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Abstract

As is well known, there exist non-locally convex spaces with trivial dual and therefore
the usual duality theory is invalid for this kind of spaces. In this article, for a
topological vector space X, we study the family of continuous demi-linear functionals
on X, which is called the demi-linear dual space of X. To be more precise, the spaces
with non-trivial demi-linear dual (for which the usual dual may be trivial) are
discussed and then many results on the usual duality theory are extended for the
demi-linear duality. Especially, a version of Alaoglu-Bourbaki theorem for the demi-
linear dual is established.
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1 Introduction

Let K € {R,C} and X be a locally convex space over K with the dual X’. There is a
beautiful duality theory for the pair (X, X’) (see [[1], Chapter 8]). However, it is possi-
ble that X’ = {0} even for some Fréchet spaces such as LF(0, 1) for 0 <p < 1. Then the
usual duality theory would be useless and hence every reasonable extension of X~ will
be interesting.

Recently, £,,u(X,Y), the family of demi-linear mappings between topological vector
spaces X and Y is firstly introduced in [2]. £,,u(X,Y) is a meaningful extension of the
family of linear operators. The authors have established the equicontinuity theorem,
the uniform boundedness principle and the Banach-Steinhaus closure theorem for the
extension L,,u(X,Y). Especially, for demi-linear functionals on the spaces of test func-
tions, Ronglu Li et al have established a theory which is a natural generalization of the
usual theory of distributions in their unpublished paper “Li, R, Chung, J, Kim, D:
Demi-distributions, submitted”.

Let X,Y be topological vector spaces over the scalar field K and A (X) the family of
neighborhoods of 0 € X. Let

C(0) = {y € Kk:}ilréy(t)=y(0)=0,| y() =t if |t]< 1}.

Definition 1.1 /2, Definition 2.1] A mapping f- X — Y is said to be demi-linear if f0)
= 0 and there exists y€ C(0) and U e N(X) such that every x [ X, ul U and
tef{teK:|t|< 1} yield r,s € K for which |r- 1| < |y (t) |, |s| < | v (V)] and fix + tu)
= 1flx) + sflu).
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We denote by L,,u(X,Y) the family of demi-linear mappings related to ye C(0)
and U € N(X), and by K, u(X,Y) the subfamily of £, u(X,Y) satisfying the follow-
ing property: if x/ X, u[ U and |¢| < 1, then flix + tu) = rfix) + sflu) for some s with |
s| < | 7 ()] Let

X = If € £, u(X, K) : fis continuous} ,

which is called the demi-linear dual space of X. Obviously, X’ © X ),

In this article, first we discuss the spaces with non-trivial demi-linear dual, of which
the usual dual may be trivial. Second we obtain a list of conclusions on the demi-linear
dual pair (X, X ), Especially, the Alaoglu-Bourbaki theorem for the pair (X, X0ty
is established. We will see that many results in the usual duality theory of (X, X’) can
be extended to (X, X" ).

Before we start, some existing conclusions about £,,u(X,Y) are given as follows. In
general, £, u(X,Y) is a large extension of L(X, Y). For instance, if ||-||: X — [0, +) is
a norm, then || - || € £, x(X,R) for every ye C(0). Moreover, we have the following

Proposition 1.2 ([2, Theorem 2.1]) Let X be a non-trivial normed space, C > 1, § > 0
and U ={u e X : ||lu|| <o}, At) = Ct for t € K. If Y is non-trivial, i.e,Y #{0}, then the
family of nonlinear mappings in Ly,u(X,Y) is uncountable, and every non-zero linear
operator T : X — Y produces uncountably many of nonlinear mappings in L, u(X,Y).

Definition 1.3 A family T © Y~ is said to be equicontinuous at x € X if for every
W e N(Y), there exists V € N(X) such that fix + V) € fix) + W for all fe T, and T
is equicontinuous on X or, simply, equicontinuous if I' is equicontinuous at each x € X.

As usual, T € Y* is said to be pointwise bounded on X if {f{ix): fe T} is bounded at
each x € X, and f: X — Y is said to be bounded if f{B) is bounded for every bounded
BcCcX.

The following results are substantial improvements of the equicontinuity theorem
and the uniform boundedness principle in linear analysis.

Theorem 1.4 ([2, Theorem 3.1]) If X is of second category and T C L, u(X,Y) is a
pointwise bounded family of continuous demi-linear mappings, then I is equicontinuous
on X.

Theorem 1.5 (2, Theorem 3.3]) If x is of second category and T C L, u(X,Y) is a
pointwise bounded family of continuous demi-linear mappings, then T is uniformly
bounded on each bounded subset of X, i.e.,{fix): fe T, x € B} is bounded for each
bounded B C X.

If, in addition, X is metrizable, then the continuity of fe I can be replaced by bound-
edness of fe T.

