
RESEARCH Open Access

Approximate Cauchy functional inequality in
quasi-Banach spaces
Hark-Mahn Kim and Eunyoung Son*

* Correspondence:
sey8405@hanmail.net
Department of Mathematics,
Chungnam National University, 79
Daehangno, Yuseong-gu, Daejeon
305-764, Korea

Abstract

In this article, we prove the generalized Hyers-Ulam stability of the following Cauchy
functional inequality:

||f (x) + f (y) + nf (z)|| ≤ nf
∥∥∥(x + y

n
+ x

)∥∥∥
in the class of mappings from n-divisible abelian groups to p-Banach spaces for any
fixed positive integer n ≥ 2.

1 Introduction
The stability problem of functional equations originated from a question of Ulam [1]

concerning the stability of group homomorphisms.

We are given a group G1 and a metric group G2 with metric r (·,·). Given � > 0, does

there exist a δ > 0 such that if f : G1 ® G2 satisfies r(f(xy),f(x)f(y)) <δ for all x,y Î G1,

then a homomorphism h : G1®G2 exists with r(f(x), h(x)) < � for all x � G1?

In other words, we are looking for situations when the homomorphisms are stable, i.

e., if a mapping is almost a homomorphism, then there exists a true homomorphism

near it.

In 1941, Hyers [2] considered the case of approximately additive mappings between

Banach spaces and proved the following result. Suppose that E1 and E2 are Banach

spaces and f : E1 ® E2 satisfies the following condition: there is a constant � ≥ 0 such

that

|f (x + y) − f (x) − (y)|| ≤ ε

for all x,y Î E1. Then, the limit h(x) = limn→∞
f (2nx)
2n

exists for all x Î E1, and it is a

unique additive mapping h:E1®E2 such that ||f(x) - h(x)|| ≤ �.

The method which was provided by Hyers, and which produces the additive mapping

h, was called a direct method. This method is the most important and most powerful

tool for studying the stability of various functional equations. Hyers’ theorem was gen-

eralized by Aoki [3] and Bourgin [4] for additive mappings by considering an

unbounded Cauchy difference. In 1978, Rassias [5] also provided a generalization of

Hyers’ theorem for linear mappings which allows the Cauchy difference to be

unbounded like this ||x||p + ||y||p. Let E1 and E2 be two Banach spaces and f : E1 ®
E2 be a mapping such that f(tx) is continuous in t Î R for each fixed x. Assume that
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there exists � > 0 and 0 ≤ p < 1 such that

||f (x + y) − f (x) − f (y)|| ≤ ε(||x||p + ||y||p), ∀x, y ∈ E1.

Then, there exists a unique R-linear mapping T : E1 ® E2 such that

||f (x) − T(x)|| ≤ 2
2 − 2p

||x||p

for all x Î E1. A generalized result of Rassias’ theorem was obtained by Găvruta in

[6] and Jung in [7]. In 1990, Rassias [8] during the 27th International Symposium on

Functional Equations asked the question whether such a theorem can also be proved

for p ≥ 1. In 1991, Gajda [9], following the same approach as in [5], gave an affirmative

solution to this question for p > 1. It was shown by Gajda [9], as well as by Rassias and

[001]emrl [10], that one cannot prove a Rassias’ type theorem when p = 1. The coun-

terexamples of Gajda [9], as well as of Rassias and [001]emrl [10], have stimulated sev-

eral mathematicians to invent new approximately additive or approximately linear

mappings. In particular, Rassias [11,12] proved a similar stability theorem in which he

replaced the unbounded Cauchy difference by this factor ||x||p||y||q for p,q Î R with p

+ q ≠ 1.

Let G be an n-divisible abelian group n Î N (i.e., a ↦ na : G ® G is a surjection )

and X be a normed space with norm || · ||. Now, for a mapping f : G ® X, we con-

sider the following generalized Cauchy-Jensen equation

f (x) + f (y) + nf (z) = nf
(x + y

n
+ z

)
, n ≥ 2

for all x,y, z Î G, which has been introduced in [13].

Proposition 1.1. For a mapping f : G ® X, the following statements are equivalent.

(a) f is additive,

(b) f (x) + f (y) + nf (z) = nf
(x + y

n
+ z

)
,

(c) ||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥
for all x, y, z Î G.

As a special case for n = 2, the generalized Hyers-Ulam stability of functional equa-

tion (b) and functional inequality (c) has been presented in [13]. We remark that there

are some interesting papers concerning the stability of functional inequalities and the

stability of functional equations in quasi-Banach spaces [14-18]. In this article, we are

going to improve the theorems given in [13] without using the oddness of approximate

additive functions concerning the functional inequality (c) for a more general case.

