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Abstract

For exhibiting dependence among the observations within the same subject, the
paper considers the estimation problems of partially linear models for longitudinal
data with the �-mixing and r-mixing error structures, respectively. The strong
consistency for least squares estimator of parametric component is studied. In
addition, the strong consistency and uniform consistency for the estimator of
nonparametric function are investigated under some mild conditions.
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1 Introduction
Longitudinal data (Diggle et al. [1]) are characterized by repeated observations over

time on the same set of individuals. They are common in medical and epidemiological

studies. Examples of such data can be easily found in clinical trials and follow-up

studies for monitoring disease progression. Interest of the study is often focused on

evaluating the effects of time and covariates on the outcome variables. Let tij be the

time of the jth measurement of the ith subject, xij Î Rp and yij be the ith subject’s

observed covariate and outcome at time tij respectively. We assume that the full data-

set {(xij, yij, tij), i = 1,..., n, j = 1,..., mi}, where n is the number of subjects and mi is the

number of repeated measurements of the ith subject, is observed and can be modeled

as the following partially linear models

yij = xTijβ + g(tij) + eij, (1:1)

where b is a p × 1 vector of unknown parameter, g(⋅) is an unknown smooth func-

tion, eij are random errors with E(eij) = 0. We assume without loss of generality that tij
are all scaled into the interval I = [0, 1]. Although the observations, and therefore the

eij, from the different subjects are independent, they can be dependent within each

subject.

Partially linear models keep the flexibility of nonparametric models, while maintain-

ing the explanatory power of parametric models (Fan and Li [2]). Many authors have

studied the models in the form of (1.1) under some additional assumptions or restric-

tions. If the nonparametric component g(⋅) is known or not present in the models,
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they become the general linear models with repeated measurements, which were

studied under Gaussian errors in a amount of literature. Some works have been inte-

grated into PROC MIXED of the SAS Systems for estimation and inference for such

models. If g(⋅) is unknown but there are no repeated measurements, that is m1 = ⋅ ⋅ ⋅ =
mn = 1, the models (1.1) are reduced to non-longitudinal partially linear regression

models, which were firstly introduced by Engle et al. [3] to study the effect of weather

on electricity demand, and further studied by Heckman [4], Speckman [5] and Robin-

son [6], among others. A recent survey of the estimation and application of the models

can be found in the monograph of Häardle et al. [7]. When the random errors of the

models (1.1) are independent replicates of a zero mean stationary Gaussian process,

Zeger and Diggle [8] obtained estimators of the unknown quantities and analyzed

time-trend CD4 cell numbers among HIV sero-converters; Moyeed and Diggle [9] gave

the rate of convergence for such estimators; Zhang et al. [10] proposed the maximum

penalized Gaussian likelihood estimator. Introducing the counting process technique to

the estimation scheme, Fan and Li [2] established asymptotic normality and rate of

convergence of the resulting estimators. Under the models (1.1) for panel data with a

one-way error structure, You and Zhou [11] and You et al. [12] developed the

weighted semiparametric least square estimator and derived asymptotic properties of

the estimators. In practice, a great deal of the data in econometrics, engineering and

natural sciences occur in the form of time series in which observations are not inde-

pendent and often exhibit evident dependence. Recently, the non-longitudinal partially

linear regression models with complex error structure have attracted increasing atten-

tion by statisticians. For example, see Schick [13] with AR(1) errors, Gao and Anh [14]

with long-memory errors, Sun et al. [15] with MA(∞) errors, Baek and Liang [16] and

Zhou et al. [17] with negatively associated (NA) errors, and Li and Liu [18], Chen and

Cui [19] and Liang and Jing [20] with martingale difference sequence, among others.

For longitudinal data, an inherent characteristic is the dependence among the obser-

vations within the same subject. Some authors have not considered the with-subject

dependence to study the asymptotic behaviors of estimation in the semipara-metric

models with assumption that the mi are all bounded, see, for example, He et al. [21],

Xue and Zhu [22] and the references therein. Li et al. [23] and Bai et al. [24] showed

that ignoring the data dependence within each subject causes a loss of efficiency of sta-

tistical inference on the parameters of interest. Hu et al. [25] and Wang et al. [26] took

into consideration within-subject correlations for analyzing longitudinal data and

obtained some asymptotic results based on the assumption that max1≤i≤n mi is

bounded for all n. Chi and Reinsel [27] considered linear models for longitudinal data

that contain both individual random effects components and with-individual errors

that follow an (autoregressive) AR(1) time series process and gave some estimation

procedures, but they did not investigate asymptotic properties of estimations. In fact,

the observed responses within the same subject are correlated and may be represented

by a sequence of responses {yij, j ≥ 1} for the i-individual with an intrinsic dependence

structure, such as mixing conditions. For example, in hydrology, many measures may

be represented by a sequence of responses {yij, j ≥ 1} for the ith year at tij, where tij
represents the time elapsed from the beginning of the ith year, and {eij, j ≥ 1} are the

measurements of the deviation from the mean {xTijβ + g(tij), j ≥ 1}. It is not reasonable
that E(eij1eij2) = 0 for j1 ≠ j2. In practice, {eij, j ≥ 1} may be “weak error’s structure”,
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such as mixing-dependent structure. In this paper, we consider the estimation

problems for the models (1.1) with the �-mixing and r-mixing error structures for

exhibiting dependence among the observations within the same subject respectively

and are mainly devoted to strong consistency of estimators.

Let {Xm, m ≥ 1} be a sequence of random variables defined on probability space

(�,F ,P),F l
k = σ (Xi, k ≤ i ≤ l) be s-algebra generated by Xk, . . ., Xl, and denote

L2(F l
k) be the set of all F l

k measurable random variables with second moments.

A sequence of random variables {Xm, m ≥ 1} is called to be �-mixing if

ϕ(m) = sup
k≥1,A∈F k

1,P(A) �=0,B∈F∞
k+m

|P(B|A) − P(B)| → 0, as m → ∞.

