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Abstract

In this article, a method is developed to transform the chance-constrained programming
problem into a deterministic problem. We have considered a chance-constrained
programming problem under the assumption that the random variables aij are
independent with Gamma distributions. This new method uses estimation of the
distance between distribution of sum of these independent random variables having
Gamma distribution and normal distribution, probabilistic constraint obtained via Essen
inequality has been made deterministic using the approach suggested by Polya. The
model studied on in practice stage has been solved under the assumption of both
Gamma and normal distributions and the obtained results have been compared.
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1. Introduction
A chance-constrained stochastic programming (CCSP) models is one of the major

approaches for dealing with random parameters in the optimization problems. Charnes

and Cooper [1] have first modelled CCSP. Here, they have developed a new conceptual

and analytic method which contains temporary planning of optimal stochastic decision

rules under uncertainty. Symonds [2] has presented deterministic solutions for the

class of chance-constraint programming problem. Kolbin [3] has examined the risk

and indefiniteness in planning and managing problems and presented chance-con-

straint programming models. Stancu-Minasian [4] has suggested a minimum-risk

approach to multi-objective stochastic linear programming problems. Hulsurkar et al.

[5] have studied on a practice of fuzzy programming approach of multi-objective sto-

chastic linear programming problems. They have used fuzzy programming approach

for finding a solution after changing the suggested stochastic programming problem

into a linear or a nonlinear deterministic problem. Liu and Iwamura [6] have studied

on chance-constraint programming with fuzzy parameters. Chance-constraint program-

ming in stochastic is expanded to fuzzy concept by their studies. They have presented

certain equations with chance constraint in some fuzzy concept identical to stochastic

programming. Furthermore, they have suggested a fuzzy simulation method for chance

constraints for which it is usually difficult to be changed into certain equations. Finally,

these fuzzy simulations which became basis for genetic algorithm have been suggested

for solving problems of this type and discussing numeric examples. Mohammed [7]

has studied on chance-constraint fuzzy goal programming containing right-hand side
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values with uniform random variable coefficients. He presented the main idea related

with the stochastic goal programming and chance-constraint linear goal programming.

Kampas and White [8] have suggested the programming based on probability for the

control of nitrate pollution in their studies and compared this with the approaches of

various probabilistic constraints. Yang and Wen [9] presented a chance-constrained

programming model for transmission system planning in the competitive electricity

market environment. Huang [10] provided two types of credibility-based chance-con-

strained models for portfolio selection with fuzzy returns. Ağpak and Gökçen [11]

developed new mathematical models for stochastic traditional and U-type assembly

lines with a chance-constrained 0-1 integer programming technique. Henrion and

Strugarek [12] investigated the convexity of chance constraints with independent ran-

dom variables. Parpas and Rüstem [13] proposed a stochastic algorithm for the global

optimization of chance-constrained problems. They assumed that the probability mea-

sure used to evaluate the constraints is known only through its moments. Xu et al.

[14] developed a robust hybrid stochastic chance-constraint programming model for

supporting municipal solid waste management under uncertainty. Abdelaziz and Masri

[15] proposed a chance-constrained approach and a compromise programming

approach to transform the multi-objective stochastic linear program with partial linear

information on the probability distribution into its equivalent uni-objective problem.

Goyal and Ravi [16] presented a polynomial time approximation scheme for the

chance-constrained knapsack problem when item sizes are normally distributed and

independent of other items.

The classical linear programming problem, which is a specific class of mathematical

programming problem, is formulated as follows

max z(x) =
n∑
j=1

cjxj

n∑
j=1

aijxj ≤ bi i = 1, ...,m

xj ≥ 0 j = 1, ...,n

where all coefficients (technologic coefficients aij, right-hand side values bi and objec-

tive function coefficients cj (j = 1,..., n i = 1,..., m)) are deterministic. However, when at

least one coefficient is a random variable, the problem becomes a stochastic program-

ming problem.