2 Spaces with non-trivial demi-linear dual
Lemma 2.1 Let f € L, u(X,K). Foreachxe X, ue U and |t| < 1, we have

| fQe) 1=y (@) 11 f(w) I; (1)
[fle+ ) =fx) =Ly (@ T fE) T+ 1) ). 2
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Proof. Since f € L, u(X,K), for eachx e X, u e U and || < 1, we have flix + tu) = rf
(%) + sflu) where |r - 1| < |{¢)| and |s| < |A¢)|. Then

e+ t) = fx) 1= (r = Df () +sf () I<Ir = TIFE) T+ s @) 1<y @ LU )T+ 1) 1),
which implies (2). Then (1) holds by letting x = 0 in (2).

Theorem 2.2 Let X be a topological vector space and f: X — [0, +o°) a function
satisfying

(%) f(0) =0, f(—x) = f(x) and f(x + y) < f(x) + f(y) whenever x,y € X.

Then, for every ye C(0) and U € N (X), the following (I), (I), and (Ill) are equiva-
lent:

@) f€LyulXR);
(1) fitu) < |Nt)|u) whenever u € U and |t| < 1;
) f e Kyu(X,R).

Proof. (I) = (II). By Lemma 2.1.
(II) = (III). Let x € X, u € U and |t| < 1. Then

)= Ty (@ 1 f(u) = f(x) = f(tu) < flx+ ) < fx) + f(w) < f()+ |y () |f(w).
Define ¢ : [-|1?)], |1)|]] = R by ¢(a) = fix) + aflu). Then ¢ is continuous and
(= 1y N =f@)—= 1y [f(u) = flx+w) = f)+1y) | fu)=elr@) D).
So there is s € [-|/2)|, |N?)|] such that fix + tu) = As) = flx) + sflu).
(II1) = (I). y U(X [R) C Ey U(X [R)
In the following Theorem 2.2, we want to know whether a paranorm on a topologi-
cal vector space X is in Ky, u(X, R) for some yand U. However, the following example

shows that this is invalid.

Example 2.3 Let © be the space of all sequences with the paranorml||-||:

oo

1 ||
||x||—§2j1+|xj|,Vx—(x])€w.

Then, for every ye C(0) and U, = {u = (w): ||u|| < €}, we have || - || ¢ £, u(w R).
Otherwise, there exists ye C(0) and ¢ > 0 such that || - || € Ly,u(w, R)and hence

1 1
I ull<ly( ) Ilul forallue U, andn e N
n n

by Theorem 2.2. Pick N € N with 2N <¢. Let ”n=(0,---,0,(lr\{),0,~~~)’Vne N.

Then || uy ||= .\ N 1o < 2}\1 < ¢ implies u,, € U, for each N € N. It follows from
[T | 11+n 1
= > ,Vnel,
( )I_ | =(ny, )/(2N1 )=, 7,

that y(}) - Oas n — o, which contradicts ye C(0).
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Note that the space w in Example 2.3 has a Schauder basis. The following corollary
shows that the set of nonlinear demi-linear continuous functionals on a Hausdorff
topological vector space with a Schauder basis has an uncountable cardinality.

Corollary 2.4 Let X be a Hausdorff topological vector space with a Schauder basis.
Then for every y e C(0) and UeN(X), the demi-linear dual
X =A{f e £, u(X,R) : f is continuous} is uncountable.

Proof. Let {b;} be a Schauder basis of X. There is a family P of non-zero paranorms
on X such that the vector topology on X is just 6P, i.e., x, — x in X if and only if ||x,
- x|| = 0 for each [|-|| € P ([[1], p.55]).

Pick ||-|]| € P. Then || X 52 subr I#0 for some Y po;subr € X and hence

| Skobr, II# 0 for some ko € N. For non-zero ¢ € K, define f. : X — [0, +e0) by

oo
£ mbi) = crig 11l siyb I -
k=1
Obviously, f. is continuous and satisfies the condition (*) in Theorem 2.2. Let ye C
(0), ZZjl mebr € X and || < 1. Then

Fe€ Y mebe) =1 ctrig 1 Skybry =1 €11 e 1 skobry l1=1 21 O mebi) <1y (6) 1 £ mebr)

k=1 k=1 k=1

and hence f. € K,,u(X,R) € £,,u(X,R) for all U € N (X) by Theorem 2.2. Thus,
{fe:0#4cek} c X forall ye C(0) and U € N(X).
Example 2.5 As in Example 2.3, the space (o, ||-||) is a Hausdorff topological vector
(n)
space with the Schauder base {en =(0,---,0, 'f,o,m) ‘ne IN}, Define f,,, : ® > R
with f,(u) = |cu,| where u = (u)) € o. Then we have

{fC,n :0#cekKne N} c ot = {f e Lyu(w,R):fis continuous}

for every ye C(0) and U € N (w)by Corollary 2.4.

Recall that a p-seminorm ||-|| (0 <p < 1) on a vector space E is characterized by ||x||
>0, ||tx|| = [¢]P ||x]] and ||x + y|| < ||x|| + [|y]] for all t € K and x, y € E. If, in addi-
tion, ||x|| = O implies x = 0, then, ||-|| is called a p-norm on E.