A sequence of random variables {Xm, m ≥ 1} is called to be r-mixing if maximal correla-

tion coefficient

ρ(m) = sup
k≥1,X∈L2(F k

1),Y∈L2(F∞
k+m)

|cov (X,Y)|√
Var(X) · Var(Y) → 0, as m → ∞.

The concept of mixing sequence is central in many areas of economics, finance and

other sciences. A mixing time series can be viewed as a sequence of random variables

for which the past and distant future are asymptotically independent. A number of

limit theorems for �-mixing and r-mixing random variables have been studied by

many authors. For example, see Shao [28], Peligrad [29], Utev [30], Kiesel [31], Chen

et al. [32] and Zhou [33] for �-mixing; Peligrad [34], Peligrad and Shao [35,36], Shao

[37] and Bradley [38] for r-mixing. Some limit theories can be found in the mono-

graph of Lin and Lu [39]. Recently, the mixing-dependent error structure has also

been used to study the nonparametric and semiparametric regression models, for

instance, Roussas [40], Truong [41], Fraiman and Iribarren [42], Roussas and Tran

[43], Masry and Fan [44], Aneiros and Quintela [45], and Fan and Yao [46].

The rest of this paper is organized as follows. In Section 2, we give least square esti-

mator (LSE) β̂n of b based on the nonparametric estimator of g(·) under the mixing-

dependent error structure and state some main results. Section 3 is devoted to

sketches of several technical lemmas and corollaries. The proofs of main results are

given in Section 4. We close with concluding remarks in the last section.

2 Estimators and main results
For models (1.1), if b is known to be the true parameter, then by Eeij = 0, we have

g(tij) = E(yij − xTijβ), 1 ≤ i ≤ n, 1 ≤ j ≤ mi.

Hence, a natural nonparametric estimator of g(·) given b is

g∗
n(t,β) =

n∑
i=1

mi∑
j=1

Wnij(t)(yij − xTijβ), (2:1)

where Wnij(t) = Wnij(t, t11, t12, . . . , tnmn) is the weight function defined on I. Now, in

order to estimate b, we minimize

SS(β) =
n∑
i=1

mi∑
j=1

(
yij − xTijβ − g∗

n(tij,β)
)2
.
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The minimizer to the above equation is found to be

β̂n =

⎛⎝ n∑
i=1

mi∑
j=1

x̃ijx̃Tij

⎞⎠−1
n∑
i=1

mi∑
j=1

x̃ijỹij, (2:2)

where x̃ij = xij −
∑n

k=1
∑mi

l=1 Wnkl(tij)xkl and ỹij = yij −
∑n

k=1
∑mi

l=1 Wnkl(tij)ykl.

So, a plug-in estimator of the nonparametric component g(·) is given by

ĝn(t) =
n∑
i=1

mi∑
j=1

Wnij(t)(yij − xTij β̂n). (2:3)

In this paper, let {eij,1 ≤ j ≤ mi} be �-mixing or r-mixing with Eeij = 0 for each i(1 ≤ i ≤

n), and {ei, 1 ≤ i ≤ n} be mutually independent, where ei = (ei1, . . . , eimi)
T. For each i,

denote �i(·) and ri(·) be the ith mixing coefficients of the sequence of �-mixing and r-

mixing, respectively. Define S2n =
∑n

i=1
∑mi

j=1 x̃ijx̃
T
ij , g̃(t) = g(t) −∑n

k=1
∑mi

l=1 Wnkl(t)g(tkl),

denote I(·) be the indicator function, || · || be the Euclidean norm, and set ⌊z⌋ ≤ z <

⌊z⌋ + 1 for the integer part of z. In the sequence, C and C1 denote positive constants

whose values may vary at each occurrence.

For obtaining our main results, we list some assumptions:

A1 (i) {eij, 1 ≤ j ≤ mi} are �-mixing with Eeij = 0 for each i;

(ii) {eij, 1 ≤ j ≤ mi} are r-mixing with Eeij = 0 for each i.

A2 (i) max1≤i≤n mi = o(nδ) for some 0 < δ <
r − 2
2r

and r > 2;

(ii) limn→∞
1

N(n)
S2n =

∑
, where Σ is a positive definite matrix and N(n) =

∑n
i=1 mi

(iii) g(·) satisfies the first-order Lipschitz condition on [0, 1].

A3 For n large enough, the probability weight functions Wnij(·) satisfy

(i)
∑n

i=1
∑mi

j=1 Wnij(t) = 1 for each t Î [0, 1];

(ii) sup0≤t≤1max1≤i≤n,1≤j≤miWnij(t) = O

⎛⎝n−
1
2

⎞⎠;
(iii) sup0≤t≤1

∑n
i=1
∑mi

j=1 Wnij(t)I(|tij − t| > ε) = o(1) for any � > 0;

(iv) max1≤k≤n,1≤l≤mi ||
∑n

i=1
∑mi

j=1 Wnij(tkl)xij|| = O(1),

(v) sup0≤t≤1

∥∥∥∑n
i=1

∑mi
j=1 Wnij(t)xij

∥∥∥ = O(1),

(vi) max1≤i≤n,1≤j≤mi

∣∣Wnij(s) − Wnij(t)
∣∣ ≤ C|s − t| uniformly for s, t Î [0, 1].

Remark 2.1 For obtaining the asymptotic properties of estimators of the models (1.1),

many authors often assumed that {mi, 1 ≤ i ≤ n} are bounded. Under the weak condi-

tion A2(i), we obtain the strong consistency of estimators of the models (1.1) with

Zhou and Lin Journal of Inequalities and Applications 2011, 2011:112
http://www.journalofinequalitiesandapplications.com/content/2011/1/112

Page 4 of 18



mixing-dependent structure. The condition of {mi, 1 ≤ i ≤ n} being a bounded

sequence is a special case of A2(i).