2 Generalized Hyers-Ulam stability of (c)
We recall some basic facts concerning quasi-Banach spaces and some preliminary

results. Let X be a real linear space. A quasi-norm is a real-valued function on X satis-

fying the following:
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(1) ||x|| ≥ 0 for all x Î X and ||x|| = 0 if and only if x = 0.

(2) ||lx|| = |l|||x|| for all l Î R and all x Î X.

(3) There is a constant M ≥ 1 such that ||x + y|| ≤ M(||x|| + ||y||) for all x,y Î X.

The pair (X, || · ||) is called a quasi-normed space if || · || is a quasi-norm on X

[19,20]. The smallest possible M is called the modulus of concavity of || · ||. A quasi-

Banach space is a complete quasi-normed space.

A quasi-norm || · || is called a p-norm (0 <p ≤ 1) if

||x + y||p ≤ ||x||p + ||y||p

for all x,y Î X. In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x,y) := ||x - y||p gives us a translation invariant

metric on X. By the Aoki-Rolewicz theorem [20], each quasi-norm is equivalent to

some p-norm (see also [19]). Since it is much easier to work with p-norms, henceforth,

we restrict our attention mainly to p-norms. We observe that if x1, x2,..., xn are non-

negative real numbers, then(
n∑
i=1

xi

)p

≤
n∑
i=1

xip,

where 0 <p ≤ 1 [21].

From now on, let G be an n-divisible abelian group for some positive integer n ≥ 2,

and let Y be a p-Banach space with the modulus of concavity M.

Theorem 2.1. Suppose that a mapping f : G ® Y with f(0) = 0 satisfies the functional

inequality

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + ϕ(x, y, z) (1)

for all x, y, z Î G, and the perturbing function � : G3 ®R+ satisfies

�(x, y, z) :=
∞∑
i=0

ϕ(nix,niy,niz)
p

nip
< ∞

for all x,y,z Î G. Then, there exists a unique additive mapping h : G ® Y, defined as

h(x) = lim
k→∞

f (nkx) − f (−nkx)
2nk

, such that

||f (x) − h(x)|| ≤ M2

2n
[�(nx, 0,−x) + �(−nx, 0, x)]

1
p +

M
2

ϕ(x,−x, 0)
(2)

for all x Î G.

Proof. Let y = -x, z = 0 in (1) and dividing both sides by 2, we have∥∥∥∥ f (x) + f (−x)
2

∥∥∥∥ ≤ ϕ(x,−x, 0)
2

(3)

for all x Î G. Replacing x by nx and letting y = 0 and z = -x in (1), we get

||f (nx) + nf (−x)|| ≤ ϕ(nx, 0,−x) (4)
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for all x Î G. Replacing x by -x in (4), one has

||f (−nx) + nf (x)|| ≤ ϕ(−nx, 0, x) (5)

for all x Î G. Put g(x) =
f (x) − f (−x)

2
. Combining (4) and (5) yields

||ng(x) − g(nx)|| ≤ M

2
(ϕ(nx, 0,−x) + ϕ(−nx, 0, x))

that is,∥∥∥∥g(x) − 1
n
g(nx)

∥∥∥∥ ≤ M
2n

(ϕ(nx, 0,−x) + ϕ(−nx, 0, x)) (6)

for all x Î G. It follows from (6) that∥∥∥∥g(nlxnl
− g(nmx)

nm

∥∥∥∥
p

≤
m−1∑
k=l

∥∥∥∥ 1
nk

g(nkx) − 1
nk+1

g(nk+1x)

∥∥∥∥
p

=
m−1∑
k=1

1
nkp

∥∥∥∥g(nkx) − 1
n
g(nk+1x)

∥∥∥∥
p

≤
m−1∑
k=1

Mp

2pn(k+1)p
[ϕ(nk+1x, 0,−nkx)p + ϕ(−nk+1x, 0,nkx)p]

(7)

for all nonnegative integers m and l with m > l ≥ 0 and x Î G. Since the right-hand

side of (7) tends to zero as l ® ∞, we obtain the sequence

{
g(nmx
nm

}
is Cauchy for all x

Î G. Because of the fact that Y is complete, it follows that the sequence
{
g(nmx
nm

}
con-

verges in Y. Therefore, we can define a function h : G ® Y by

h(x) = lim
m→∞

g(nmx)
nm

= lim
m→∞

f (nmx) − f (−nmx)
2nm

, x ∈ G.