Definition 2.6 ([[3], p. 11][[4], Sec. 2]) A topological vector space X is semiconvex if
and only if there is a family {p,} of (continuous) ky-seminorms (0 <ky < 1) such that
the sets {x € X : pu(x) < 1} form a neighborhood basis at 0, that is,

Hx:pa(x) < :l} : Pa eP,neN}

is a base of N(X), where P is the family of all continuous p-seminorms with
0O<p< 1.

A topological vector space X is locally bounded if and only if its topology is given by
a p-norm (0 <p < 1) ([[5], §15, Sec. 10]).

Clearly, locally bounded spaces and locally convex spaces are both semiconvex.

Page 4 of 15
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Corollary 2.7 Let X be a semiconvex Hausdorff topological vector space and py a con-
tinuous ky-seminorm (0 <koy < 1) on X. Then for Uy = {x € X : po(x) < 1} e N(X) and

y()=el-| ko e KX, the demi-linear dual
Xto) = {f e £, 4, (X, R) : f is continuous)

is uncountable. Especially, {po(-), sin(po(+)), e”() — 1} c X(rUo),
Proof. Let P be the family of all continuous k,-seminorms with 0 <k, < 1. Obviously,
the functionals in P satisfy the condition (*) in Theorem 2.2. Moreover, for each p, €

P with k, > ko, we have

o (tx) = ¢ | tfpy(x) < c | t]%pa(x) < | y(t) | cpo(x), forallx e X, | t|< 1and c € K,

and hence {cp, : ¢ € K, ky > ko} € X(*"Uo) by Theorem 2.2.
Define f: X — R by flx) = sin(po(x)), Vo € X. For eachx € X, u e U, and |t]| < 1,
there exists s € [— | t|*, | t|*] and 0 € [0,1] such that

sin(po(x + tu)) = sin(po(x) + spo(u)) = sin(po(x)) + cos(po(x) + Ospo(u))spo(u),

ie.,
Fx+ tu) = f(x) + cos(po(x) + Ospo(u)) sin”(‘; (Ou()u))sf(u),
where
| cos(po(x) +05p0(u))sinp((;(ou()u))s < Z [t <e|t]fo = y(t) |,

which implies that f(.) = sin(py(-)) € x.Uo),
Define g: X — R by g(x) = ¢”(®) — 1, Vx e X. For eachx € X, u e U and || <1,
there exists s € [— | t|*, | t|*] such that

o) _ 1

gPolx+t) _ 1 — pPo(*)+spo(u) _ 1 = psPo(u) (epo(x) —1)+
ebo(x) — 1

(e — 1),

ie.,

o) _ 1
gle+u) =e™Wglx)+ o).

Then, there exists 6,n € [0,1] for which
|7 — 1 |=] 7 Mspo(u) [<els|<el ¢ =] y(1) |
and

eSPO(”) -1 695770(”)5 o(u
| o 1 17 WW%&;5&W”H5eH5dH%4ﬂUL

Thus, g() = eﬂo(') —1le X(y,Uo)'
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Example 2.8 For 0 <p < 1, let L”(0,1) be the space of equivalence classes of measur-
able functions on [0,1], with

1
TAE /0 F(0) Pde < oo,

Then (LP(0,1), ||-]|)’ = {0} ([[1], p.25]). However, LF(0,1) is locally bounded and hence
semiconvex. By Corollary 2.7, if Uy = {f: ||f]| < 1} and ¥(-) = e|-|” € C(0), then the
demi-linear dual (LP(0,1), | - |)""Uo) contains various non-zero functionals.

A conjecture is that each topological vector space has a nontrivial demi-linear dual
space. However, this is invalid, even for separable Fréchet space.

Example 2.9 Let M(0, 1) be the space of equivalence classes of measurable functions
on [0,1], with

(N If
||f||-fO LY

Then M(0,1)is a separable Fréchet space with trivial dual. In fact, the demi-linear
dual space of M(0, 1) is also trivial, that is,

(M(0,1), ] - D&Y = (0} for each y € C(0) and U € N (M(0, 1)).

Let ue (M(0,1), | - )"Y. Let N e N be such that |fi| < ijimpliesfe U and |u

(Nl < 1. Given fe M(0,1), write f=3"I, fywhere fi = 0 off [*J', k]. Then

N-1

N
u(Y_fi) =u(Y_ fi+fn)

k=1 k=1

N-1
= rvu( Y fi) + snu(fn)
- N—-2 NY
Ntn-au( Y fi) + nsnoau(fvo1) + swu(fiv)

k=1

u(f)

TN - -T3nu(fi) + 1 - - - m3sau(fa) + - -
+TNSN—1U(fn-1) + snu(fn),

N-1

N
u(f) =u(Y_fi) =u(d_ fi+fn)
k=1

k=1

N-1
= rNu(ka) +snu(fn)

k=1
N-2 (3)