Remark 2.2 Assumption A2(ii) implies that

1
N(n)

n∑
i=1

mi∑
j=1

||x̃ij|| = O(1) and max
1≤i≤n,1≤j≤mi

||x̃ij|| = o

⎛⎝N(n)

1
2

⎞⎠.
Remark 2.3 As a matter of fact, there exist some weights satisfying assumption A3.

For example, under some regularity conditions, the following Nadaraya-Watson kernel

weight satisfies assumption A3:

Wnij(t) = K
(
t − tij
hn

)[ n∑
k=1

mi∑
l=1

K
(
t − tkl
hn

)]−1

,

where K(·) is a kernel function and hn is a bandwidth parameter. Assumption A3 has

also been used by Hardle et al. [7], Baek and Liang [16], Liang and Jing [20] and Chen

and You [47].

Theorem 2.1 Suppose that A1(i) or A1(ii), and A2 and A3(i)-(iii) hold. If

max
1≤i≤n,1≤j≤mi

E(|eij|p) ≤ C, a.s. (2:4)

for p > 3, then

β̂n → β , a.s.. (2:5)

Theorem 2.2 Suppose that A1(i) or A1(ii), and A2, A3(i-iv) and (2.4) hold. For any

t Î [0, 1], we have

ĝn(t) → g(t), a.s.. (2:6)

Theorem 2.3 Suppose that A1(i) or A1(ii), and A2, A3(i-iii), A3(v-vi) and (2.4) hold.

We have

sup
0≤t≤1

|ĝn(t) − g(t)| = o(1), a.s.. (2:7)

3 Several technical lemmas and corollaries
In order to prove the main results, we first introduce some lemmas and corollaries. Let

Sj =
∑j

l=1 Xl for j ≥ 1, and Sk(i) =
∑k+i

j=k+1 Xj for i ≥ 1 and k ≥ 0.

Lemma 3.1. (Shao [28]) Let {Xm, m ≥ 1} be a �-mixing sequence.

(1) If EXi = 0, then

ES2k(i) ≤ 8000i exp

⎧⎨⎩6
	log i
∑
j=1

ϕ1/2(2j)

⎫⎬⎭ max
k+1≤j≤k+i

EX2
j .

(2) Suppose that there exists an array {ckm} of positive numbers such that

max1≤i≤mES2k(i) ≤ ckmfor every k ≥ 0, m ≥ 1. Then, for any q ≥ 2, there exists a positive

constant C = C(q, �(·)) such that
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E max
1≤i≤m

|Sk(i)|q ≤ C
(
cq/2km + E max

k<i≤k+m
|Xi|q

)
.

Lemma 3.2. (Shao [37]) Let {Xm, m ≥ 1} be a r-mixing sequence with EYi = 0. Then,

for any q ≥ 2, there exists a positive constant C = C(q, r(·)) such that

E max
1≤j≤m

|Sj|q ≤ C

⎛⎝mq/2 exp

⎧⎨⎩C
	logm
∑

j=1

ρ(2j)

⎫⎬⎭ max
1≤j≤m

(E|Xj|2)q/2

+m exp

⎧⎨⎩C
	logm
∑

j=1

ρ2/q(2j)

⎫⎬⎭ max
1≤j≤m

E|Yj|qθ
⎞⎠ .

Lemma 3.3. Suppose that A1(i) or A1(ii) holds. Let a > 1,0 <r <a and

e′ij = eijI

⎛⎝|eij| ≤ εi

1
r mi

⎞⎠ , (3:1)

e′′ij = eij − e′ij = eijI

⎛⎝eij > εi

1
r mi

⎞⎠ + eijI

⎛⎝eij < −εi

1
r mi

⎞⎠ (3:2)

for any ε > 0. If

max
1≤i≤n

max
1≤j≤mi

E(|eij|α) ≤ C, a.s., (3:3)

we have

∞∑
i=1

mi∑
j=1

|e′′ij| < ∞, a.s..

Proof Note that |e′′ij| = |eij|I
⎛⎝|eij| > εi

1
r
mi

⎞⎠. Let

ξi =
∑mi

j=1
|eij|, ξ ′

i =
∑mi

j=1
|eij| · I

⎛⎝∑mi

j=1
|eij| ≤ εi

1
r mi

⎞⎠ , ξ ′′
i = ξi − ξ ′

i =
∑mi

j=1
|eij|I

⎛⎝∑mi

j=1
|eij| > εi

1
r mi

⎞⎠, and

|ξ ′′
i |d = |ξ ′′

i |I(|ξ ′′
i | ≤ d) for fixed d > 0. First, we prove

∞∑
i=1

|ξ ′′
i| < ∞, a.s.. (3:4)

Note that

{|ξ ′′
i | > d} =

⎧⎨⎩
mi∑
j=1

|eij|I
⎛⎝ mi∑

j=1

|eij| > εi

1
r mi

⎞⎠ > d

⎫⎬⎭ =

⎧⎨⎩
mi∑
j=1

|eij| > εi

1
r mi

⎫⎬⎭ (3:5)
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for i large enough. By Markov’s inequality, Cr-inequality, and (3.3), we have

∞∑
i=1

P(
∣∣ξ ′′

i

∣∣ d) ≤ C
∞∑
i=1

P

⎛⎝ mi∑
j=1

∣∣eij∣∣ > εi

1
r mi

⎞⎠
≤ C

∞∑
i=1

i
−

α

r m−α
i E

∣∣∣∣∣∣
mi∑
j=1

∣∣eij∣∣
∣∣∣∣∣∣
α

≤ C
∞∑
i=1

i
−

α

r m−1
i

mi∑
j=1

E
∣∣eij∣∣α

≤ C lim
n→∞

n∑
i=1

i
−

α

r max
1≤i≤n

max
1≤j≤mi

E
∣∣eij∣∣α

≤ C
∞∑
i=1

i
−

α

r < ∞,

(3:6)

From (3.5), {|ξ ′′
i | ≤ d} =

⎧⎨⎩∑mi
j=1 |eij| ≤ εi

1
r mi

⎫⎬⎭ for i large enough. One gets

E(|ξ ′′
i|d) = E(|ξ ′′

i|I(|ξ ′′
i| ≤ d))