In this article, we have assumed that the aij, (i = 1,..., m, j = 1,... n) which are the ele-

ments of, m × n type technologic matrix A, are random variables having Gamma dis-

tribution. In case that these coefficients having Gamma distribution are independent,

the estimation of the distance between the distribution of sum of them and normal

distribution has been obtained. Essen inequality has been used for these and determi-

nistic equality of chance constraints has been found. The model with random variable

coefficients has been solved via the suggested method and it has been implemented on

a numeric example. The model has been examined again for the case to have coeffi-

cients with normal distribution. It has been observed that the case aij coefficients have

Gamma distribution or normal distribution has given similar results for large values of

n with regard to objective function.
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2. Chance-constrained stochastic programming
Stochastic programming deals with the case that input data (prices, right hand side

vector, technologic coefficients) are random variables. As parameters are random vari-

ables, a probability distribution should be determined. Two frequently used approaches

for transforming stochastic programming problem into a deterministic programming

problem are chance constraint programming and two-staged programming.

“Chance-constrained programming” which is a stochastic programming method con-

tains fixing the certain appropriate levels for random constraints. Therefore, it is generally

used for modelling technical or economic systems. The practices include economic plan-

ning, input control, structural design, inventory, air and water quality management pro-

blems. In chance constraints, each constraint can be realized with a certain probability.

Stochastic linear programming problem with chance constraints is defined as follows

max(min)z (x) =
n∑
j=1

cjxj

P

⎡
⎣ n∑

j=1

aijxj ≤ bi

⎤
⎦ ≥ 1 − ui

xj ≥ 0, j = 1, ...,n

ui ∈ (0, 1) , i = 1, ...,m

(2:1)

where cj, aij and bi are random variables and ui’s are chosen probabilities. kth chance

constraint given in model (2.1) is obtained as

P

⎡
⎣ n∑

j=1

akjxj ≤ bk

⎤
⎦ ≥ 1 − uk (2:2)

with lower bound (1 - uk). Where it is assumed that xj decision variables are deter-

ministic. cj, akj and bk are random variables with known variances and means [17,18].

If bk is the random variable in the model, and its distribution function is Fb then the

deterministic equivalent of chance constraint can be calculated as

P
[
akjxj ≤ bk

] ≥ uk ⇔ P
[
bk ≥ akjxj

] ≥ uk
⇔ 1 − Fb

(
akjxj

) ≥ uk

⇔ akjxj ≤ F−1
b (1 − uk)

(2:3)

Assume that akj is a random variable having normal distribution with the mean E

(akj) and the variance Var(akj). Furthermore, covariance between the random variables

akj and akl is zero. Then, random variable dk is defined as follows

dk =
n∑
j=1

akjxj

where ak1,..., akn’s are random variables with normal distribution and x1,..., xn’s are

unknowns, chance constraint given with inequality (2.2) is defined as follows

φ

[
bk − E (dk)√

Var (dk)

]
≥ φ

(
Kuk

)
(2:4)
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where Kuk denotes the value of standard normal variable and φ
(
Kuk

)
= 1 − uk .

Therefore, deterministic equivalent of inequality (2.4) is stated as

E (dk) + Kuk

√
Var (dk) ≤ bk

Solution methods for models constituted by dual and triple combinations of cj, akj
and bk coefficients and also for the case that cj’s are random variable are different. In

this article, these are not mentioned [5,19-21].

3. Gamma distribution approach for CCSP
Let, X1, X2,..., Xn be independent random variables with a distribution function Fn(x).

Let F(x) be a standard normal distribution function. Then, supremum of absolute dis-

tance between Fn(x) and F(x) can be found. The theorem related to this, which is

known as Essen Inequality, is as follows.

Theorem 3.1 Let X1, X2,..., Xn be independent random variables with given

EXj = 0 and E | Xj|3 < ∞ j = 1, ..., n

where if it is as follows

σ 2
j = EX2

j , ...,Bn =
n∑
j=1

σ 2
j , ..., Fn(x) = P

⎡
⎣B−1/2

n

n∑
j=1

Xj < x

⎤
⎦ , ..., Ln = B−−3/2

n

n∑
j=1

E | Xj|3

then

sup
x

| Fn(x) − �(x) |≤ SLn (3:1)

is defined. Here, S is an absolute positive constant [22].