= intna( Y fi) + Tvsnoau(fno1) + swu(fiv)

k=1

=1N---T3nuU(fi) + 18 - - 3su(fy) + - - -

+NSN—1U(fn—1) + snu(fn),
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where |r; - 1| < |f1)| and |s;| < |/1)| for 2 < I < N. Then

lu(f) | < (1+ [y DY Tul) T+@+ 1y (D) DV 21y (D) | ulR) |+

4

(1 1y () )17 (1) ) [+ (1) 1T uGia) | @

<@+ 1y DV A+ L) DNy ) [+ )
+(1+ 1y D) Ty@)1+1y(1)]

=201+ y(1) N =1, (6)

So SuPfe (o) | ulf) | < +00. Since || nfy || < Lfor each n e N and 1 < k < N, we
have {nfy : ne N, ke N} € U. Then by Lemma 2.1,

[u(fi) | = u(rll(nfk)) I<| y(rll) Il u(nfi) 1<| y(rll) If sup | u(f) | (7)

eM(0,1)

holds for all n € N and 1 < k < N. Letting n — o, (7) implies u(fy) =0 for 1 < k < N.
Hence, |u(f)| = 0 by (4). Thus, u = 0.

3 Conclusions on the demi-linear dual pair (X, X"

Henceforth, X and Y are topological vector spaces over K, N(X) is the family of
neighborhoods of 0 € X, and X”* is the family of continuous demi-linear functionals
in £, u(X,K). Recall that for usual dual pair (X, X’) and A € X, the polar of A, written
as A, is given by

A°={feX :|f(x)| <1,VxeA}

In this article, for the demi-linear dual pair (X, X%y and A € X, we denote the
polar of A by A°, which is given by
A® = {f e XU | f(x) | < 1,Vx eA}.

Similarly, for § © X,
S*={xeX:|f(x)| <1,VfeS)

Lemma 3.1. Let f € £, u(X,Y). For everyue Uand ne N,
f(nu) = af (u), where | « | < 2(1+ ] y(1) | )" — 1.

Proof. 1t is similar to the proof of (3)-(6) in Example 2.9.

Lemma 3.2. Let S € X", If S is equicontinuous at 0 € X, then, S* € N'(X) and sup
fesxe B [fX)| < +oo for every bounded B < X.

Proof. Assume that S is equicontinuous at 0 € X. There is U € N(X) such that |f{x)]
<1forall fe Sandxe V. Then V € S and hence S* € N (X).

Let B € X be bounded. Since S* N U € N (X), we have ;B Cc S*NU for some m e
N. Then for each fe S and x € B,

) =1 fm " ) = T 1) 1= Ta T =201+ 17 (1) )" =1
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by Lemma 3.1. Hence, sup g x5 [fix)| < 2(1 + [UD))" - 1 < +oo.

Lemma 3.3. Let S € XY, Then S is equicontinuous on X if and only if S is equicon-
tinuous at 0 € X.

Proof. Assume that S is equicontinuous at 0 € X. There is W € A(X) such that |f
(w)] <1lforall fe Sand ® e W.

Let x € X and ¢ > 0. By Lemma 3.2, sup scs [fix)| = M < +co. Observing lim, _,(?)

= 0, pick § € (0, 1) such that Iy(g) |< 2(Aj+1)‘ By Lemma 2.1, for f e S and

u=">3uge j(WnuU), we have

8 8
Hfles)=f () [ = f(x+ Juo) = f() =l y () TUS@) [+ 1 f(uo) 1) < 2(Mg+ 1)(M+1) <e.

Thus, flx+ S(W+U)] Cf(x)+{z€K:|z]| <e} forall fe S, ie, S is equicontinu-
ous at x.

Theorem 3.4. Let S € X, Then S is equicontinuous on X if and only if S* € N'(X).

Proof. If S is equicontinuous, then S* € A/(X) by Lemma 3.2.

Assume that S* € N(X) and ¢ > 0. Since lim,_,o/(£) = Y0) = 0, there is 6 > 0 such
that |{(¢)| <¢ whenever |¢| <d. For fe S and x = gxo € g(S' N U), we have [flxy)| <1
and L F) 1= fCEx) 1=l v (5) 11 f(xo) | < & by  Lemma 2.1. Thus,

f[g(S’ NU))c{zeK:|z|<¢g} forall fe S, ie., Sis equicontinuous at 0 € X. By
Lemma 3.3, S is equicontinuous on X.

The following simple fact should be helpful for further discussions.

Example 3.5. Let (L(0, 1), ||-||) be as in Example 2.8, U = {f: ||f || < 1} and At) = e
|t|? for t € K. Then (IZ(0, 1), ||-||)** contains non-zero continuous functionals such as
1111, sin ||-]], "' - 1, ete. Since (0f)() = af(") for « € K and fe (I7(0, 1), ||||)*Y, it
follows from el - 1 e (L7(0, 1), ||-|N** that el —1) e (20, 1), 11 - D Ifue
U, then ||ul| <1, [sin ||ul|| < ||u|| <1 and | (M —1) < ;" < 1. Thus, if Visa
neighborhood of 0 € LP(0, 1) such that V € U, then V' contains non-zero functionals
such as |||, sin [[]], ] (el — 1), etc.

