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Abstract

In this paper, further analysis on stability of delayed neural networks is presented via
the impulsive delay differential inequality, which was obtained by Li in recent
publications. Based on the inequality, some new sufficient conditions ensuring global
exponential stability of impulsive delay neural networks are derived, and the
estimated exponential convergence rates are also obtained. The conditions are less
conservative and restrictive than those established in the earlier references. In
addition, some numerical examples are given to show the effectiveness of our
obtained results.
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1. Introduction and preliminaries
In recent years, extensive research has been done in neural networks such as Hopfield

neural networks, Cohen-Grossberg neural networks, cellular neural networks, and

bidirectional associative memory neural networks, because of their potential applica-

tions in pattern recognition, image processing, associative memory, and so on, see

[1-28]. Recently, a new type of neural networks–impulsive neural networks display a

combination of characteristics of both the continuous-time and discrete-time systems,

which is an appropriate description of the phenomena of abrupt qualitative dynamical

changes of essentially continuous-time systems, see [4,9,13-22]. The stability of impul-

sive delay neural networks has become an important topic of theoretical studies and

has been investigated by many researchers via different approaches, see [9,13-16,20-22]

and the references cited therein. For example, Liu et al. [14] obtained some sufficient

conditions on global exponential stability by utilizing impulsive delay differential

inequality that has been given by Yue et al. [18] for impulsive high-order Hopfield

neural networks with time-varying delays as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ci
dui(t)
dt

= −ui(t)
Ri

+
∑n

j=1 Tijgj(uj(t − τj(t)))

+
∑n

j=1

∑n
l=1 Tijlgj(uj(t − τj(t))) × gl(ul(t − τl(t))) + Ii, t �= tk, t ≥ t0,

�ui|t=tk = diui(t
−
k ) +

∑n
j=1 Wijhj(uj(t

−
k − τj(t

−
k )))

+
∑n

j=1

∑n
l=1 Wijlhj(uj(t

−
k − τj(t

−
k ))) × hl(ul(t

−
k − τl(t

−
k ))), i ∈ �, k ∈ Z+,

ui(s) = φi(s), s ∈ [t0 − τ , t0].

(1:1)
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In [20,21], Xu and Yang investigated the global exponential stability of impulsive

delay neural networks by establishing a delay differential inequality with impulsive

initial conditions. The results extend and improve the recent works [23,24]. More

recently, Yang et al. [22] investigated the global exponential stability by Lyapunov func-

tion and Halanay inequality for impulsive extended BAM type Cohen-Grossberg neural

networks with delays and variable coefficients as follows:⎧⎪⎪⎨⎪⎪⎩
x

′
i(t) = −ai(xi(t))

[
bi(xi(t)) − ∑m

j=1 pjifj(yj(t))uj −
∑m

j=1 rjifj(yj(t − τji))vj + ci
]
, i = 1, . . . ,n

y
′
j(t) = −aj(yj(t))

[
bj(yj(t)) − ∑n

i=1 qijgi(xi(t))wi −
∑n

i=1 sijgi(xi(t − σij))ei + dj
]
, j = 1, . . . ,m

xi(s) = φi(s), yj(s) = ψj(s), s ∈ [t0 − τ , t0],

(1:2)

where

uj = 1 +
∞∑
k=1

αjkδ(t − tk), vj = 1 +
∞∑
k=1

βjkδ(t − tk),

wi = 1 +
∞∑
k=1

γikδ(t − tk), ei = 1 +
∞∑
k=1

λikδ(t − tk).

Although some stability conditions for impulsive delay neural networks proposed in

[9,14,15,18-22], they have some conservatism to some extent, and there still exists

open room for further improvement.