Proof to Theorem 3.1 can be found in [[22], pp. 109-111]. In case of equality, as a

result of Essen inequality we can give the following equation, for large values of n

P

⎡
⎣B−1/2

n

⎛
⎝ n∑

j=1

Xj − E

⎛
⎝ n∑

j=1

Xj

⎞
⎠
⎞
⎠ < x

⎤
⎦ = φ (x)+

n∑
j=1

E
(
Xj − E

(
Xj
))3

e

−x2

2
(
1 − x2

)

6
√
2πB

3
2
n

+o(n
−1
2 )

(3:2)

Equation 3.2 is used for approximation to standard normal distribution [23].

After defining the Essen inequality given in Theorem 3.1, now we explain Gamma

distribution approach for CCSP model. In linear programming, the constraints are con-

structed as follows:

Ax ≤ b ⇔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ... a1n
...
...

. . .
...

ak1 ak2 ... akn
...

...
. . .

...

am1 am2 ... amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xk
...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

bk
...

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3:3)

Here, the matrix A indicates a coefficients matrix. Let dk = ak’x k = 1,..., m then kth

row in (3.3) rewritten as
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dk ≤ bk ⇔ [ak1, ak2, ..., akn]

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
.

xk
.

xn

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ bk (3:4)

If akj’s which are kth row of coefficients matrix A are independent gamma random

variables, chance constraints given in model (2.1) are as follows

P (dk ≤ bk) ≥ 1 − uk, k = 1, 2, ...,m (3:5)

Assume that each random variable akj has Gamma distribution with (akj, bkj) para-
meters in (3.4). For the purpose of using Essen inequality given in Theorem 3.1, the

random variable rj = akjxj - E(akjxj), j = 1,..., n is taken into account. Expected value

and variance of each random variable akj as follows:

E(akj) = αkjβkj Var(akj) = αkjβ
2
kj

Therefore, the expected value of random variable rj will be as follows:

E(rj) = E(akjxj − E(akjxj)) = xj
[
αkjβkj − αkjβkj

]
= 0

and its variance will be as follows:

Var(rj) = E(dj)2 − [E(dj)]2 = x2j Var(akj) = x2j αkjβ
2
kj

Absolute third moment of random variable dj is found in the following equality

E| rj |3 = E| akjxj − E(akjxj) |3 = x3j E| akj − αkjβkj |3 (3:6)

The expected value in equality (3.6) can be written as follows:

E
∣∣akj − αkjβkj

∣∣3 =

∞∫
0

∣∣akj − αkjβkj
∣∣3f (akj)dakj

=

αkjβkj∫
0

∣∣akj − αkjβkj
∣∣3f (akj)dakj +

∞∫
αkjβkj

∣∣akj − αkjβkj
∣∣3f (akj)dakj

= Ikj + IIkj (3:7)

Then, Ikj is rewritten as follows

Ikj =

αkjβkj∫
0

[− (akj − αkjβkj
)]3

f (akj)dakj

= − 1

�(αkj)β
αkj

kj

αkjβkj∫
0

(
a3kj − 3a2kjαkjβkj + 3akjα2

kjβ
2
kj − α3

kjβ
3
kj

)
a

αkj−1
kj e

−akj/βkjdakj

If it is taken as, − 1

�(αkj)β
αkj

kj

= 	 in integral then Ikj can be written as follows

Ikj = 	

αkjβkj∫
0

a
αkj+2
kj e

−akj/βkjdakj − 	
(
3αkjβkj

) αkjβkj∫
0

a
αkj+1
kj e

−akj/βkjdakj + 	
(
3α2

kjβ
2
kj

) αkjβkj∫
0

a
αkj

kj e
−akj/βkjdakj

−	
(
α3
kjβ

3
kj

) αkjβkj∫
0

a
αkj−1
kj e

−akj/βkjdakj

= 	ω1 + 	
(
3αkjβkj

)
ω2 + 	

(
3α2

kjβ
2
kj

)
ω3 + 	

(
α3
kjβ

3
kj

)
ω4
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Here, by making variable change
akj
βkj