Moreover, letting l = 0 and taking m ® ∞ in (7), we get

∥∥∥∥ f (x) − f (−x)
2

− h(x)

∥∥∥∥ ≤ ||g(x) − h(x)|| ≤ M
2n

[�(nx, 0 − x) + �(−nx, 0, x)]

1
p (8)

for all x Î G. It follows from (3) and (8) that

||f (x) − h(x)|| ≤ M2

2n
[�(nx, 0,−x) + �(−nx, 0, x)]

1
p +

M
2

ϕ(x,−x, 0)

for all x Î G.
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It follows from (1) and (4) that

||h(x) + h(y) − h(x + y)||p = ||h(x) + h(y) + h(−x − y)||p

= lim
k→∞

1
nkp

||g(nkx) + g(nky) + g(−nk(x + y))||p

≤ lim
k→∞

1
2pnkp

(||f (nkx) + f (nky) + nf (−nk−1(x + y))||p

+|| − f (−nkx) − f (−nky) − nf (nk−1(x + y))||p
+||nf (nk−1(x + y)) + f (−nk(x + y))||p
+|| − nf (−nk−1(x + y)) + f (nk(x + y))||p

≤ lim
k→∞

1
2pnkp

(ϕ(nkx,nky,−nk−1(x + y))p + ϕ(−nkx,−nky,nk−1(x + y))p

+ϕ(−nk(x + y), 0,nk−1(x + y))p + ϕ(nk(x + y), 0,−nk−1(x + y))p)

= 0

for all x,y ÎG. This implies that the mapping h is additive.

Next, let h’ : G ® Y be another additive mapping satisfying

||f (x) − h′(x)|| ≤ M2

2n
[�(nx, 0,−x) + �(−nx, 0, x)]

1
p +

M
2

ϕ(x,−x, 0)

for all x Î G. Then, we have

||h(x) − h′(x)||p =
∥∥∥∥ 1
nk

h(nkx) − 1
nk

h′(nkx)
∥∥∥∥
p

≤ 1
nkp

(||h(nkx) − f (nkx)||p + ||f (nkx) − h′(nkx)||p)

≤ 2M2p

2pn(k+1)p
[�(nk+1x, 0,−nkx) + �(−nk+1x, 0,nkx)] +

2Mp

2pnkp
ϕ(nkx,−nkx, 0)p

=
∞∑
i=k

2M2p

2pn(i+1)p
[ϕ(ni+1x, 0,−nix)p + ϕ(−ni+1x, 0,nix)p] +

2Mpϕ(nkx,−nkx, 0)
p

2pnkp

for all k Î N and all x Î G. Taking the limit as k ® ∞, we conclude that

h(x) = h′(x)

for all x Î G. This completes the proof.

Suppose that X is a normed space in the following corollaries. If we put �(x,y,z) :=

θ(||x||q||y||r||z||s) and � (x,y,z) := θ(||x||q + ||y||r + ||z||s) in Theorem 2.1, respectively,

then we get the following Corollaries 2.2 and 2.3.

Corollary 2.2. Let q + r + s < 1, q, r, s > 0, θ > 0. If a mapping f : X ® Y with f(0) =

0 satisfies the following functional inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ x

)∥∥∥ + θ(||x||q||y||r||z||s

for all x, y, z Î X, then f is additive.

Corollary 2.3. Let 0 <q,r,s <1, θ1,θ2 > 0. If a mapping f : X ® Y with f(0) = 0 satisfies

the following functional inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + θ1(||x||q + ||y||r + ||z||s) + θ2

for all x,y,z Î X, then there exists a unique additive mapping h : X Î Y, defined as

h(x) = limk→∞
f (nkx) − f (−nkx)

2nk
, such that
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||f (x) − h(x)|| ≤ M2 p
√
2

2

(
npqθ p

1||x||pq
np − npq

+
θ
p
1||x||ps

np − nps
+

θ
p
2

np − 1

)1
p

+
M
2
(θ1||x||q + θ1||x||r + θ2)

for all x Î X.

Noting the inequality

||f (nx) − nf (x)|| ≤ M[ϕ(nx, 0,−x) + nϕ(x,−x, 0)]

according to the inequalities (3) and (4), then we can similarly prove another stability

theorem under the same condition as in Theorem 2.1:

Remark 2.4. Let � : G3 ® R+ and f : G ® Y satisfy the assumptions of Theorem 2.1.