Recently, Li [25] establishes a new impulsive delay differential inequality as follows:

Lemma 1.1. Let a, b, r and τ denote nonnegative constants, and function f Î PC(ℝ, ℝ+)

satisfies the scalar impulsive differential inequality{
D+f (t) ≤ −αf (t) + β supt−τ≤s≤t f (s) + r

∫ σ

0 k(s)f (t − s)ds, t �= tk, t ≥ t0,

f (tk) ≤ akf (t−k ) + bk suptk−τ≤s<tk f (s), k ∈ Z+,

where 0 <s ≤ + ∞, ak, bk, Î ℝ+, k(·) Î PC([0, s], ℝ+) satisfies
∫ σ

0 k(s)eη0sds < ∞for

some positive constant h0 > 0 in the case when s = +∞. Moreover, when s = +∞, the

interval [t - s, t] is understood to be replaced by (-∞, t].

Assume that

(i) α > β + r
∫ σ

0 k(s)ds.

(ii) There exist constants M > 0, h > 0 such that

n∏
k=1

max
{
1, ak + bkeλτ

} ≤ Meη(tn−t0), n ∈ Z+,

where l Î (0, h0) satisfies

λ < α − βeλτ − r

σ∫
0

k(s)eλsds.

Then,

f (t) ≤ M sup
t0−max{σ ,τ }≤s≤t0

f (s)e−(λ−η)(t−t0), t ≥ t0,

In particular, it includes the special case:
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Lemma 1.2. Let a, b and τ denote nonnegative constants, ak, bk Î ℝ+, and function

f Î PC(ℝ, ℝ+) satisfies{
D+f (t) ≤ −αf (t) + βsupt−τ≤s≤tf (s), t �= tk,
f (tk) ≤ akf (tk−) + bksuptk−τ≤s<tk f (s), k ∈ Z+,

(1:3)

Assume that

(i) a >b ≥ 0.

(ii) There exist constants M > 0, h > 0 such that

n∏
k=1

max
{
1, ak + bkeλτ

} ≤ Meη(tn−t0), n ∈ Z+,

where l > 0 satisfies

λ < α − βeλτ .

Then

f (t) ≤ M sup
t0−τ≤s≤t0

f (s)e−(λ−η)(t−t0), t ≥ t0.

The purpose of this paper is to improve the results in [9,14,15,18-22] via the above

results in Lemma 1.2, which is a special case of [25]. We will derive some new suffi-

cient conditions to ensure the global exponential stability of equilibrium point for

impulsive delay Hopfield neural networks (1.1) and BAM type Cohen-Grossberg neural

networks (1.2). The main advantages of the obtained exponential stability conditions

include:

(I) In [9,14,15,18,22], all of those results require that the time sequence {tk} satisfies

infk∈Z+{tk − tk−1} > τδ, δ > 1. But this restriction will not be required in our results.

(II) Even for the case infk∈Z+{tk − tk−1} > τ , our results still can be applied to the

case not covered in [19,20].

In addition, some illustrative examples are also given to demonstrate the effective-

ness of the obtained results.

2. Global exponential stability analysis for HNNs
In this section, we will give some new sufficient conditions on the global exponential

stability of equilibrium point for the neural network (1.1). The conditions are less

restrictive and conservative than that given in [14].

System (1.1) may be rewritten in the following matrices forms:⎧⎪⎪⎨⎪⎪⎩
C
dx(t)
dt

= −R−1x(t) + (T + �TTH)f (x(t − τ (t))), t �= tk, t ≥ t0,

�x(tk) = Dx(t−k ) + (W + �T�)ϕ(x(t−k − τ (t−k ))), k ∈ Z+,

x(s) = ϕ(s), s ∈ [t0 − τ , t0],

(2:1)

Remark 2.1. For detail information about (2.1), one may see [14].

Theorem 2.1. Assume that conditions (i), (ii) in Theorem 1 in [14]hold, and

(iii) there exists a constant h >0 such that

ρ
.= max

{
1, a� + b� exp{λτ }} < exp{λη},
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where η = infk∈Z+{tk − tk−1} > 0,

a� = 2
λmax(P)
λmin(P)

||(I +D)||2, b� = 2
λmax(P)
λmin(P)

× max
1≤i≤n

{L2i }(||W|| + ||�T ||||�||)2,

and l > 0 satisfies

λ ≤ a − b exp{λτ }.

