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Abstract

This article aims to discuss inequalities involving unitarily invariant norms. We obtain
a refinement of the inequality shown by Zhan. Meanwhile, we give an improvement
of the inequality presented by Bhatia and Kittaneh for the Hilbert-Schmidt norm.
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1. Introduction
Let Mm,n be the space of m × n complex matrices and Mn = Mn,n. Let ‖·‖ denote any

unitarily invariant norm on Mn. So, ‖UAV‖ = ‖A‖ for all AÎMn and for all unitary

matrices U,VÎMn. For A = (aij)ÎMn, the Hilbert-Schmidt norm of A is defined by

‖A‖2 =

√√√√√
⎛
⎝ n∑

i=1

n∑
j=1

∣∣aij∣∣2
⎞
⎠ =

√
tr|A|2 =

√∑n

j=1
s2j (A),

where tr is the usual trace functional and s1(A) ≥ s2(A) ≥ ... ≥ sn-1(A) ≥ sn(A) are the

singular values of A, that is, the eigenvalues of the positive semidefinite matrix

|A| = (AA∗)
1
2
, arranged in decreasing order and repeated according to multiplicity. The

Hilbert-Schmidt norm is in the class of Schatten norms. For 1 ≤ p < ∝, the Schatten p-

norm‖·‖p is defined as

‖A‖p =
(∑n

j=1
spj (A)

)1/p
=

(
tr|A|p)1/p.

For k = 1,...,n, the Ky Fan k-norm‖·‖(k) is defined as

‖A‖(k) =
∑k

j=1
sj (A).

It is known that these norms are unitarily invariant, and it is evident that each unita-

rily invariant norm is a symmetric guage function of singular values [1, p. 54-55].

Bhatia and Davis proved in [2] that if A,B,XÎMn such that A and B are positive

semidefinite and if 0 ≤ r ≤ 1, then
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2
∥∥∥A1/2XB1/2

∥∥∥ ≤ ∥∥ArXB1−r + A1−rXBr
∥∥ ≤ ‖AX + XB‖ . (1:1)

Let A,B,XÎMn such that A and B are positive semidefinite. In [3], Zhan proved that

∥∥ArXB2−r + A2−rXBr
∥∥ ≤ 2

t + 2

∥∥A2X + tAXB + XB2
∥∥ , (1:2)

for any unitarily invariant norm and real numbers r,t satisfying 1 ≤ 2r ≤ 3,-2 <t ≤ 2.

The case r = 1,t = 0 of this result is the well-known arithmetic-geometric mean

inequality

2
∥∥∥A1/2XB1/2

∥∥∥ ≤ ‖AX + XB‖ .

Meanwhile, for rÎ[0,1], Zhan pointed out that he can get another proof of the fol-

lowing well-known Heinz inequality
∥∥ArXB1−r + A1−rXBr

∥∥ � ‖AX + XB‖

by the same method used in the proof of (1.2).

Let A,B,XÎMn such that A and B are positive semidefinite and suppose that

ψ (v) =
∥∥A1+vXB1−v + A1−vXB1+v

∥∥ . (1:3)

Then ψ is a convex function on [-1,1] and attains its minimum at v = 0 [4, p. 265].

In [5], for positive semidefinite n × n matrices, the inequality

‖AB‖ � 1
4

∥∥(A + B)2
∥∥ (1:4)

was shown to hold for every unitarily invariant norm. Meanwhile, Bhatia and Kitta-

neh [5] asked the following.

Question

Let A,BÎMn be positive semidefinite. Is it true that

sj (AB) � 1
4
sj(A + B)2 , j = 1, 2, · · · ,n ?

The case n = 2 is known to be true [5]. (See also, [1, p. 133], [6, p. 2189-2190], [7, p.

198].)

Obviously, if A,BÎMn are positive semidefinite and AB = BA, then we have

j = 1, 2, · · · ,n , j = 1, 2, · · · ,n .

2. Some inequalities for unitarily invariant norms
In this section, we first utilize the convexity of the function

ψ (r) =
∥∥ArXB2−r + A2−rXBr

∥∥
to obtain an inequality for unitarily invariant norms that leads to a refinement of the

inequality (1.2). To do this, we need the following lemmas on convex functions.

Lemma 2.1

Let A,B,XÎMn such that A and B are positive semidefinite. Then, for each unitarily

invariant norm, the function
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ψ (r) =
∥∥ArXB2−r + A2−rXBr

∥∥
is convex on [0,2] and attains its minimum at r = 1.