Corollary 3.6. For every U,V € N(X) and ye C0), V' = {fe X" . |fix)| <1, Vxe
V} is equicontinuous on X.

Proof. Let x € V. Then |flx)| < 1, Vfe V', ie,x e (V). Thus, V € (V)" and so
(V*)* € N(X). By Theorem 3.4, V" is equicontinuous on X.

Corollary 3.7. If X is of second category and S € X" is pointwise bounded on X,
then S§* € N(X).

Proof. By Theorem 1.4, S is equicontinuous on X. Then S* € A/(X) by Theorem 3.4.

Corollary 3.8. Let X be a semiconvex space and S € X", Then S is equicontinuous
on x if and only if there exist finitely many continuous ki-seminorm p;’s (0 <k; < 1,1 < i
<M < +o0) on x such that

sup  sup | f(x) | < +o0. ®)
fes pi(x)<11<izn

In particular, for a p-seminormed space (X, ||-||) (||-|| is a p-seminorm for some p €
(0, 1], especially, a norm when p = 1) and S © XD, S is equicontinuous on x if and
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only if

sup sup | f(x) | < +oo.
fes lxl=1

Proof. Assume that S is equicontinuous. Then S* € N'(X) by Theorem 3.4. Accord-
ing to Definition 2.6, there exist finitely many continuous k;-seminorm p;’s (0 <k; < 1,
1<i<mn<+)and e > 0 such that

fxreX:pi(x)<el<i<n}cCS Nu.

Let fe Sand pi(x) < 1,1 < i < n Pick ng € N for which (nln Yo < &, where ko =

min; .,<,.k;. Then
X 1 1 .
pi(_ )=(_ )pi(x) =(_ )pi(x) <eforl<i<n,
no no no
which implies ,fn € S*NU and hence |f(,fn) < 1. By Lemma 3.1,
X x -1
| f(x) | =|f("0n0) |=] af(no) [<lal=2(1+]y(1)1]) -1

Thus, SUPfcgSUPy,(x)<1,1<i<n fE) =21 +1y(1) )" =1 < +o0.
Conversely, suppose that p; is a continuous k;-seminorm with 0 <k; < 1for1 <i<n
< +o0, and (8) holds. Let A = {Mlﬂf fe S}. Then A € X" and

sup  sup | g(x) | = ! sup  sup [f(x) | = M <1,
€A pi(x)<1,1<izn L+ M fes px)<1,1<i<n 1+M
ie,{xe X:pix) <1,1<i<n €A and so A* € N(X). By Theorem 3.4, A" is
equicontinuous on X and S = (1 + M)A is also equicontinuous on X.
Lemma 3.9. Let C(X,K) = {f € KX : f is continuous}. For S C C(X,K), the following
(D) and (1) are equivalent.

(D) S is equicontinuous on X.
(II) Ifixg) eI is a net in x such that x, — x € X, then lim,, fix,) = fix) uniformly for

fe S

Proof. (I)>(II). Let ¢ > 0 and %, — x in X. Since S is equicontinuous on X, there is
W € N(X) such that

[ f(x+w)—f(x)| <e forallf e Sandwe W.

Since x,, — «x, there is an index o such that x, - x € W for all o > o Then
[f(xe) = f(x) | =1f(x+xy —x) —f(x) | < ¢ forall f € Sand ¢ > «p.

Thus, lim, fix,) = fix) uniformly for fe S.

(ID=(I). Suppose that (II) holds but there exists x € X such that S is not equicontin-
uous at x.

Then there exists ¢ > 0 such that for every V € N(X), we can choose f, € S and z,
e V for which
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| fox+2)) = fu(x) | = ¢ 9)

Since (NV(X), D) is a directed set, we have (x+2,)ven(x) is a net in X. For every
x+zy€x+V Cx+WiorallVe N(X)with w>oV,

x+z,€x+V Cx+WforallVe N(X)withw>oV,

that is, lim,(x + z,) = «.

By (II), there exists Wy € N(X) such that |[flx + z,) - flx)| <& for all fe S and
V e N(X) with Wy, 2 V. Then |f,(x + z,) - f,(x)| <e for all V € N(X) with W, > V.
This contradicts (9) established above. Therefore, (II) implies (I).

We also need the following generalization of the useful lemma on interchange of
limit operations due to E. H. Moore, whose proof is similar to the proof of Moore
lemma ([[6], p. 28]).

Lemma 3.10. Let D, and D, be directed sets, and suppose that Dy x D, is directed by
the relation (dv,d>) < (dy,d,), which is defined by d1 < d| and d» <d,. Let f: Dy x
Dy — X be a net in the complete topological vector space X. Suppose that:

(a) for each dy € D,, the limit g(da) = limp, f(d1, dy)exists, and
(b) the limit h(dy) = limp,f(d1, d2) exists uniformly on D.

