2

(Ωε), H0 = V = L2(Ω) and the restriction operator Rε : H0 ® Hε. Define the operators

Aε and A0 in the following way: Aε f = uε and A0 f = u0, where uε and u0 are the weak

solutions of problems (16) and (17), respectively. Let us verify the conditions C1-C4.

The condition C1 is valid with c = 1. Indeed, take f Î V. Then,

(Rεf ,Rεf )ε =
∫
�ε

f 2(x)dx →
∫
�

f 2(x)dx = (f , f )0

as ε ® 0 due to the fact that measure of Tε
μ → 0 as ε ® 0.

Let us verify the condition C2. First, we prove that the operator Aε is self-adjoint. Let

f and g be functions in L2(Ωε) and define uε = Aεf and vε = Aεg. If we chose vε as test

function in the weak formulation of (16) with f in the right-hand side and uε as a test

function in the case when the right-hand side is g, then we obtain that∫
�ε

f vεdx =
∫
�ε

∇uε · ∇vεdx =
∫
�ε

guεdx.

Hence,

(Aεf , g)L2(�ε) = (uε, g)L2(�ε) =
∫
�ε

∇vε · ∇uεdx = (f , vε)L2(�ε) = (f ,Aεg)L2(�ε).

Now, we prove the operator A0 is self-adjoint. Define u0 = A0f and v0 = A0g, where f,

g Î L2(Ω). According to the weak formulation of (17), we find that

(A0f , g)L2(�) =
∫
�

u0gdx =
∫
�

∇v0 · ∇u0dx −
∫
∂�

u0
∂v0
∂ν

ds

=
∫
�

∇v0 · ∇u0dx + p
∫
∂�

u0v0ds =
∫
�

∇u0 · ∇v0dx −
∫
∂�

v0
∂u0
∂ν

ds

=
∫
�

f v0dx = (f ,A0g)L2(�).
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That the operator Aε is positive follows from

(Aεf , f )L2(�) =
∫
�

uεfdx =
∫
�

|∇uε|2dx > 0

if uε ≠ 0 (i.e., f ≠ 0). Similarly, we obtain that A0 is positive. Indeed, the weak formu-

lation of (17) gives

(A0f , f )L2(�) =
∫
�

u0fdx =
∫
�

|∇u0|2dx −
∫
∂�

u0
∂u0
∂ν

ds

=
∫
�

|∇u0|2dx + p
∫
∂�

u20ds > 0

if u0 ≠ 0. Next, we show that Aε and A0 are compact operators. Let {fn} be a bounded

sequence in L2(Ωε). Then, estimate (19) implies that there exists a constant c such that

||Aεfn||L2(�ε) = ||uε,n||L2(�ε) ≤ ||uε,n||H1(�ε) ≤ k1||fn||L2(�ε) ≤ c.

Hence, there exist a subsequence of {uε, n} and ũε ∈ H1(�ε) such that uε,nk ⇀ ũε

weakly in H1(Ωε) and thus strongly in L2(Ωε) which exactly means that Aε is compact.

Moreover, (19) implies that ||Aεf ||L2(�ε) ≤ k1||f ||L2(�ε) for any f Î L2(Ωε). Hence,

supε‖Aε‖L(Hε) ≤ k1. The compactness of A0 can be proved analogously by applying esti-

mate (20) instead of (19).

Let us verify the condition C3 is fulfilled. Take f Î L2(Ω). It follows by (18) that

||AεRεf − RεA0f ||L2(�ε) = ||Aεf − A0f ||L2(�ε) = ||uε − u0||L2(�) → 0

as ε ® 0.

Let us verify that the condition C4 is satisfied. Consider a sequence {fε}, where fε Î
L2 (Ωε) such that supε||fε||L2(�ε) < +∞. Then,

||Aεfε||H−1(�ε) = ||uε||H−1(�) ≤ k1||fε||L2(�ε) < +∞,

due to (19). The Rellich imbedding theorem implies that the sequence {Aεfε} is com-

pact in L2(Ω). Thus, there exists a subsequence {εk} and w0 Î L2(Ω) such that

Aεk fεk → w0 as εk → 0.

From this, we deduce that ||Aεk fεk − Rεkw0||L2(�εk
) → 0 as εk ® 0. Hence, all the con-

ditions C1-C4 are valid.

Let lε be an eigenvalue of the -Δ operator with the boundary conditions given in

(16) and vε the corresponding eigenvector. In this notation, we have that -Δvε = lεvε
and thus Aε (lεvε) = vε. From this, it is evident that Aεvε = (1/lε)vε. From this, it follows

that μk
ε = 1/λk

ε (μ
k
ε is defined in (10)). In the same way, we can deduce that μk

0 = 1/λk
0.

Using the estimate (12), we have∣∣∣∣∣ 1λk
ε

− 1

λk
0

∣∣∣∣∣ ≤ 1

1 − λk
0β

k
ε

sup
v∈N(μk

0,A0),||v||L2(�)=1

||AεRεv − RεA0v||L2(�ε). (29)

Recall that N(μk
0,A0) = {v ∈ H0 : A0v = μk

0v}. Let v ∈ N(μk
0,A0). If we choose f = v in

the problem (17), then the solution, denoted by uv0, can be expressed as

Koroleva et al. Journal of Inequalities and Applications 2011, 2011:129
http://www.journalofinequalitiesandapplications.com/content/2011/1/129

Page 9 of 12



uv0 = A0v = μk
0v.