Then the equilibrium point of the system (1.1) is globally exponentially stable with the

approximate exponential convergence rate λ − ln ρ

η
.

Remark 2.2. For the proofs of Theorems 2.1, we need only to mention a few points,

since the rest is the same as in the proofs of Theorems 1 in [14]. First, similarly one

may define V(t) = xT(t)Px(t), and it can be deduced that{
D+V(t)|(2.1) ≤ −aV(t) + b sups∈[t−τ ,t] V(s),

V(tk) ≤ a�V(t−k ) + b� sups∈[tk−τ ,tk) V(s).

Then using Lemma 1.2 in this paper (replacing Lemma 1 in [14]), Theorem 2.1 can

be obtained.

Similarly we can obtain another stability criterion corresponding to Theorem 2 in

[14] as follows:

Theorem 2.2. Assume that conditions (i) in Theorem 2 in [14]hold and

(iii) there exists a constant h > 0 such that

ρ
.= max

{
1, a∗ + b∗ exp{λτ }} < exp{λη},

where η = infk∈Z+{tk − tk−1} > 0,

a∗ = max
1≤i≤n

{|1 + di|}, b∗ = max
1≤j≤n

{
n∑
i=1

(
|Wij| +

n∑
i=1

|Wijl +Wilj|Nl

)
Lj

}
,

and l > 0 satisfies

λ ≤ a − b exp{λτ }.

Then the equilibrium point of the system (1.1) is globally exponentially stable with the

approximate exponential convergence rate λ − ln ρ

η
.

Remark 2.3. In [14], under the assumption that infk∈Z+{tk − tk−1} > τδ, δ > 1., Liu et

al. obtained some theorems on exponential stability of (1.1). Note that in our theorem

2.1 and 2.2, we only require that infk∈Z+{tk − tk−1} > 0. Thus, our results improve the

previous findings.

Example 2.1 Consider the three-neuron Hopfield neural network (1.1) with g1(u1) =

tanh(0.63u1), g2(u2) = tanh(0.78u2), g3(u3) = tanh(0.46u3), h1(u1) = tanh(0.09u1), h2(u2)

= tanh(0.02u2), h3(u3) = tanh(0.17u3), C = diag (C1, C2, C3) = diag (0.89, 0.88, 0.53), R

= diag (R1, R2, R3) = diag(0.16, 0.12, 0.03), D = diag(d1, d2, d3) = diag(-0.95, -0.84,

-0.99), 0 ≤ τi(t) ≤ 0.5, i = 1, 2, 3 and
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T = (Tij)3×3 =

⎡⎣0.19 0.35 1.29
0.31 0.61 −0.25
0.07 −0.37 0.44

⎤⎦ , T1 = (T1ij)3×3 =

⎡⎣ 0.05 0.14 0.28
−0.06 −0.05 0.11
−0.24 −0.06 −0.09

⎤⎦ ,

T2 = (T2ij)3×3 =

⎡⎣0.29 −0.10 −0.35
023 −0.14 0.25
0.05 0.22 −0.01

⎤⎦ , T3 = (T3ij)3×3 =

⎡⎣−0.23 0.07 0.03
0.09 −0.02 −0.19
0.16 0.01 0.06

⎤⎦ ,

W = (Wij)3×3 =

⎡⎣−0.04 −0.05 0.16
0.19 −0.17 −0.02
0.03 0.13 0.04

⎤⎦ , W1 = (T1ij)3×3 =

⎡⎣−0.01 0.01 −0.03
0.08 −0.09 0.07
0.08 −0.01 0.01

⎤⎦ ,

W2 = (W2ij)3×3 =

⎡⎣ 0.06 0 0.04
0.04 −0.07 0.07

−0.02 −0.06 0.05

⎤⎦ , W3 = (T3ij)3×3 =

⎡⎣ 0.04 −0.04 0.01
0.02 0.05 −0.05

−0.02 0.03 −0.02

⎤⎦ .