Then, the three limits

lim g(d>), lim h(d1), lim f(d:, da)

all exist and are equal.

We now establish the Alaoglu-Bourbaki theorem ([[1], p. 130]) for the pair (X, Xy,
where X is an arbitrary non-trivial topological vector space.

Let KX be the family of all scalar functions on X. With the pointwise operations (f +
2)(x) = flx) + g(x) and (¢t fi(x) = £ flx) for x € X and ¢ € K, we have x: KX — K is a lin-
ear space and each x € X defines a linear functional yx : KX — K by letting x( f) = flx)
for f e KX. In fact, for f,g € KX and @, B € K,

x(af + Bg) = (af + Bg)(x) = ax(f) + Bx(g).
Then, each x € X produces a vector topology wx on KX such that
fo — f in(KX, ox) if and only if f, (x) — f(x)([1, p.12, p.38]).

The vector topology V {wx : x € X} is just the weak * topology in the pair (X, KX),
and f, = fin (KX, weaks) if and only if f,(x) — flx) for each x € X ( [[1], p. 12, p.
38]). Note that weak* is a Hausdorff locally convex topology on [KX.

Definition 3.11. A subset A € X" is said to be weak * compact in the pair (X, X"
Y or, simply, weak * compact if A is compact in (KX, weakx), and A is said to be rela-
tively weak * compact in the pair (X, X*") or, simply, relatively weak* compact if in
(KX, weakx) the closure A is compact and A - x(r.U).

For A € X, Rwedks stands for the closure of A in (KX, weaks).
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Theorem 3.12. For every V e N(X), V' = {fe X" . |flx)| < 1, Vx € V} is weak*
compact in the pair (X, X"), and every equicontinuous S © X" is relatively weak*
compact in the pair (X, XY,

Proof. For each x € X, let x(f) = flx) for fe KX, then x: KX — K is a linear func-
tional. Let V € N(X). By Corollary 3.6, V" is equicontinuous on X and, by Lemma 3.2,
x(V") = {fix): fe V'} is bounded in K for each x € X, i.e., for each x € X, x(V") is
totally bounded in K and so V" is totally bounded in (KX, wx) for each x € X ( [[1], p.
84, Theorem 6]. But the weak* topology for KX is just V {wx : x € X} and so V" is
totally bounded in (KX, weakx) ([[1], p. 85, Theorem 7].

Let (fy)oe s € V° be a Cauchy net in (KX, weakx). Then lim,, f,(x) = flx) exists at each

x e X and so f, > fin (KX, weakx). Forxe X, ue Uandte{zeK:|z| <1},

fx+tu) = liortnfa(x+tu) = li‘gn[rafd(x)ﬁufa(u)],where [7e=1|<|y(t) |and | sq < | y(t) |, Yo € L

By passing to a subnet if necessary, we assume that r, — r and s, — s in K. Then |r
- 1] = limgy |rg - 1] < |NB)], |s| = limg, |So| < |N®)|| and

F e+ 1) = i [rafo (x) + Safo ()] = 1 (x) + sf ().

This shows that f € £, u(X, K).
Let x3 = x in X. Since V" is equicontinuous on X and f, € V" for all ¢ € 1, it follows
from Lemma 3.9 that limg fi(xp) = fo(x) uniformly for o € 1. Then

lim f(x5) = lim lim £, (x5) = lim lim £, (x5) = lim £, (x) = (2)

by Lemma 3.10, i.e, f : X — K is continuous and hence fe X", Moreover, |fx)| =
lim, |f,(x)| <1 for each x € V, ie, fe V. Thus, V" is complete in (KX, weaks). Since
(KX, weakx) is a topological vector space and V" is both totally bounded and complete
in ([KX, weak+), we have V" is compact in (KX, weakx), i.e., V' is weak? compact in the
pair (X, X)) ([[1], p. 88, Theorem 7]).

Assume that S € X" is equicontinuous on X. By Lemma 3.2,

S*={xeX:|f(x)]| <1,V €S} e N(X), it follows from what is established above
that (S7)" = {f e X . lf(x)] <1, Vx € S} is compact in the Hausdorff space
(KX, weakx). Then S © (S°)* shows that Sweaks < (§*)* ¢ X(»'U) and S is relatively
weak* compact in (X, XDy,

Theorem 3.12 is a version of Alaoglu-Bourbaki theorem for the demi-linear dual pair
(X, Xy, by which we can establish an improved Banach-Alaoglu theorem ( [[1], p.
130] as follows.

Corollary 3.13 (Banach-Alaoglu). Let X be a seminormed space and M > 0. Then

S=1feXxW: sup |f(x) | <M
llxll<1
is weak* compact in the pair (X, X*Y).
Proof. Since supg s sup|jxjj<1 [fx)| < M < +oo, Corollary 3.8 shows that S is equicon-

tinuous on X. By Theorem 3.12, Sweaks — x(v.U) and Sweakx is compact in (KX, weaks).