= tkj ,

ω1 = β
αkj+3
kj

αkj∫
0

t
αkj+2
kj e−tkj dtkj

is obtained. Incomplete gamma function is defined as follows

I(a, x) =
γ (a, x)
�(a)

here

γ (a, x) =

x∫
0

ta−1e−tdt

Therefore, ω1 can be rearranged as follows:

ω1 = β
αkj+3
kj �(αkj + 3)I(αkj + 3,αkj)

Similarly, it can be written as follows

ω2 = β
αkj+2
kj �(αkj + 2)I(αkj + 2,αkj)

ω3 = β
αkj+1
kj �(αkj + 1)I(αkj + 1,αkj)

ω4 = β
αkj

kj �(αkj)I(αkj,αkj)

The second part of the integral can be written as follows

IIkj =

∞∫
αkjβkj

(
akj − αkjβkj

)3
f (akj)dakj

=
1

�(αkj)β
αkj

kj

∞∫
αkjβkj

(
a3kj − 3a2kjαkjβkj + 3akjα2

kjβ
2
kj − α3

kjβ
3
kj

)
a

αkj−1
kj e

−akj/βkjdakj

If it is taken as
1

�(αkj)β
αkj

kj

= −	 in integral then IIkj can be written as follows

IIkj = −	

∞∫
αkjβkj

a
αkj+2
kj e

−akj/βkjdakj + 	
(
3αkjβkj

) ∞∫
αkjβkj

a
αkj+1
kj e

−akj/βkjdakj − 	
(
3α2

kjβ
2
kj

) ∞∫
αkjβkj

a
αkj

kj e
−akj/βkjdakj

+	
(
α3
kjβ

3
kj

) ∞∫
αkjβkj

a
αkj−1
kj e

−akj/βkjdakj

= −	ξ1 + 	
(
3αkjβkj

)
ξ2 − 	

(
3α2

kjβ
2
kj

)
ξ3 + 	

(
α3
kjβ

3
kj

)
ξ4

where

ξ1 =

∞∫
0

a
αkj+2
kj e

−akj/βkjdakj −
αkjβkj∫
0

a
αkj+2
kj e

−akj/βkjdakj

= β
αkj+3
kj �(αkj + 3)

[
1 − I(αkj + 3,αkj)

]
.
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In the same way it will be

ξ2 = β
αkj+2
kj �(αkj + 2)

[
1 − I(αkj + 2,αkj)

]
ξ3 = β

αkj+1
kj �(αkj + 1)

[
1 − I(αkj + 1,αkj)

]
ξ4 = β

αkj

kj �(αkj)
[
1 − I(αkj,αkj)

]
.

Therefore, for any finite akj and bkj, it can easily be seen that Edj = 0 and E|dj|
3 < ∞.

Therefore, the conditions in Theorem 3.1 are satisfied, then σ 2
j and Bn is obtained as

σ 2
j = Er2j = x2j αkjβ

2
kj

Bn =
n∑
j=1

σ 2
j =

n∑
j=1

x2j αkjβ
2
kj

The third absolute moment of random variable, rj, in terms of integrals Ikj and IIkj is

written as follows

E| rj |3 = x3j
(
Ikj + IIkj

)
Then, Ln is obtained as follows

Ln = B
−3/2
n

n∑
j=1

E
∣∣rj∣∣3 =

n∑
j=1

x3j
(
Ikj + IIkj

)
[

n∑
j=1

x2j αkjβ
2
kj

]3/2 (3:8)

Even if Ln defined in Theorem 3.1 is maximum it can be a useful upper bound for

left side of (3.1). Following lemma is related to this situation.

Lemma 3.1 Maximum value of Ln in Equation 3.8 is given by

maxLn =
nL∗(

nx∗α∗(β∗)2
)3/2 =

nL∗

n3/2(x∗α∗)
3/2(β∗)3 (3:9)

Proof Maximum value of Ln given in Equation 3.8 is obtained by maximizing nomi-

nator while minimizing the denominator, i.e.

max
j

n∑
j=1

x3j
(
Ikj + IIkj

)

and

min
j

⎡
⎣ n∑

j=1

x2j αkjβ
2
kj

⎤
⎦

3/2

Therefore,

max
j

∣∣∣x3j (Ikj + IIkj
)∣∣∣ = L∗

and

min
j

| x2j αkjβ
2
kj |= x∗α∗(β∗)2
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equalities are defined. Then maximum value of Ln given in Equation 3.8 is found as

Equation 3.9. This completes the proof of Lemma 3.1.