Proof

Replace v+1 by r in (1.3).□

Lemma 2.2

Let ψ be a real valued convex function on an interval [a,b] which contains (x1,x2).

Then for x1 ≤ x ≤ x2, we have

ψ (x) ≤ ψ (x2) − ψ (x1)
x2 − x1

x − x1ψ (x2) − x2ψ (x1)
x2 − x1

. (2:1)

Proof

Since ψ is a convex function on [a,b], for a ≤ x1 ≤ x ≤ x2 ≤ b, we have

ψ (x1) − ψ (x)
x1 − x

≤ ψ (x2) − ψ (x)
x2 − x

.

This is equivalent to the inequality (2.1).□

Theorem 2.1

Let A,B,XÎMn such that A and B are positive semidefinite. If 1 ≤ 2r ≤3 and -2 <t ≤ 2,

then

∥∥ArXB2−r + A2−rXBr
∥∥ ≤ 2 (2r0 − 1) ‖AXB‖ +

4 (1 − r0)
2 + t

∥∥A2X + tAXB + XB2
∥∥ ,(2:2)

where r0 = min{r,2-r}.

Proof

If
1
2
� r � 1 , then by Lemma 2.1 and Lemma 2.2, we have

ψ (r) ≤
ψ (1) − ψ

(
1
2

)

1 − 1
2

r −
1
2

ψ (1) − ψ

(
1
2

)

1 − 1
2

.

That is

ψ (r) ≤ (2r − 1) ψ (1) + 2 (1 − r) ψ

(
1
2

)
. (2:3)

It follows from (1.2) and (2.3) that

∥∥ArXB2−r + A2−rXBr
∥∥ ≤ 2 (2r − 1) ‖AXB‖ +

4 (1 − r)
2 + t

∥∥A2X + tAXB + XB2
∥∥ .
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If 1 � r � 3
2
, then by Lemma 2.1 and Lemma 2.2, we have

ψ (r) ≤
ψ

(
3
2

)
− ψ (1)

3
2

− 1
r −

ψ

(
3
2

)
− 3

2
ψ (1)

3
2

− 1
.

That is

ψ (r) ≤ (3 − 2r) ψ (1) + 2 (r − 1) ψ

(
3
2

)
. (2:4)

It follows from (1.2) and (2.4) that

∥∥ArXB2−r + A2−rXBr
∥∥ ≤ 2 (3 − 2r) ‖AXB‖ +

4 (r − 1)

2 + t

∥∥A2X + tAXB + XB2
∥∥ .

It is equivalent to the following inequality

∥∥ArXB2−r + A2−rXBr
∥∥ ≤ 2 (2r0 − 1) ‖AXB‖ +

4 (1 − r0)
2 + t

∥∥A2X + tAXB + XB2
∥∥ .

This completes the proof.□
Now, we give a simple comparison between the upper bound in (1.2) and the upper

bound in (2.2).

2
2 + t

∥∥A2X + tAXB + XB2
∥∥ − 2 (2r0 − 1) ‖AXB‖ − 4 (1 − r0)

2 + t

∥∥A2X + tAXB + XB2
∥∥

=
2 (2r0 − 1)

2 + t

∥∥A2X + tAXB + XB2
∥∥ − 2 (2r0 − 1) ‖AXB‖

≥ 2 (2r0 − 1)

2 + t
· (2 + t) ‖AXB‖ − 2 (2r0 − 1) ‖AXB‖ = 0.

Therefore, Theorem 2.1 is a refinement of the inequality (1.2).

Let A,B,XÎMn such that A and B are positive semidefinite. Then, for each unitarily

invariant norm, the function

ϕ (v) =
∥∥AvXB1−v + A1−vXBv

∥∥

is a continuous convex function on [0,1] and attains its minimum at v =
1
2
. See [4, p.

265]. Then, by the same method above, we have the following result.

Theorem 2.2.[8]

Let A,B,XÎMn such that A and B are positive semidefinite. If 0 ≤ v ≤ 1, then

∥∥AvXB1−v + A1−vXBv
∥∥ ≤ 4r0

∥∥∥A1/2XB1/2
∥∥∥ + (1 − 2r0) ‖AX + XB‖ ,

where r0 = min{v,1-v}. This is a refinement of the second inequality in (1.1).

Next, we will obtain an improvement of the inequality (1.4) for the Hilbert-Schmidt

norm. To do this, we need the following lemma.
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Lemma 2.3.[9]

Let A,B,XÎMn such that A and B are positive semidefinite. If 0 ≤ v ≤ 1, then
∥∥AvXB1−v

∥∥ ≤ ‖AX‖v‖XB‖1−v.