= E

⎛⎝ mi∑
j=1

|eij|I
⎛⎝ mi∑

j=1

|eij| > εi

1
r mi

⎞⎠I
⎛⎝ mi∑

j=1

|eij| ≤ εi

1
r mi

⎞⎠⎞⎠ = 0

and

Var(|ξ ′′
i|d) ≤ E(|ξ ′′

i|2d) = E(|ξ ′′
i|I(|ξ ′′

i| ≤ d))2

= E
(|ξ ′′

i|2I(|ξ ′′
i| ≤ d)

) ≤ dE(|ξ ′′
i|I(|ξ ′′

i| ≤ d)) = 0

for i large enough. Therefore,
∞∑
i=1

E(|ξ ′′
i|d) < ∞,

∞∑
i=1

Var(|ξ ′′
i|d) < ∞. (3:7)

Since {ξ ′′
i , 1 ≤ i ≤ n} is a sequence of independent random variables, (3.4) holds from

(3.6) and (3.7) by Three Series Theorem. Then,

∞∑
i=1

mi∑
j=1

|e′′
ij| =

∞∑
i=1

mi∑
j=1

|eij|I
⎛⎝|eij| > εi

1
r mi

⎞⎠
≤

∞∑
i=1

mi∑
j=1

|eij|I
⎛⎝ mi∑

j=1

|eij| > εi

1
r mi

⎞⎠ =
∞∑
i=1

|ξ ′′
i | < ∞, a.s..

Thus, we complete the proof of Lemma 3.3.

Lemma 3.4. Let {eij, 1 ≤ j ≤ mi} be the �-mixing with Eeij = 0 for each i (1 ≤ i ≤ n).

Assume that {anij(·), 1 ≤ i ≤ n,1 ≤ j ≤ mi} is a function array defined on [0, 1], satisfying

max1≤i≤n,1≤j≤mi |anij(t)| = O

⎛⎝n−
1
2

⎞⎠and max1≤i≤n,1≤j≤mi |anij(t)| = O

⎛⎝n−
1
2

⎞⎠for any t Î

[0, 1], and A2(i) and (2.4) hold. Then, for any t Î [0, 1] we have

n∑
i=1

mi∑
j=1

anij(t)eij = o(1), a.s.. (3:8)
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Proof Based on (3.1) and (3.2), we denote ζnij = e′ij − E(e′ij), ηnij = e′′ij − E(e′′ij) and take

r satisfying 2 <r <p - 1. Since eij = ζnij + hnij, we have
n∑
i=1

mi∑
j=1

anij(t)eij =
n∑
i=1

mi∑
j=1

anij(t)ζnij +
n∑
i=1

mi∑
j=1

anij(t)e′′ij −
n∑
i=1

mi∑
j=1

anij(t)E(e′′ij)

=: A1n + A2n − A3n.

(3:9)

First, we prove

A1n → 0, a.s.. (3:10)

Denoting ζ̃ni =
∑mi

j=1 anij(t)ζnij, we know that {ζ̃ni,1≤i≤n}is a sequence of independent

random variables with Eζ̃ni = 0. By Markov’s inequality, and Rosenthal’s inequality, for

any ε > 0 and q ≥ 2, one gets

P

(∣∣∣∣∣
n∑
i=1

ζ̃ni

∣∣∣∣∣ > ε

)
≤ ε−qE

∣∣∣∣∣
n∑
i=1

ζ̃ni

∣∣∣∣∣
q

≤ C

⎛⎜⎜⎝ n∑
i=1

E|ζ̃ni|q +
(

n∑
i=1

Eζ̃ 2
ni

) q
2

⎞⎟⎟⎠
=: A11n + A12n.

(3:11)

Note that �i(m) ® 0 as m ® ∞, hence ∑	logmi

k=1 ϕ

1/2
i (2k) = o(logmi). Further,

exp
{
λ
∑�logmi

k=1 ϕ
1/2
i (2k)

}
= o(mτ

i ) for any l > 0 and τ > 0.

For A11n, by Lemma 3.1, A2(i) and (2.4), and taking q >p, we have

A11n = C
n∑
i=1

E

∣∣∣∣∣∣
mi∑
j=1

anij(t)ζnij

∣∣∣∣∣∣
q

≤ C
n∑
i=1

⎡⎢⎣
⎛⎝mi exp

⎧⎨⎩6
	logmi
∑

k=1

ϕ
1/2
i (2k)

⎫⎬⎭ max
1≤k≤mi

E|anik(t)ζnik|2
⎞⎠q/2

+
mi∑
j=1

E|anijζnij|q
⎤⎥⎦

≤ C
n∑
i=1

⎡⎣(m1+τ
i n−1)q/2 + mi∑

j=1

n
−
q
2 E|ζnij|p|ζnij|q−p

⎤⎦
≤ Cn

−
q
2

n∑
i=1

mi

(τ + 1)q
2 + Cn

−
q
2

n∑
i=1

mi∑
j=1

(i
1
r mi)

q−p

≤ Cn

−
⎛⎝ q
2

−
(τ + 1)δq

2
−1

⎞⎠
+ Cn

−
( q
2

−
q
r
+
p
r

−(q−p+1)δ−1

)

Take q > max
{

2r(2 + δ)
r − 2rδ − 2

,
4

1 − δ
, p
}
. We have

q
2

− δq
2

> 2 and

q
2

− q
r
+
p
r

− (q − p + 1)δ > 2.