In Theorem 3.1, using Ln given in (3.8), following inequality is obtained

sup
x

| Fn(x) − �(x) |≤ SLn

sup
x

| Fn(x) − �(x) |≤ S

n∑
j=1

x3j
(
Ikj + IIkj

)
[

n∑
j=1

x2j αkjβ
2
kj

]3/2 (3:10)

If the suggested constant S = 0.7975 [22] in inequality (3.10) and if the value max Ln
given with (3.9) is used following inequality is obtained

sup
x

| Fn(x) − �(x) |≤ 0.7975
L∗

√
n(x∗α∗)

3/2(β∗)3
(3:11)

Here, Fn(x) is Gamma distribution function, F(x) is that of standard normal distribu-

tion. Thus, for dk

dk −
n∑
j=1

xjE(akj)√
n∑
j=1

x2j Var(akj)

=

dk −
n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

is defined. Therefore, constraint (3.5) can be written as follows

P

⎡
⎢⎢⎢⎢⎣

n∑
j=1

akjxj−
n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

≤
bk −

n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

⎤
⎥⎥⎥⎥⎦ ≥ 1 − (uk + SLn)

Here, the following inequality is written

�

⎡
⎢⎢⎢⎢⎣
bk −

n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

⎤
⎥⎥⎥⎥⎦ ≥ 1 − (uk + SLn) . (3:12)

There are decision variables xj (j = 1,..., n) in Ln which is on the left side of the

inequality (3.12). Since these decision variables are the results of the problem solved

after model (2.1) is made deterministic, they are unknown here. Therefore, Ln is not a

numeric and it cannot be solved using F-1(1-(uk)+SLn). Therefore, using the approach

suggested [24] right side of inequality (3.12) can be written as follows

�

⎡
⎢⎢⎢⎢⎣
bk −

n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

⎤
⎥⎥⎥⎥⎦ =

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 − exp

⎛
⎜⎜⎜⎜⎝− 2

π

⎡
⎢⎢⎢⎢⎣
bk −

n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

⎤
⎥⎥⎥⎥⎦

2⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1/2
⎞
⎟⎟⎟⎟⎟⎟⎠

(3:13)
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and deterministic constraint belonging to inequality (3.12) is then written as fallows

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 − exp

⎛
⎜⎜⎜⎜⎝− 2

π

⎡
⎢⎢⎢⎢⎣
bk −

n∑
j=1

xjαjβj√
n∑
j=1

x2j αjβ
2
j

⎤
⎥⎥⎥⎥⎦

2⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1/2
⎞
⎟⎟⎟⎟⎟⎟⎠

≥ 1−

⎡
⎢⎢⎢⎢⎢⎢⎣
uk + 0.7975

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

x3j
(
Ikj + IIkj

)
[

n∑
j=1

x2j αkjβ
2
kj

]3/2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3:14)

Using Equation (3.2) we can construct the following inequality

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 − exp

⎛
⎜⎜⎜⎜⎝− 2

π

⎡
⎢⎢⎢⎢⎣
bk −

n∑
j=1

xjαkjβkj√
n∑
j=1

x2j αkjβ
2
kj

⎤
⎥⎥⎥⎥⎦

2⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1/2
⎞
⎟⎟⎟⎟⎟⎟⎠

≥ 1 −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk +

n∑
j=1

x3j 2αkjβ
3
kje

−

⎛
⎜⎜⎜⎜⎝
bk −

n∑
j=1

xjαkjβkj√
n∑
j=1

x2j αkjβ
2
kj

⎞
⎟⎟⎟⎟⎠

2

2

⎛
⎜⎜⎜⎜⎝1 −

⎛
⎜⎜⎜⎜⎝
bk −

n∑
j=1

xjαkjβkj√
n∑
j=1

x2j αkjβ
2
kj

⎞
⎟⎟⎟⎟⎠

2⎞
⎟⎟⎟⎟⎠

6
√
2π

(
n∑
j=1

x2j αkjβ
2
kj

) 3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.15)