(2:2)

In this example, similar to [14], one may choose P = diag(0.9, 0.7, 0.8), ε1 = 1, ε2 = 2

such that Ω < 0 in Theorem 2.1, and that a = 10.2628 > 2.3814 = b. Also, we can

compute that r = 1. Thus, by Theorem 2.1, the equilibrium point of (2.2) is globally

exponentially stable with the approximate convergence rate l for

infk∈Z+{tk − tk−1} > 0, where l > 0 satisfies the inequality: l ≤ 10.2628 - 2.3814el0.5.

Remark 2.4. In [14], Liu et al. obtained that the equilibrium point of (2.2) is globally

exponentially stable for infk∈Z+{tk − tk−1} > 0.505, which was more restrictive and con-

servative than that of our result. Therefore, the result in this paper is applicable to

more conditions.

3. Global exponential stability analysis for BAM type CGNNs
In this section, we will reconsider the global exponential stability of impulsive BAM

type Cohen-Grossberg neural networks (1.2).

Theorem 3.1. Assume that (H1) - (H3) and (i), (ii) in Theorem 2 in [22]hold; more-

over, suppose that

(iii) there exists a constant h > 0 such that

M .= max
{
1,

a
a
r−1
k +

a
a
Rk exp{λτ }

}
< exp{λη},

where η = infk∈Z+{tk − tk−1} > 0,

rk = min
1≤i≤n,1≤j≤m

⎧⎨⎩1 − a
m∑
j=1

|qijγik|Lgi , 1 − a
n∑
i=1

|pjiαjk|Lfj

⎫⎬⎭ > 0,

Rk = ar−1
k max

1≤i≤n,1≤j≤m

⎧⎨⎩
m∑
j=1

|sijλik|Lgi ,
n∑
i=1

|rjiβjk|Lfj

⎫⎬⎭ ,

and l > 0 satisfies

λ ≤ k1 − k2 exp{λτ }.

Then the equilibrium point of the system (1.2) is globally exponentially stable with the

approximate exponential convergence rate λ − lnM
η

.
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Proof. Consider Lyapunov function as follows:

V(t) =
n∑
i=1

zi(t)∫
0

Sgns
αi(s)

ds +
m∑
j=1

z̃i(t)∫
0

Sgns
αj(s)

ds.

Then similar to the proof of Theorem 2 in [22], we arrive at⎧⎪⎨⎪⎩
D+V(t)|(1.2) ≤ −k1V(t) + k2 sups∈[t−τ ,t] V(s),

V(tk) ≤ a
a
r−1
k V(t−k ) +

a
a
Rk sups∈[tk−τ ,tk) V(s).

Then by Lemma 1.2, the result holds. □
Remark 3.1. In [22], Yang et al. obtained a sufficient condition for global asymptotic

stability of (1.2), which assumes that infk∈Z+{tk − tk−1} > τδ, δ > 1., while ours do not

impose this restriction.

Example 3.1. Consider the following extended BAM neural networks:

⎧⎪⎪⎨⎪⎪⎩
x′(t) = −(3 + cos x(t))

[
x(t) − 1

10
cos t sin y(t)uk − 1

100
sin t sin(y(t) − 18)vk − π

2

]
,

y′(t) = −(1 + sin y(t))
[
y(t) − 1

10
sin t cos x(t)wk − 1

100
cos t cos(x(t) − 16)ek − π

]
,

(3:1)

where uk = wk = vk = ek = 1 + (-1)kδ(t - tk), the impulse times tk satisfy 0 ≤ t0 <t1 <

<tk < ..., limk® +∞ tk = +∞ and infk∈Z+{tk − tk−1} = 16. Let τ = 18.