Next, take τ > 0 small enough such that
q
2

− (τ + 1)δq
2

> 2. Thus, we have

∞∑
n=1

A11n < ∞. (3:12)
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For A12n, by Lemma 3.1 and (2.4), we have

A12n = C

⎧⎨⎩
n∑
i=1

E

∣∣∣∣∣∣
mi∑
j=1

anij(t)ζnij

∣∣∣∣∣∣
2⎫⎬⎭

q
2

≤ C

⎧⎨⎩
n∑
i=1

mi exp

⎧⎨⎩6
	logmi
∑

k=1

ϕ
1/2
i (2k)

⎫⎬⎭ max
1≤j≤mi

E|anij(t)ζnij|2
⎫⎬⎭
q

2

≤ C

⎧⎨⎩
n∑
i=1

mτ+1
i

mi∑
j=1

E|anij(t)ζnij|2
⎫⎬⎭
q
2

≤ Cn
−
⎛⎝ q
4

−
(τ + 1)δq

2

⎞⎠

Note that δ <
r − 2
2r

<
1
2
. Taking q >

4
1 − 2δ

, we have
q
4

− δq
2

> 1. Next, take τ > 0

small enough such that
q
2

− (τ + 1)δq
2

> 1. Thus, we have

∞∑
n=1

A12n < ∞. (3:13)

Combining (3.11)-(3.13), we obtain (3.10).

By Lemma 3.3 and max1≤i≤n,1≤j≤mi |anij(t)| = O

⎛⎝n−
1
2

⎞⎠ for any t Î [0, 1], we have

|A2n| ≤ max
i≤i≤n,1≤j≤mi

|anij(t)|
n∑
i=1

mi∑
j=1

|e′′
ij| = O

⎛⎝n−
1
2

⎞⎠. (3:14)

Note that
p − 1
r

> 1 and δ > 0. From (2.4), we have

|A3n| =
∣∣∣∣∣∣

n∑
i=1

mi∑
j=1

anij(t)E(e
′′
ij)

∣∣∣∣∣∣
≤ n

−
1
2

n∑
i=1

mi∑
j=1

E

⎛⎝|eij|I(|eij| > εi

1
r mi)

⎞⎠
= n

−
1
2

n∑
i=1

mi∑
j=1

E

⎛⎝|eij|p|eij|1−pI

⎛⎝|eij| > εi

1
r mi

⎞⎠⎞⎠
≤ Cn

−
1
2

n∑
i=1

mi∑
j=1

⎛⎝i1r mi

⎞⎠1−p

≤ Cn
−
1
2

n∑
i=1

i
−
p − 1
r m2−p

i

≤ Cn
−
(
(p−2)δ+

1
2

)
= o(1).

(3:15)

From (3.9), (3.10), (3.14) and (3.15), we have (3.8).

Corollary 3.1. In Lemma 3.4, if {eij, 1 ≤ j ≤ mi} are r-mixing with Eeij = 0 for each i

(1 ≤ i ≤ n), then (3.8) holds.
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Proof From the proof of Lemma 3.4, it is enough to prove that
∑∞

n=1 A11n < ∞ and∑∞
n=1 A12n < ∞.

Note that ri(m) ® 0 as m ® ∞, hence ∑	logmi

k=1 ρ

2/q
i (2k) = o(logmi). Further,

exp
{
λ
∑�logmi

k=1
ρ
2/q
i (2k)

}
= o(mτ

i ) for any l > 0 and τ > 0.

For A11n, by Lemma 3.2 and (2.4), and taking q >p, we get

A11n = C
n∑
i=1

E

∣∣∣∣∣∣
mi∑
j=1

anij(t)ζnij

∣∣∣∣∣∣
q

≤ C
n∑
i=1

⎛⎜⎝m
q
2
i exp

⎧⎨⎩C1

	logmi
∑
k=1

ρ1(2k)

⎫⎬⎭ max
1≤k≤mi

(E|anikζnik|2)
q
2

+mi exp

⎧⎨⎩C1

	logmi
∑
k=1

ρ
2/q
i (2k)

⎫⎬⎭ max
1≤k≤mi

E|anikζnik|q
⎞⎠

≤ C
n∑
i=1

⎛⎜⎝mτ+
q
2

i n
−
q
2 +mτ+1

i n
−
q
2

⎛⎝i1r mi

⎞⎠q−p⎞⎟⎠
≤ Cn

−
( q
2

−
(
r+
q
2

)
δ−1

)
+ Cn

−
( q
2

−
q
r
+
p
r

−(q+p+r+1)δ−1

)

Take q > max
{

2r(2 + δ)
r − 2rδ − 2

,
4

1 − δ
, p
}
. We have

q
2

− qδ
2

> 2 and

q
2

− q
r
+
p
r

− (q − p + 1)δ > 2.

Next, take τ > 0 small enough such that
q
2

−
(
τ +

q
2

)
δ > 2 and

q
2

− q
r
+
p
r

− (q + p + τ + 1)δ > 2. Thus,
∑∞

n=1 A11n < ∞.

For A12n, by Lemma 3.2 and (2.4), we have

A12n = C

⎧⎨⎩
n∑
i=1

E

∣∣∣∣∣∣
mi∑
j=1

anij(t)ζnij

∣∣∣∣∣∣
2⎫⎬⎭

q
2

≤ C

⎛⎝ n∑
i=1

mi exp

⎧⎨⎩C1

	logmi
∑
k=1

ρ1(2k)

⎫⎬⎭ max
1≤j≤mi

E|anikζnik|2
⎞⎠
q

2

≤ C

⎛⎝ n∑
i=1

mτ+1
i

mi∑
j=1

E|anijζnij|2
⎞⎠
q
2

≤ Cn
−
⎛⎝ q
4

−
(τ + 1)δq

2

⎞⎠

Note that δ <
1
2
from A2(i). Taking q >

4
1 − 2δ

, we have
q
4

− δq
2

> 1. Next, take τ >

0 small enough such that
q
2

− (τ + 1)δq
2

> 1. Thus,
∑∞

n=1 A12n < ∞.
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So, we complete the proof of Lemma 3.4.

Remark 3.1 If the real function array {anij(t),1 ≤ i ≤ n, 1 ≤ j <mi} is replaced with the

real constant array {anij, 1 ≤ i ≤ n, 1 ≤ j ≤ mi}, the results of Lemma 3.4 and Corollary

3.1 hold obviously.