Then, there exists a unique additive mapping h : G ® Y, defined by

h(x) = limk→∞
f (nkx)
nk

, such that

||f (x) − h(x)|| ≤ M
n
[�(nx, 0,−x) + np�(x,−x, 0)]

1
p

for all x Î G using the similar argument to Theorem 2.1.

In particular, if a mapping f : X ® Y with f(0) = 0 satisfies the following functional

inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + θ1(||x||q + ||y||r + ||z||s) + θ2

for all x,y,z in a normed space X, where 0 <q,r,s < 1, θ1,θ2 > 0, then there exists a

unique additive mapping h : X ® Y such that

||f (x) − h(x)|| ≤ M

(
(npq + np)θ p

1||x||pq
np − npq

+
npθ p

1||x||pr
np − npr

+
θ
p
1||x||ps

np − nps
+
(1 + np)θ2

2

np − 1

)1
p

for all x Î X.

We may obtain more simple and sharp approximation than that of Theorem 2.1 for

the stability result under the oddness condition.

Remark 2.5. Let � : G3 ® R+ and f : G ® Y satisfy the assumptions of Theorem 2.1.

Moreover, if the mapping f is odd, then there exists a unique additive mapping h : G

® Y, defined by h(x) = limk→∞
f (nkx)
nk

, such that

||f (x) − h(x)|| ≤ 1
n

�(nx, 0,−x)

1
p

for all x Î G.

Now, we consider another stability result of functional inequality (c) in the

followings.
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Theorem 2.6. Suppose that a mapping f : G ® Y satisfies

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + ϕ(x, y, z) (9)

and the perturbing function � : G3 ® R+ is such that

�(x, y, z) :=
∞∑
i=1

nipϕ
( x
ni
,
y
ni
,
z
ni

)p
< ∞

for all x,y,z Î G. Then, there exists a unique additive mapping h : G ® Y, defined

h(x)limk→∞
nk

2

(
f (

x
nk

) − f (− x
nk

)
)
, such that

||f (x) − h(x)|| ≤ M2

2n
[�(nx, 0,−x) + �(−nx, 0, x)]

1
p +

M
2

ϕ(x,−x, 0)
(10)

for all x Î G.

Proof. We observe that f(0) = 0 because of �(0,0,0) = 0 by the convergence of

Ψ(0,0,0) < ∞. Now, combining (4) and (5) yields the functional inequality

||g(x) − ng
( x

n

)
|| ≤ M

2

(
ϕ

(
x, 0,− x

n

)
+ ϕ

(
−x, 0,

x

n

))
,

where g(x) =
f (x) − f (−x)

2
, x Î G. It follows from the last inequality that

∥∥∥g(x) − nmg
( x
nm

)∥∥∥p ≤ Mp

2p

m−1∑
i=0

nip
[
ϕ
( x
ni
, 0,− x

ni+1

)p
+ ϕ

(
− x
ni
, 0,

x
ni+1

)p
]

(11)

for all x Î G.
The remaining proof is similar to the corresponding proof of Theorem 2.1. This

completes the proof.

Suppose that X is a normed space in the following corollaries. If we put �(x,y,z) :=

θ(||x||q||y||r||z||s) and �(x,y,z) := θ(||x||q + ||y||r + ||z||s) in Theorem 2.6, respectively,

then we get the following Corollaries 2.7 and 2.8.

Corollary 2.7. Let q + r + s > 1, q,r, s > 0, θ > 0. If a mapping f : X ® Y satisfies the

following functional inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ x

)∥∥∥ + θ(||x||q||y||r||z||s

for all x, y, z Î X, then f is additive.

Corollary 2.8. Let q,r,s > 1, θ1 > 0. If a mapping f : X ® Y satisfies the following

functional inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + θ1(||x||q + ||y||r + ||z||s)

for all x,y,z Î X, then there exists a unique additive mapping h : X ® Y, defined as

h(x)limk→∞
nk

2

(
f (

x
nk

) − f (− x
nk

)
)
, such that
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||f (x) − h(x)|| ≤ M2 p
√
2θ1

2

(
npq||x||pq
npq − np

+
||x||ps

nps − np

)1
p +

Mθ1

2
(||x||q + ||x||r)

for all x Î X.

We can similarly prove another stability theorem under somewhat different condi-

tions as follows:

Remark 2.9. Let � : G3 ® R+ and f : G ® Y satisfy the assumptions of Theorem 2.6.

Then, there exists a unique additive mapping h : G ® Y, defined by h(x) =

h(x) = limk→∞nkf (
x

nk
), such that

||f (x) − h(x)|| ≤ M
n
[�(nx, 0,−x) + np�(x,−x, 0)]

1
p

for all x Î G.