By simple calculation, we can obtain k1 = 9
10, k2 = 1

25, rk = 3
5, Rk = 1

15,

M .= max{1, a
a r

−1
k + a

aRk exp{λτ }} = 20
3 + 4

15 exp{18λ}, where l > 0 satisfies the

inequality:λ ≤ 9
10 − 1

25 exp{18λ}. We may choose l = 0.16, then M ≈ 11.511 < 12.932

= exp {16l}. By Theorem 3.1, the equilibrium point (π
2 ,π) of (3.1) is globally exponen-

tially stable with the approximate convergence rate 0.007.

Remark 3.2. It can be easily verified that (iv), (v) in Theorem 2 in [22] are violated

in the above example. Thus, our results improve the results in [22].

4. A new inequality
In this section, we shall give a new inequality that is different from Lemma 1.2 and can

be applied to the case not covered in [19,20].

Theorem 4.1. Suppose that

(i) α > β · maxk∈Z+

{
1

ak + bk
, 1
}
;

(ii) tk - tk-1 >τ, and there exist constants M > 0, g ≥ 0 such that

k∏
s=1

(as + bs exp{λτ }) ≤ M exp{γ (tk − t0)}, k ∈ Z+,

where l > 0 satisfies

λ ≤ α − β max
k∈Z+

{
1

ak + bk exp{λτ } , 1
}
exp{λτ }. (4:1)
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Then,

f (t) ≤ Mf (t0) exp{−(λ − γ )(t − t0)}, t ≥ t0.

Proof. Condition (i) implies that there exists small enough l > 0 such that the

inequality (4.1) holds.

Next, we show

f (t) ≤ f (t0)

(
k∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t − t0)}, t ∈ [tk, tk+1),

where a0 = 1, b0 = 0.

It is clear that f (t) ≤ f (t0) for t Î [t0 - τ, t0] by the definition of f .

Take k = 0, we shall show, for t Î [t0, t1)

f (t) ≤ f (t0) exp{−λ(t − t0)}. (4:2)

Suppose on the contrary, then there exists some t Î [t0, t1) such that

f (t) > f (t0) exp{−λ(t − t0)}.
Let

t� = inf{t ∈ [t0, t1), f (t) > W0(t)},W0(t) = f (t0) exp{−λ(t − t0)},

then t⋆ Î [t0, t1) and

(1) f(t⋆) = W0(t
⋆);

(2) f(t) ≤ W0 (t), t Î [t0, t
⋆];

(3) D+f (t�) > W ′
0(t

�).

Since f (t�) = sups∈[t�−τ ,t�] f (s),, t
⋆ Î [t0,t1), we get

f (t�) ≤ f (t0) exp{−λ(t� − τ − t0)}.

Hence, we have

D+f (t�) ≤ −αf (t�) + βf (t�)

≤ −αf (t�) + βf (t0) exp{−λ(t� − τ − t0)}
≤ −αW0(t�) + βW0(t� − τ )

≤ −αW0(t�) + β max
k∈Z+

{
1

ak + bk exp{λτ } , 1
}
W0(t� − τ ).

Thus, by the definitions of l and W0, we have

W ′
0(t�) = −λf (t0) exp{−λ(t� − t0)}

≥
(

β max
k∈Z+

{
1

ak + bk exp{λτ } , 1
}
exp{λτ } − α

)
f (t0) exp{−λ(t� − t0)}

= −αf (t0) exp{−λ(t� − t0)} + β max
k∈Z+

{
1

ak + bk exp{λτ } , 1
}
f (t0) exp{−λ(t� − τ − t0)

= −αW0(t�) + β max
k∈Z+

{
1

ak + bk exp{λτ } , 1
}
W0(t� − τ )

≥ D+f (t�),

which contradicts (3). So we get that (4.2) holds for all t Î [t0, t1).
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Now, we assume that for t Î [tm-1, tm), m Î ℤ+

f (t) ≤ f (t0)

(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t − t0)}. (4:3)

We shall show that for t Î [tm, tm+1), m Î ℤ+

f (t) ≤ f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t − t0)}. (4:4)

By (4.3) and the fact that tm - tm-1 >τ, we know

f (t−m) ≤ f (t0)

(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(tm − τ − t0)}.