Lemma 3.5. Let {eij, 1 ≤ j ≤ mi} be the �-mixing with Eeij = 0 for each i (1 ≤ i ≤ n).

Assume that {anij(·), 1 ≤ i ≤ n, 1 ≤ j ≤ mi} is a function array defined on [0, 1], satisfy-

ing
∑n

i=1
∑mi

j=1 |anij(t)| = O(1)and max1≤i≤n,1≤j≤mi |anij(t)| = O

⎛⎝n−
1
2

⎞⎠uniformly for t Î

[0, 1], and max1≤i≤n,1≤j≤mi |anij(s) − anij(t)| ≤ C|s − t|uniformly for s,t Î [0, 1], where C

is a constant. If A2(i) and (2.4) hold, then

sup
0≤t≤1

∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

anij(t)eij

∣∣∣∣∣∣ = o(1), a.s.. (3:16)

Proof Based on (3.1) and (3.2), we denote ζnij = e′ij − Ee′ij and take r satisfying 2 <r <p

- 1. Using the finite covering theorem, [0, 1] is covered by O

⎛⎝n2+1r
⎞⎠’s neighborhoods

Dn with center sn and radius
n

−
(
2+
1
r

)
, and for each t Î [0, 1], there exists some neigh-

borhood Dn(sn(t)) with center sn(t) and radius
n

−
(
2+
1
r

)
such that t Î Dn(sn(t)). Since E

(eij) = 0, we have∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

anij(t)eij

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

n∑
i=1

mi∑
j=1

anij(t)e
′′
ij

∣∣∣∣∣∣ +
∣∣∣∣∣∣

n∑
i=1

mi∑
j=1

(anij(t) − anij(sn(t)))e
′
ij

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

anij(sn(t))ζnij

∣∣∣∣∣∣ +
∣∣∣∣∣∣

n∑
i=1

mi∑
j=1

(anij(t) − anij(sn(t)))E(e
′
ij)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

anij(t)E(e
′′
ij)

∣∣∣∣∣∣ .
=: B1n(t) + B2n(t) + B3n(t) + B4n(t) + B5n(t).

Denote supmaxt,i,j = sup0≤t≤1max1≤i≤n,1≤j≤mi. By Lemma 3.3 and the proof of (3.15),

noting that δ <
1
2
, we have

sup
0≤t≤1

B1n(t) ≤ supmax
t,i,j

∣∣anij(t)∣∣ n∑
i=1

mi∑
j=1

∣∣∣e′′
ij

∣∣∣ = O

⎛⎝n−
1
2

⎞⎠ , a.s.,

sup
0≤t≤1

B2n(t) ≤ supmax
t,i,j

∣∣anij(t) − anij(sn(t))
∣∣ n∑
i=1

mi∑
j=1

∣∣∣e′
ij

∣∣∣ ≤ Cn
−
(
2+
1
r

)
n2δn

1+
1
r = o(1),

sup
0≤t≤1

B4n(t) ≤ supmax
t,i,j

∣∣anij(t) − anij(sn(t))
∣∣ n∑
i=1

mi∑
j=1

E(
∣∣∣e′

ij

∣∣∣) = o(1),

sup
0≤t≤1

B5n(t) ≤ supmax
t,i,j

∣∣anij(t)∣∣ n∑
i=1

mi∑
j=1

E

⎛⎝∣∣eij∣∣ I
⎛⎝∣∣eij∣∣ > εi

1
r

⎞⎠⎞⎠ = o(1).
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Now, it is enough to show sup0≤t≤1 B3n(t) = o(1), a.s..

From (3.11), A11n and A12n, for the given t Î [0, 1] and u Î Dn(sn(t)), we have

P

⎛⎝∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

anij(u)ζnij

∣∣∣∣∣∣ > ε

⎞⎠ ≤ C

⎛⎜⎜⎝n−
( q
2

−
q

r
+
p

r
−(q−p+1)δ−1

)
+ n

−
⎛⎝ q
2

−
(r + 1)δq

2
−1

⎞⎠
+ n

−
⎛⎝ q
4

−
(r + 1)δq

2

⎞⎠⎞⎟⎟⎠ .

Then, we obtain

P
(
sup
0≤t≤1

B3n(t) > ε

)
≤ P

⎛⎝ sup
0≤t≤1

sup
u∈Dn(sn(t))

∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

anij(u)ζnij

∣∣∣∣∣∣ > ε

⎞⎠

≤ Cn
2+
1
r

⎛⎜⎜⎝n−
( q
2

−
q
r
+
p
r

−(q−p+1)δ−1

)
+ n

−
⎛⎝ q
2

−
(r + 1)δq

2
−1

⎞⎠
+ n

−
⎛⎝ q
4

−
(r + 1)δq

2

⎞⎠⎞⎟⎟⎠

≤ C

⎛⎜⎜⎝n−
( q
2

−
q
r

−δd−δ−4

)
+ n

−
⎛⎝ q
2

−
(r + 1)δq

2
−4

⎞⎠
+ n

−
⎛⎝ q
4

−
(r + 1)δq

2
−3

⎞⎠⎞⎟⎟⎠ .

Take q > max
{

2r(5 + δ)
r − 2rδ − 2

,
16

1 − 2δ
, p
}
. We have

q
2

− q
r

− δq − δ > 5,
q
2

− δq
2

> 5

and
q
4

− δq
2

> 4. Next, take τ > 0 small enough such that
q
2

− (r + 1)δq
2

> 5 and

q
4

− (r + 1)δq
2

> 4. Thus, we have
∑∞

n=1 P
(
sup0≤t≤1B3n(t) > ε

)
< ∞. Thus, sup0≤t≤1

B3n(t) = o(1),a.s.. Therefore, (3.16 ) holds.

Corollary 3.2. In Lemma 3.5, if {eij, 1 ≤ j ≤ mi} are r-mixing with Eeij = 0 for each i

(1 ≤ i ≤ n), then (3.16) holds.