Page 11 of 15
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Let (fy)ae 7 be a net in S such that lim,, f,(x) = flx) at each x € X. Then fe Xx,xt

and
sup | f(x) | = sup lim | fo(x) | <M,
lxl<1 lxl<1 &

ie., fe S. Thus, Queaks _ g.

Theorem 3.14. Let X be a separable space, K a weak* compact set in X, S an
equicontinuous set in X", and Ve N(X), V* = {f e Xir) 1f(x) ] <1,¥x eV}
Then (S, weak*) is metrizable, and both (K, weak*) and (V°, weak*) are compact metric
spaces.

Proof. Assume that {x,}32; is dense in X. Let

o0

1| f(xn) — 8(xn) |
df.9 =3 .1, F) — glo) Ve KX

n=1

Then, d(--) is a pseudometric on KX.If f, g € X" and d(f, g) = 0, then fix,) = g(x,)
for all n. Since both fand g are continuous on X and {x,};2; is dense in X, flx) = g(x)
for all x € X, i.e., f= g This shows that (X", d) is a metric space, and f; — fin (X
Y, d) if and only if limy fi(x,) = fix,) for each n € N. Hence, weak* is stronger than d
(-, -) and so the compact space (K, weak*) is homeomorphic to the (Hausdorff) metric
space (K, d). Thus, (K, weak*) is a compact metric space.

By Theorem 3.12, in (KX, weaks) the closure gJweakx — x(»U), and both
(S®eak*, wealks) and (V°, weak*) are compact and so they are compact metric spaces.

The following special case of Theorem 3.14 is a well-known fact ([[1], p. 143]).

Corollary 3.15. Let X be a separable locally convex space with the dual X', K a
weak* compact set in X, S an equicontinuous set in X', and Ve N(X), V = {fe X°:|
fix)| < 1, Vx € V). Then (S, weak*) is metrizable, and both (K, weak*) and (V, weak*)
are compact metric spaces.

Corollary 3.16. Let X be a separable space and S an equicontinuous set in X,
Every sequence {f,,} in S has a subsequence {f,,} such that limyf,, (x) = f(x) exists at
each X € X and the limit function fe X", ie., fis both continuous and demi-linear.

Proof. By Theorems 3.12 and 3.14, Sweakx — x(v.U) and (S¥eak*, yeqals) is a compact

metric space. Then (S%¢%* yeaks) is sequentially compact.

Combining Theorem 1.4 and Corollary 3.16, we have the following

Corollary 3.17. Assume that X is of second category and separable, e.g., separable
Fréchet spaces such as LF(0, 1)(p > 0), C[0,1], co, ¢, P(p > 0), etc. If S < X*D s point-
wise bounded on X, then every sequence {f,} in S has a subsequence {fy,} such that
limyfy, (x) = f(x) exists at each x € X, and fe X7,

For C > 1 and ¢ > 0, letting /£) = Ct for t € R and U = (-6,0), we have ye C(0) and
U € N(R). Then let R = R 1t is easy to see that every f € L,,u(R,R) is con-
tinuous and so R(CY) = £, (R, R). Thus, R‘“” contains all linear functions and var-
ious nonlinear functions. It is noted that many functions in R‘“® have very
complicated graphs.

For S C R(C"S), there is an interesting fact: a local behavior in a small interval (-, ¢)

implies a nice behavior on (-co, +co).
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Example 3.18. Let S © RS9, If there exists M, ¢ > 0 such that |f(x)| < M for every f
€ S and x € (-¢ ¢), then every {f,} € S has a subsequence {fy} such that
limyfy, (x) = f(x) exists at each x € R, and fe R,

In fact, R is separable and (—¢, &) € N(R). The assumption shows that

M7TISC{f eRED 1| f(x) | <1,Vx € (—¢,8)} = (—¢,¢)".

By Theorem 3.14, ((-¢, €)°, weak®) is a compact metric space and so it is sequentially
compact. Similarly, we have

Example 3.19. Let p > 0 and S < (IX(0, 1)), If there exists ¢ > 0 such that |flx)| <
1 whenever fe S and X € LF(0, 1) with ||x|| <& then every {f,} € S has a subsequence
{fue} such that limyfy, (x) = f(x) exists for all x € 170, 1), and fe (L¥(0, 1)),

We shall show that the condition “sup g jx|j< | fAx)| < 17
weakened as “supe s [flx)| < +oo, V ||¥|| <&* (see Corollary 3.20).

in Example 3.19 can be

In general, combining Theorems 3.12 and 3.14, we have
Corollary 3.20. Let S € X", If there exists V € N'(X) such that sup fesxev fX)] <

+oo, then

(a) S is equicontinuous on X,

(b) S is relatively weak * compact,

(c) every net(fy) in S has a subnet (fct)) such that limgy, f{a)(x) = fix) exists for all
xe X, and fe XY,

If, in addition, x is separable, then

(d) every {f,} € S has a subsequence {fn,} such that limyf,, (x) = f(x) exists for all x
e X, and fe X9,

In fact, for M = supg sxc v |fix)|, we have A={,! f:f e S} C V* and (a)-(d) hold
for A, ie., S satisfies (a)-(d).