4. Numerical experiments
Consider the CCSP model as follows

max z = 7x1 + 2x2 + 4x3
P [a11x1 + a12x2 + a13x3 ≤ 8] ≥ 0.95

P
[
5x1 + x2 + 6x3 ≤ b2

] ≥ 0.10

xj ≥ 0 j = 1, 2, 3

(4:1)

Here, assume that akj j = 1,2,3 are independent random variables distributed as

Gamma distribution with the following parameters (akj, bkj)

α11 = 4, β11 = 1, α12 = 2, β12 = 2, α13 = 3, β13 = 2. (4:2)

b2 is normal random variable with the following expected value and variance

E (b2) = 7, Var (b2) = 9

In the solving stage of the problem, for using of Essen inequality given in Theorem

3.1 can be defined as
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rj = akjxj − E
(
akjxj

)
here,

Var
(
rj
)
= x2j

(
αkjβ

2
kj

)

is found and for k = 1, Bn is obtained as follows

Bn = 4x21 + 8x22 + 12x23

Then, Ln is written as follows

Ln =

3∑
j=1

x3j
(
Ikj + IIkj

)
(
4x21 + 8x22 + 12x23

)3/2
As a result of the solution of the integrals, Ikj (k = 1, j = 1,2,3) and IIkj (k = 1, j =

1,2,3) in Ln can be obtained as

I11 = 3.2824, II11 = 11.2824

I12 = 6.9766, II12 = 38.9766

I13 = 15.3291, II13 = 63.3291

Then, Ln is found as

Ln =
14.5648x31 + 45.9532x32 + 78.6582x33(

4x21 + 8x22 + 12x23
)3/2 .

Therefore, in the case where akj is a random variable with Gamma distribution,

deterministic equality of the first chance constraint in model (4.1), using inequality

(3.14) is obtained as follows

1
2

⎡
⎢⎢⎢⎣1 +

⎧⎪⎨
⎪⎩1 − exp

⎛
⎜⎝− 2

π

⎡
⎢⎣8 − (4x1 + 4x2 + 6x3)√

4x21 + 8x22 + 12x23

⎤
⎥⎦

2⎞
⎟⎠
⎫⎪⎬
⎪⎭

1/2
⎤
⎥⎥⎥⎦ ≥ 1−

⎡
⎣0.05 + 0.7975

⎛
⎝14.5648x31 + 45.9532x32 + 78.6582x33(

4x21 + 8x22 + 12x23
)3/2

⎞
⎠
⎤
⎦ (4:3)

Using inequality (3.15) we can write as:

0.5

⎛
⎝1 +

{
1 − exp

(
−0.6366

(8 − x4)
x5

2
)}1/2

⎞
⎠ ≥ 0.95 −

⎡
⎢⎢⎣ (8x31 + 32x32 + 48x33)e

−x6
2 (1 − x6)

6
√
(6.28)x

3
2
5

⎤
⎥⎥⎦

x4 − 4x1 − 4x2 − 6x3 = 0

x5 − (4x21 + 8x22 + 12x23) = 0

x6x5 − (8 − x4)2 = 0

(4:4)

Using inequality (2.3) for the second chance constraint, deterministic inequality is

obtained as

5x1 + x2 + 6x3 ≤ 10.855

Then, deterministic equality of CCSP model given in (4.1), using inequality (4.3), can

be found as follows

max z = 7x1 + 2x2 + 4x3
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1
2

⎡
⎢⎢⎢⎣1 +

⎧⎪⎨
⎪⎩1 − exp

⎛
⎜⎝− 2

π

⎡
⎢⎣8 − (4x1 + 4x2 + 6x3)√

4x21 + 8x22 + 12x23

⎤
⎥⎦

2⎞
⎟⎠
⎫⎪⎬
⎪⎭

1/2
⎤
⎥⎥⎥⎦ ≥ 1 −

⎡
⎣0.05 + 0.7975

⎛
⎝14.5648x31 + 45.9532x32 + 78.6582x33(

4x21 + 8x22 + 12x23
)3/2

⎞
⎠
⎤
⎦

0.7975

⎛
⎝14.5648x31 + 45.9532x32 + 78.6582x33(

4x21 + 8x22 + 12x23
)3/2

⎞
⎠ ≤ 0.95

(4:5)

5x1 + x2 + 6x3 ≤ 10.855

xj ≥ 0 j = 1, 2, 3

The second constraint is given for controlling of non-negativity on the right side of

first constraint. The nonlinear problem given in (4.5) has been solved with condition

0 ≤ x1, x2, x3 ≤ 2

using software Lingo 9.0 and the results are shown in Table 1.