Proof By Corollary 3.1, with arguments similar to the proof of Lemma 3.5, we have

(3.16).

4 Proof of Theorems
Proof of Theorem 2.1 From (1.1) and (2.2), we have

β̂n − β =

⎛⎝ n∑
i=1

mi∑
j=1

x̃ijx̃Tij

⎞⎠−1
n∑
i=1

mi∑
j=1

x̃ij(ỹij − x̃Tijβ)

= S−2
n

n∑
i=1

mi∑
j=1

x̃ij

[
(yij − xTijβ) −

n∑
k=1

mi∑
l=1

Wnkl(tij)(ykl − xTklβ)

]

= S−2
n

n∑
i=1

mi∑
j=1

x̃ij

[
(g(tij) + eij) −

n∑
k=1

mi∑
l=1

Wnkl(tij)(g(tkl) + ekl)

]

= S−2
n

n∑
i=1

mi∑
j=1

x̃ij

[
eij −

n∑
k=1

mi∑
l=1

Wnkl(tij)ekl + g̃(tij)

]

= S−2
n

⎡⎣ n∑
i=1

mi∑
j=1

x̃ijeij −
n∑
i=1

mi∑
j=1

x̃ij

(
n∑

k=1

mi∑
l=1

Wnkl(tij)ekl

)
+

n∑
i=1

mi∑
j=1

x̃ijg̃(tij)

⎤⎦
=
(

S2n
N(n)

)−1
⎡⎣ n∑

i=1

mi∑
j=1

x̃ij
N(n)

eij −
n∑
i=1

mi∑
j=1

x̃ij
N(n)

(
n∑

k=1

mi∑
l=1

Wnkl(tij)ekl

)
+

n∑
i=1

mi∑
j=1

x̃ij
N(n)

g̃(tij)

⎤⎦
=: D1n +D2n +D3n.

(4:1)
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From A2(ii),

∥∥∥∥∥
{

S2n
N(n)

}−1
∥∥∥∥∥ = O(1). By Remark 2.2, we have

n∑
i=1

mi∑
j=1

||x̃ij||
N(n)

= O(1) and max
1≤i≤n,1≤j≤mi

||x̃ij||
N(n)

= o

⎛⎝n12
⎞⎠. (4:2)

According to (4.2) and Remark 3.1, we have

||D1n|| ≤ C

∣∣∣∣∣∣
n∑
i=1

mi∑
j=1

||x̃ij||
N(n)

eij

∣∣∣∣∣∣ = o(1), a.s.. (4:3)

By A3(i-ii), (4.2), Lemma 3.4 or Corollary 3.1, we have

||D2n|| ≤ C max
1≤i≤n,1≤j≤mi

∥∥∥∥∥
n∑

k=1

mi∑
l=1

Wnkl(tij)ekl

∥∥∥∥∥ ·
n∑
i=1

mi∑
j=1

||x̃ij||
N(n)

= o(1). a.s.. (4:4)

From A2(iii) and A3(iii), we obtain

max
1≤i≤n,1≤j≤mi

∣∣g̃(tij)∣∣ = max
1≤i≤n,1≤j≤mi

∣∣∣∣∣g(tij) −
n∑

k=1

mi∑
l=1

Wnkl(tij)g(tkl)

∣∣∣∣∣
≤ max

1≤i≤n,1≤j≤mi

∣∣∣∣∣
n∑

k=1

mi∑
l=1

Wnkl(tij)(g(tij) − g(tkl))I(|tij − tkl| > ε)

∣∣∣∣∣
+ max

1≤i≤n,1≤j≤mi

∣∣∣∣∣
n∑

k=1

mi∑
l=1

Wnkl(tij)(g(tij) − g(tkl))I(|tij − tkl| ≤ε)

∣∣∣∣∣ = o(1).

(4:5)

Together with (4.2), one gets

||D3n|| ≤ C max
1≤i≤n,1≤j≤mi

|g̃(tij)| ·
n∑
i=1

mi∑
j=1

||x̃ij||
N(n)

= o(1). (4:6)

By (4.1), (4.3), (4.4) and (4.6), (2.5) holds.

Proof of Theorem 2.2 From (1.1) and (2.3), we have

ĝn(t) − g(t) =
n∑
i=1

mi∑
j=1

Wnij(t)(yij − xTij β̂n) − g(t)

=
n∑
i=1

mi∑
j=1

Wnij(t)
(
(yij − xTij β̂n) − (yij − xTijβ)

)
+

n∑
i=1

mi∑
j=1

Wnij(t)(yij − xTijβ) − g(t)

=
n∑
i=1

mi∑
j=1

Wnij(t)xTij(β − β̂n) +
n∑
i=1

mi∑
j=1

Wnij(t)(g(tij) + eij) − g(t)

=
n∑
i=1

mi∑
j=1

Wnij(t)xTij(β − β̂n) +
n∑
i=1

mi∑
j=1

Wnij(t)eij − g̃(t)

=: E1n + E2n + E3n.

(4:7)

By A3(iv) and (2.5), one gets

|E1n| ≤
∥∥∥∥∥∥

n∑
i=1

mi∑
j=1

Wnij(t)xij

∥∥∥∥∥∥ ||β − β̂n|| = o(1), a.s.. (4:8)

By Lemma 3.4 or Corollary 3.1, E2n = o(1), a.s.; With arguments similar to (4.5), we

have E3n = o(1). Therefore, together with (4.7) and (4.8), (2.6) holds.

Zhou and Lin Journal of Inequalities and Applications 2011, 2011:112
http://www.journalofinequalitiesandapplications.com/content/2011/1/112

Page 13 of 18



Proof of Theorem 2.3 Here, we still use (4.7), but Ein in (4.7) are replaced by Ein(t)

for i = 1,2 and 3. By A3(v) and (2.5), we get

sup
0≤t≤1

|E1n(t)| ≤ sup
0≤t≤1

∥∥∥∥∥∥
n∑
i=1

mi∑
j=1

Wnij(t)xij

∥∥∥∥∥∥ ||β − β̂n|| = o(1), a.s..