If X is of second category, then the condition “there exists V € A/(X) such that sup-
fsxe v [fIx)] < +o” in Corollary 3.20 can be weakened as “there exists V € N'(X) such
that sup f€S |flx)| < +o, Vx € V™

To see this, we first establish a simple fact.

Lemma 3.21. Let T’ C £, u(X,Y). If there exists V € N'(X) such that {f(x): fe T} is
bounded at each x € V, then {f{x): fe T} is bounded at each x € X.

Proof. Let x € X. There exists nyp € N such that nlox e VNu. By Lemma 3.1, for

each fe T, we have
X X no—1
f) = fno ) Y= oyf(" ), where Jay |=2(1+ | y(1) 1) 1,
Then

{f(x):fer}c{tf(,fo)rfeF,Itl52(1+|y(1)|)no—1_1}_

Page 13 of 15
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Since L eV, [f(;:)) fe F] is bounded and s0

{tf(rfo) fel, ] <2(1+]y(1)|)o ! — 1} is bounded.

Now we can improve Theorems 1.4 and 1.5 as follows.

Theorem  3.22. Assume that x is of second category and
I Cc{f € L,u(X,Y) :f is continuous}. If there exists V € N'(X) such that T is pointwise
bounded on V, then T is equicontinuous on X, and T is uniformly bounded on each
bounded subset of X.

Corollary 3.23. Assume that x is of second category and S € X", If there exists
V e N(X) such that supg s |fix)| < +oo at each x € 'V, then (a)-(c) hold for S. If, in
addition, X is separable, then (d) holds for S.

We now show that every equicontinuous S € X has a nice behavior on any com-
pact subset of X.

Theorem 3.24. Let X be a Hausdorff topological vector space. If S is an equicontinu-
ous subset of X" and Q is a compact subset of X, then every {f,} € S has a subse-
quence {fn,} such that limyf,, (x) = f(x) uniformly for x € Q and f: f:Q — Kis
continuous.

Proof. Let K = {f |q: f€ S}. Then K € C(Q) and K is equicontinuous at each x € Q.
Suppose that sup e g |[f]| = SUP & ke ofi¥)| = +oo. Then there exist sequences {f,} ©
Sand {x,} © Q such that |f,(x,)| >#, Vn € N. By Lemma 3.2, we may assume that x,
z X, for n # m.

Since Q) is compact, {xs}5e; has a cluster point x € Q.

Since S is equicontinuous at x, there exists V € N(X) such that |fy) - fix)| < 1 for
all fe Sandye x + V, ie, [f{y)] < |[fiw)] + 1 for all fe Sand y € x + V. Observing
that |f,(x,)| >n for all n € N and {f,} € S, there exists ny € N such that x,, ¢ x + V for
all n >ny. Since (x + V) N Q contains some x,, with x,, = x, it follows that

Q7!({9‘:7! *Xn %xlx‘ﬂ € (x+V)}mQ) - {x‘ﬂ #x:n = nO} = {)’1/)’2,"' /}’m},

where m < ny. But X is Hausdorff, so Q is also Hausdorff. Then there exists
Vo € N(X) such that Vo R Vand (x + Vo) N (Q N {1, ¥a - - ¥m}) = . Hence x,, € (x
+ Vo) n Q implies that x,, = .

This contradicts the fact that x is a cluster point of {x,};2;. Hence,
supsege |1 f | oo < +00

By the Arzela-Ascoli theorem, K is relatively compact in the metric space (C(Q),
[|-]|-)- Hence, every {f,} € S has a subsequence {fy,} such that || fu, | —f lloo = O,
where fe C(Q), ie., limyfy, (x) = f(x) uniformly for x € Q.

Corollary 3.25. Let X = R" or C", ¢ > 0 and D,, = {x € X : ||x|| < me}, Vme N If S
c XY is pointwise bounded on Dy, then every sequence {fi} © S has a subsequence
{fi} such that lim; fi,(x) = f(x) uniformly on each D,, where fe X,

Proof. Theorem 3.22 shows that S is equicontinuous on X and, by Theorem 3.24, {f;}
has a subsequence {fi,} such that lim; fi,(x) exists uniformly on D;. Then {f,}35, has a
subsequence {fi;, } such lim, fi, (x) exists uniformly on D,. Proceeding inductively, the

diagonal procedure yields a subsequence {g;} of {f;} such that lim; g;(x) exists uniformly
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on each D,,. Then lim; g,(x) = flx) exists at each x € X and f e §** in (KX, weakx).
By Theorem 3.12, fe X%,
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