Similarly, if we choose f = Rεv in the problem (16), then the solution, denoted by uvε,

is of the form

uvε = AεRεv.

In this notation, (29) reads∣∣∣∣∣ 1λk
ε

− 1

λk
0

∣∣∣∣∣ ≤ 1

1 − λk
0β

k
ε

sup
v∈N(μk

0,A0),||v||L2(�)=1

||uvε − Rεuv0||L2(�e). (30)

In [6], it was proved that (17) is the limit problem corresponding to (16). By the

results in [6], it follows that there exists a constant C1 such that

||uε − u0||L2(�) ≤ C1

(
||f ||L∞(�)

(√
ημ +

∣∣∣ημ

ε
− p

∣∣∣) + ||u0||L∞(�)
√

εημ

)
(31)

for any f Î L∞ (Ω). In particular, for the present choice of f, f = v, we have

||uvε − uv0||L2(�) ≤ C1

(
||v||L∞(�)

(√
ημ +

∣∣∣ημ

ε
− p

∣∣∣) + μk
0||v||L∞(�)

√
εημ

)
.

This together with the fact that eigenfunctions belong to C∞(�̄) gives that there is a

constant C2 (which depends on k) such that

sup
v∈N(λk

0,A0),||v||L2(�)=1

||uvε − uv0||L2(�ε) ≤ C2

(√
ημ +

∣∣∣ημ

ε
− p

∣∣∣ + √
εημ

)
. (32)

From this and (30), we obtain∣∣∣∣∣ 1λk
ε

− 1

λk
0

∣∣∣∣∣ ≤ 1

1 − λk
0β

k
ε

C2

(√
ημ +

∣∣∣ημ

ε
− p

∣∣∣ + √
εημ

)
.

By Lemma 3, we have that 1 − λk
0β

k
ε > 0 for sufficiently small values of ε (as βk

ε → 0).

Hence, there exists a constant C, independent of ε, such that∣∣∣∣∣ 1λk
ε

− 1

λk
0

∣∣∣∣∣ ≤ C
(√

ημ +
∣∣∣ημ

ε
− p

∣∣∣ + √
εημ

)
(33)

and the proof is complete.

As a consequence of the proof above we have the following result:

Corollary 5 The eigenvalues λk
ε
of (2) converge to the corresponding eigenvalue λk

0 of

(3).

Proof. We note that by (33)

|λk
0 − λk

ε| = λk
ελ

k
0

∣∣∣∣∣ 1λk
ε

− 1

λk
0

∣∣∣∣∣ ≤ λk
ελ

k
0C

(√
ημ +

∣∣∣ημ

ε
− p

∣∣∣ + √
εημ

)
.

It follows from (33) that {λk
ε} is bounded. Hence,

|λk
0 − λk

ε| ≤ λk
ελ

k
0C

(√
ημ +

∣∣∣ημ

ε
− p

∣∣∣ + √
εημ

)
→ 0

as ε ® 0.
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Remark 6 The result established in Theorem 4 is valid for a wide class of domains

with perforation along the boundary. It is possible to estimate the difference |Kε - K0|

more precisely in some partial cases. For some particular cases, it is in fact possible to

construct an asymptotic expansion for Kε with respect to ε as ε ® 0 via the method of

matching of asymptotic expansion (see, e.g., [11]).

We end this work by giving an example where the result in Theorem 4 is applicable.

Example 7 Consider a semi-strip B = {ξ Î ℝ2: 0 <ξ1 < 1, ξ2 > 0} and a bounded

domain T ⊂ B with smooth boundary ∂T. Let

Tμ = {ξ ∈ B : μ−1(ξ − ξ0) ∈ T̄, ξ0 ∈ B},μ ∈ (0, 1]. For this case, the following estimate

was derived in [6] for sufficiently small μ <μ0, μ0 Î (0, 1]:

2π

(1 + ε) lnμ(ε)
≤ ημ(ε) ≤ 2π

lnμ0 − lnμ(ε)
. (34)

Let us choose μ(ε) = e-A/ε, where A > 0. Then, ln μ(ε) = -A/ε. In this case, the estimate

(34) leads to

2π

(1 + ε)A
≤ ημ(ε)

ε
≤ 2π

ε lnμ0 + A
. (35)

Hence, hμ(ε)/ε ® 2π/A = p. By (15) and (35), we have that

|Kε − K0| ≤ C

⎛
⎝

√
2πε

ε lnμ0 + A
+

√
2πε2

ε lnμ0 + A

⎞
⎠

+ Cmax
{

2π

ε lnμ0 + A
− 2π

A
,
2π

A
− 2π

(1 + ε)A

}
.

It can be observed that if μ(ε) = εa, a > 0, then (34) gives that hμ(ε)/ε ® ∞. This

means that the perforation is vanishing too slow in order to have Robin boundary con-

ditions in the limit problems (3) and (17).

Remark 8 The result obtained in this article can be generalized to higher dimensional

domain. The crucial step is to prove the estimate similar to (31). This is a good future

research problem.
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