By Lemma 3.5 or Corollary 3.2, sup0≤t≤1 |E2n(t)| = o(1), a.s.; Similar to the arguments

in (4.5), we have sup0≤t≤1 |E2n(t)| = o(1). Hence, (2.7) is proved.

5 Simulation study
To evaluate the finite-sample performance of the least squares estimator β̂n and the

nonparametric estimator ĝn(t), we respectively take two forms of functions for g(·):

I. g(t) = exp(3t); II. g(t) = cos
(
3π

2
t
)
,

consider the case where p = 1 and mi = m = 12, and take the design points tij = ((i -

1)m + j)/(nm), xij ~ N(1, 1) and the errors eij = 0.2ei, j-1 + �ij, where �ij are i.i.d. N(0,1)

random variables, and ei,0 ~ N(0,1) for each i.

The kernel function is taken as the Epanechnikov kernel K(t) =
3
4
(1 − t2)I(|t| ≤ 1),

and the weight function is given by Nadaraya-Watson kernel weight

Wij(t) = K
(
t − tij
hn

)
/
∑n

i=1

∑mi
j=1 K

(
t − tij
hn

)
. The bandwidth h is selected by a “leave-

one-subject-out” cross validation method. In the simulations, we draw B = 1000 ran-

dom samples of sizes 150,200,300 and 500 for b = 2, respectively. We obtain the esti-

mators β̂n and ĝn(t) from (2.2) and (2.3), respectively. Let β̂
(b)
n be bth least squares

estimator of b under the size n. Some numerical results for β̂n are computed by

β̄n =
1
B

B∑
b=1

β̂
(b)
n , ŜD(β̂n) =

(
1

B − 1

B∑
b=1

(β̂(b)
n − β̄)

2
)1/2

,

B̂ias(β̂n) = β̄ − β , M̂SE(β̂n) =
1

B − 1

B∑
b=1

(β̂(b)
n − β)

2
,

which are listed in Table 1.

In addition, for assessing estimator of the nonparametric component g(·), we study

the square root of mean-squared errors (RMSE) based on 1000 repetitions. Denote

ĝ(b)n (t) be the bth estimator of g(t) under the size n, and ¯̂gn(t) =
∑B

b=1 ĝ
(b)
n (t)/B be the

average estimator of g(t). We compute

RMSEn =

(
1
M

M∑
s=1

( ¯̂gn(ts) − g(ts))
2
)1/2

,

and

RMSE(b)n =

(
1
M

M∑
s=1

(ĝ(b)n (ts) − g(ts))
2
)1/2

, b = 1, 2, . . . ,B,
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where {ts, s = 1,..., M} is a sequence of regular grid points on [0, 1]. Figures 1 and 2

respectively provide the average estimators of the nonparametric function g(·) and

RMSEn values for Cases I and II, respectively. The boxplots for

RMSE(b)n (b = 1, 2, . . . ,B) values for Cases I and II are presented in Figure 3.

From Table 1, we see that (i) |B̂ias(β̂n)|, ŜD(β̂n) and M̂SE(β̂n) do decrease with

increasing the sample size n; (ii) the larger the sample size n is, the closer the β̄n is to

the true value 2. From Figures 1, 2 and 3, we observe that the biases of estimators of

the nonparametric component g(·) decrease as the sample size n increases. These show

that, for semiparametric partially linear regression models for longitudinal data based

on mixing error’s structure, the least squares estimator of parametric component b
and the estimator of nonparametric component g(·) work well.

Table 1 The estimators of b and some indices of their accuracy for the different sample
size n and nonparametric function g(·)

g(·) n β̄n B̂ias(β̂n) ŜD(β̂n) M̂SE(β̂n)
exp(3t) 150 1.99938 -0.00062 0.0257 0.00066

200 1.99960 -0.00040 0.0221 0.00049

300 1.99965 -0.00035 0.0172 0.00030

500 1.99963 -0.00037 0.0133 0.00018

cos
(
3π

2
t
)

150 1.99908 -0.00092 0.0238 0.00056

200 1.99945 -0.00055 0.0206 0.00043

300 1.99950 -0.00050 0.0168 0.00028

500 1.99969 -0.00031 0.0131 0.00017
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Figure 1 Estimators of the nonparametric component g(·) for the case I: ĝn(·) (dashed curve) and g
(·) (solid curve).
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6 Concluding remarks
An inherent characteristic of longitudinal data is the dependence among the observa-

tions within the same subject. For exhibiting dependence among the observations

within the same subject, we consider the estimation problems of partially linear models

for longitudinal data with the �-mixing and r-mixing error structures, respectively.

The strong consistency for least squares estimator β̂n of parametric component b is
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Figure 2 Estimators of the nonparametric component g(·) for the case II: ĝn(·) (dashed curve) and
g(·) (solid curve).
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Figure 3 The boxplots of RMSE(b)n (b = 1, 2, . . . ,B) values in the estimators of g(·).
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studied. In addition, the strong consistency and uniform consistency for the estimator

ĝn(·) of nonparametric function g(·) are investigated under some mild conditions.

In the paper, we only consider (xTij , tij) are known and nonrandom design points, as

Baek and Liang [16], and Liang and Jing [20]. In the monograph of Hardle et al. [7],

they respectively considered the two cases: the fixed design and the random design, to

study non-longitudinal partially linear regression models. Our results can also be

extended to the case of (xTij , tij) being random. The interested readers can consider the

work. In addition, we consider partially linear models for longitudinal data with only

�-mixing and r-mixing. In fact, our results with other mixing-dependent structures,

such as a-mixing, �*-mixing and r*-mixing, can also be obtained by the same argu-

ments in our paper. At present, we have not given the asymptotic normality of estima-

tors, since some details need further discussion. We will devote to establish the

asymptotic normality of β̂n and ĝn(·) in our future work.
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