Hence,

f (tm) ≤ amf (tm−) + bmf (t−m)

≤ amf (t0)

(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(tm − t0)}

+ bmf (t0)

(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(tm − τ − t0)}

≤ (am + bm exp{λτ })f (t0)
(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(tm − t0)}

≤ f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(tm − t0)}.

(4:5)

If (4.4) is not true, then there exists some t Î [tm, tm-1) such that

f (t) > f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t − t0)}.

By (4.5), we define

t∗ = inf{t ∈ [tm, tm+1), f (t) > Wm(t)},

where

Wm(t) = f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t − t0)},

then t* Î [tm, tm+1) and

(4) f(t*) = Wm(t*);

(5) f(t) ≤ Wm(t), t Î [tm, t*];

(6) D+f (t∗) > W ′
m(t

∗).

Since f (t�) = sups∈[t�−τ ,t�] f (s),, t
* Î [tm, tm+1), we get
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f (t∗) ≤ Wm(t∗ − τ )max
{
1,

1
am + bm exp{λτ }

}
.

In fact, when t* - τ ≥ tm, from (5), we have

f (t∗) ≤ f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − τ − t0)}

≤ Wm(t∗ − τ )

≤ Wm(t∗ − τ )max
{
1,

1
am + bm exp{λτ }

}
.

When t* - τ <tm, note that tk - tk-1 >τ, we have

f (t∗) ≤ max
{
f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(tm − t0)},

f (t0)

(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − τ − t0)}}

≤ max
{
f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − τ − t0)},

f (t0)

(
m−1∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − τ − t0)}}

≤ f (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − τ − t0)}max

{
1,

1
am + bm exp{λτ }

}
≤ Wm(t∗ − τ )max

{
1,

1
am + bm exp{λτ }

}
.

This, together with (4), leads to

D+f (t∗) ≤ −αf (t∗) + βf (t∗)

≤ −αWm(t∗) + βWm(t∗ − τ )max
{
1,

1
am + bm exp{λτ }

}
.

Hence, we obtain

W ′
m(t∗) = −λf (t0)

(
m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − t0)}

≥
(

β max
k∈Z+

{
1

ak + bk exp{λτ } , 1
}
exp{λτ } − α

)
f (t0)

×
(

m∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t∗ − t0)}

≥ −αWm(t∗) + β max
{
1,

1
am + bm exp{λτ }

}
Wm(t∗ − τ )

≥ D+f (t∗),

which is a contradiction with (6). Hence, we obtain (4.4) holds for all t Î [tm, tm+1),

m Î ℤ+. Thus, by the method of induction, we get, for t Î [tk, tk+1)
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f (t) ≤ f (t0)

(
k∏
s=0

(as + bs exp{λτ })
)
exp{−λ(t − t0)}, k ∈ Z+.

By condition (ii), we have

f (t) ≤ Mf (t0) exp{−(λ − γ )(t − t0)}, t ≥ t0,

where l satisfies (4.1). The proof of Theorem 4.1 is therefore completed. □

Remark 4.1. If there exists constant M > 0 such that
k∏
s=1

(as + bs exp{λτ }) ≤ M for all

k Î ℤ+ holds, then we can choose g = 0 in Theorem 4.1.

If let bk = 0, k Î ℤ+ in Theorem 4.1, then we can obtain the following result.

Corollary 4.1. Suppose that

(iii) α > β · max
k∈Z+

{
1
ak
, 1
}
;

(iv) tk -tk-1 >τ, and there exist constants M > 0, g ≥ 0 such that

k∏
s=1

as ≤ M exp{γ (tk − t0)}, k ∈ Z+,

where l > 0 satisfies

λ ≤ α − β max
k∈Z+

{
1
ak
, 1
}
exp{λτ }.