Theorem 2.3

Let A,B,XÎMn such that A and B are positive semidefinite. If 0 ≤ v ≤ 1, then

2
∥∥AvXB1−v

∥∥ +
(‖AX‖v − ‖XB‖1−v)2 ≤

√
‖AX‖4v + ‖XB‖4(1−v) + 2

∥∥AvXB1−v
∥∥2.

Proof

Let

S = ‖AX‖4v + ‖XB‖4(1−v) + 2
∥∥AvXB1−v

∥∥2 −
(
2

∥∥AvXB1−v
∥∥ +

(‖AX‖v − ‖XB‖1−v)2)2
.

So,

S = ‖AX‖4v + ‖XB‖4(1−v) + 2
∥∥AvXB1−v

∥∥2 − 4
∥∥AvXB1−v

∥∥2 − (‖AX‖v − ‖XB‖1−v)4
−4

∥∥AvXB1−v
∥∥ (‖AX‖v − ‖XB‖1−v)2

= ‖AX‖4v + ‖XB‖4(1−v) − 2
∥∥AvXB1−v

∥∥2 − (‖AX‖v − ‖XB‖1−v)4
−4

∥∥AvXB1−v
∥∥ (‖AX‖v − ‖XB‖1−v)2.

By Lemma 2.3, we have

S ≥ ‖AX‖4v + ‖XB‖4(1−v) − 2‖AX‖2v‖XB‖2(1−v) − (‖AX‖v − ‖XB‖1−v)4
−4

∥∥AvXB1−v
∥∥ (‖AX‖v − ‖XB‖1−v)2.

That is,

S ≥ (‖AX‖v − ‖XB‖1−v)2 ((‖AX‖v + ‖XB‖1−v)2 − (‖AX‖v − ‖XB‖1−v)2 − 4
∥∥AvXB1−v

∥∥)

= 4
(‖AX‖v − ‖XB‖1−v)2 (‖AX‖v‖XB‖1−v − ∥∥AvXB1−v

∥∥)
≥ 0.

Hence,

‖AX‖4v + ‖XB‖4(1−v) + 2
∥∥AvXB1−v

∥∥2 ≥
(
2

∥∥AvXB1−v
∥∥ +

(‖AX‖v − ‖XB‖1−v)2)2
.

This completes the proof.□
Let A,B,XÎMn such that A and B are positive semidefinite, for Hilbert-Schmidt

norm, the following equality holds:

‖AX + XB‖22 = ‖AX‖22 + ‖XB‖22 + 2
∥∥∥A1/2XB1/2

∥∥∥2

2
.

Taking v =
1
2
in Theorem 2.3, and then we have the following result.
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Theorem 2.4.[10]

Let A,B,XÎMn such that A and B are positive semidefinite. Then

2
∥∥∥A1/2XB1/2

∥∥∥
2
+

(√
‖AX‖2 −

√
‖XB‖2

)2 ≤ ‖AX + XB‖2.

Bhatia and Kittaneh proved in [5] that if A,BÎMn are positive semidefinite, then

∥∥∥A3/2B1/2 + A1/2B3/2
∥∥∥ ≤ 1

2

∥∥(A + B)2
∥∥ . (2:5)

Now, we give an improvement of the inequality (1.4) for the Hilbert-Schmidt norm.

Theorem 2.5

Let A,BÎMn be positive semidefinite. Then

‖AB‖2 +
1
2

(√∥∥A3/2B1/2
∥∥
2 −

√∥∥A1/2B3/2
∥∥
2

)2

≤ 1
4

∥∥(A + B)2
∥∥
2.

Proof

Let

X = A1/2B1/2.

Then, by Theorem 2.4, we have

2‖AB‖2 +
(√∥∥A3/2B1/2

∥∥
2 −

√∥∥A1/2B3/2
∥∥
2

)2

≤
∥∥∥A3/2B1/2 + A1/2B3/2

∥∥∥
2
. (2:6)

It follows form (2.5) and (2.6) that

2‖AB‖2 +
(√∥∥A3/2B1/2

∥∥
2 −

√∥∥A1/2B3/2
∥∥
2

)2

≤ 1
2

∥∥(A + B)2
∥∥
2.

That is,

‖AB‖2 +
1
2

(√∥∥A3/2B1/2
∥∥
2 −

√∥∥A1/2B3/2
∥∥
2

)2

≤ 1
4

∥∥(A + B)2
∥∥
2.

This completes the proof.□
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