Deterministic equality of CCSP model given in (4.1), using inequality (4.4), can be

found as follows

max z = 7x1 + 2x2 + 4x3

0.5

⎛
⎝1 +

{
1 − exp

(
−0.6366

(8 − x4)
x5

2
)}1/2

⎞
⎠ ≥ 0.95 −

⎡
⎢⎢⎣ (8x31 + 32x32 + 48x33)e

−x6
2 (1 − x6)

6
√
(6.28)x

3
2
5

⎤
⎥⎥⎦

x4 − 4x1 − 4x2 − 6x3 = 0

x5 − (4x21 + 8x22 + 12x23) = 0

x6x5 − (8 − x4)2 = 0

(4:6)

5x1 + x2 + 6x3 ≤ 10.855

xj ≥ 0 j = 1, 2, 3, 4, 5, 6

As a second case, let us assume that akj coefficients in the first chance constraint in

model (4.1) are independent normal random variables with the following expected

value E(akj) and variance Var(akj)

E (a11) = 4, Var (a11) = 4

E (a12) = 4, Var (a12) = 8

E (a13) = 6, Var (a13) = 12

(4:7)

Then, deterministic equality of chance constraint can be arranged as follows

4x1 + 4x2 + 6x3 + 1.645
√
4x21 + 8x22 + 12x23 ≤ 8 (4:8)

Table 1 Solutions results of models (4.5), (4.6), (4.9)

Model (4.5) Model (4.6) Model (4.9)

x1 = 1.466249

x2 = 0.9250464

x3 = 0.4331181

max z = 13.84631

x1 = 1.010669

x2 = 0.000000

x3 = 0.000000

max z = 7.074686

x1 = 1.097394

x2 = 0.000000

x3 = 0.000000

max z = 7.681756
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Therefore, deterministic equality of CCSP model given in (4.1) can be found as fol-

lows:

max z = 7x1 + 2x2 + 4x3

4x1 + 4x2 + 6x3 + 1.645
√
4x21 + 8x22 + 12x23 ≤ 8

(4:9)

5x1 + x2 + 6x3 ≤ 10.855

xj ≥ 0 j = 1, 2, 3, 4

Model (4.9) has been solved by software Lingo 9.0 and the results are listed in Table

1.

5. Conclusion
In this study, a new method is suggested for the solution of the deterministic equiva-

lence of the CCSP. The main purpose of this article is to transform the chance-con-

strained model into a deterministic model based on the Essen inequality. According to

the Essen inequality, the estimation of the distance between the distribution of a sum

of independent random variables and the normal distribution is less than or equal to

SLn. This study considers a stochastic optimization model with random technology

matrix in which the random variables are independent and follow a Gamma distribu-

tion. Deterministic equality of these kinds of problems has been obtained via the sug-

gested method. Furthermore, by adding a second constraint having normal distribution

in the right-hand side value, a problem with two chance constraints has been obtained.

In this problem, both cases that akj coefficients have gamma and normal distributions

have been examined and for the solution of deterministic models Lingo 9.0 has been

used.

As a result, the upper bounds of the chance constrained are derived by the Essen

inequality and developed approximate deterministic equivalent of the model.

The solutions obtained by including the supremum distance defined by the Essen

inequality in the model are shown clearly in the solutions results (4.5) and (4.6) in

Table 1.

For large values of n, the solution results of the models having Gamma and normal

distributions are closed to each other. This can be observed in Table 1 by examining

the solution results (4.6) and (4.9). Here, it can be seen that coefficients of the objec-

tive function and decision variables are very similar.
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