Then,

f (t) ≤ Mf (t0) exp{−(λ − γ )(t − t0)}, t ≥ t0.

In the following, the superiority of the present approach over [19,20] will be demon-

strated by an example. The main tool for studying the neural network in [19,20] is the

following:

Lemma 4.1. Suppose that a >b ≥ 0, and f(t) satisfies scalar impulsive differential

inequality{
D+f (t) ≤ −αf (t) + βf (t), t �= tk,
f (tk) ≤ akf (tk−), k ∈ Z+,

where

f (t) ≥ 0, f (t) = sup
s∈[t−τ ,t]

f (s), f (t−) = sup
s∈[t−τ ,t)

f (s),

and f(t) is continuous except at each tk, k Î ℤ+, where it has jump discontinuities.

The sequence {tk} satisfies 0 ≤ t0 <t1 < ... <tk < ..., limk® +∞ tk = +∞.

Then,

f (t) ≤ f (t0)

( ∏
t0≤tk≤t

max{1, |ak|}
)
exp{−λ(t − t0)}, k ∈ Z+, (4:6)
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where

λ ≤ α − β exp{λτ }.

Consider a particular network of two neurons as follows:⎧⎪⎨⎪⎩
x′(t) = −4.6x(t) + 0.6 sin x(t) − 0.5 sin y(t − τ1), t �= tk,

y′(t) = −5y(t) + 0.4 cos y(t) − 0.4 cos x(t − τ2), t �= tk,

x(tk) = βkx(t−k ), y(tk) = γky(t−k ), k ∈ Z+,

(4:7)

where tk - tk-1 = 0.25, t0 = 0, k Î ℤ+, τi Î (0, 0.25), i = 1, 2 and

βk =
{
6, k = 2n − 1,
e−2, k = 2n,n ∈ Z+,

γk =
{
e2, k = 2n − 1,
1
9 , k = 2n,n ∈ Z+.

Let τ = max {τ1, τ2}, then τ Î (0, 0.25).

Choose V(t) = |x(t)| + |y(t)|, then

D+V|(4.7) ≤ −4.6|x(t)| + 0.6| sin x(t)| + 0.5| sin y(t − τ1)| − 5|y(t)|
+ 0.4| cos y(t)| + 0.4| cos x(t − τ2)|

≤ −4|x(t)| + 0.5|y(t − τ1)| − 4.6|y(t)| + 0.4|x(t − τ2)|
≤ −4[|x(t)| + |y(t)|] + 0.5[|y(t − τ1)| + |x(t − τ2)|]
≤ −4V(t) + 0.5Ṽ(t),

where Ṽ(t) = supt−τ≤s≤t V(s).

Moreover,

V(tk) = |x(tk)| + |y(tk)| ≤ max{βk, γk}[|x(t−k )| + |y(t−k )|],

where

max{βk, γk} =
{
e2, k = 2n − 1,
e−2 k = 2n,n ∈ Z+,

Choose M = e2, g = 0 in Corollary 4.1, we get

|x(t)| + |y(t)| = V(t) ≤ e2Ṽ(t0) exp{−λ(t − t0)}, (4:8)

where l > 0 satisfies l ≤ 4 - 0.5e2 exp{lτ}. Hence, the equilibrium point (0, 0) of

(4.7) is globally exponentially stable with the approximate convergence rate l.
On the other hand, we will point out the inequality (4.6) is not feasible here.

In fact, by using the inequality (4.6), we get, for t Î [tk, tk+1),

|x(t)| + |y(t)| = V(t) ≤ Ṽ(t0)(e2)
k+1
2 exp{−λ(t − t0)}

≤ Ṽ(t0)ek+1e
− λk

4

≤ Ṽ(t0)(e
1− λ

4 )ke → +∞ as t → ∞,

since l > 0 satisfies l ≤ 4 - 0.5 exp{lτ}. This leads to that it is very difficult to get the

estimation formula like (4.8). Therefore, our method is less conservative in some

degree than that in [19,20].
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