In particular, if a mapping f : X ® Y satisfies the following functional inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + θ1(||x||q + ||y||r + ||z||s)

for all x,y, z in a normed space X, where q,r,s > 1, θ 1 > 0, then there exists a unique

additive mapping h : X ® Y such that

||f (x) − h(x)|| ≤ Mθ1

(
(npq + np)||x||pq

npq − np
+

||x||ps
nps − np

+
np||x||pr
npr − np

)1
p

for all x Î X.

We may obtain more simple and sharp approximation than that of Theorem 2.6 for

the stability result under the oddness condition.

Remark 2.10. Let � : G3 ® R+ and f : G ® Y satisfy the assumptions of Theorem

2.6. If the mapping f is odd, then there exists a unique additive mapping h : G ® Y,

defined by h(x) = limk→∞nkf (
x

nk
), such that

||f (x) − h(x)|| ≤ 1
n

�(nx, 0,−x)

1
p

for all x Î G.

3 Alternative generalized Hyers-Ulam stability of (c)
From now on, we investigate the generalized Hyers-Ulam stability of the functional

inequality (c).

Theorem 3.1. Suppose that a mapping f : G ® Y with f(0) = 0 satisfies the functional

inequality

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + ϕ(x, y, z)

for all x,y,z Î G and there exists a constant L with 0 <L < 1 for which the perturbing

function � : G3 ® R+ satisfies
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ϕ(nx,ny,nz) ≤ nLϕ(x, y, z) (12)

for all x,y,z Î G. Then, there exists a unique additive mapping h : G ® Y, defined as

h(x) = limk→∞
f (nkx) − f (−nkx)

2nk
, such that

||f (x) − h(x)|| ≤ M2

2n p
√
1 − Lp

[ϕ(nx, 0,−x) + ϕ(−nx, 0, x)] +
M
2

ϕ(x,−x, 0)

for all x Î G.

Proof. It follows from (7) and (12) that∥∥∥∥g(n1x)n1
− g(nmx)

nm

∥∥∥∥
p

≤
m−1∑
k=1

Mp

2pn(k+1)p
[ϕ(nk+1x, 0,−nkx) + ϕ(−nk+1x, 0,nkx)]p

≤
m−1∑
k=1

MpLkp

2pnp
[ϕ(nx, 0,−x) + ϕ(−nx, 0, x)]p

for all nonnegative integers m and l with m >l ≥ 0 and x Î G,where

g(x) =
f (x) − f (−x)

2
. Since the sequence

{
g(nmx
nm

}
is Cauchy for all x Î G, we can

define a function h : G ® Y by

h(x) = lim
m→∞

g(nmx)
nm

= lim
m→∞

f (nmx) − f (−nmx)
2nm

, x ∈ G.

Moreover, letting l = 0 and m ® ∞ in the last inequality yields∥∥∥∥ f (x) − f (−x)
2

− h(x)

∥∥∥∥ ≤ M

2n p
√
1 − Lp

[ϕ(nx, 0,−x) + ϕ(−nx, 0, x)] (13)

for all x Î G. It follows from (3) and (13) that

||f (x) − h(x)|| ≤ M2

2n p
√
1 − Lp

[ϕ(nx, 0,−x) + ϕ(−nx, 0, x)] +
M
2

ϕ(x,−x, 0)

for all x Î G.
The remaining proof is similar to the corresponding proof of Theorem 2.1. This

completes the proof.

Remark 3.2. Let � : G3® R+ and f : G ® Y satisfy the assumptions of Theorem 3.1.

Then, there exists a unique additive mapping h : G ® Y, defined by

h(x) = limk→∞
f (nkx)
nk

, such that

||f (x) − h(x)|| ≤ M

n p
√
1 − Lp

[ϕ(nx, 0,−x) + nϕ(x,−x, 0)]

for all x Î G using the similar argument to Theorem 3.1.

In particular, if a mapping f : X ® Y with f(0) = 0 satisfies the following functional

inequality:
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||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + θ1(||x||r + ||y||r + ||z||r) + θ2

for all x, y, z in a normed space X, where 0 <r < 1, θ1, θ2 > 0, then there exists a

unique additive mapping h : X ® Y such that

||f (x) − h(x)|| ≤ M
p
√
np − npr

((nr + 2n + 1)θ1||x||r + (n + 1)θ2)

for all x Î X, by considering L := nr-1.

Theorem 3.3. Suppose that a mapping f : G ®Y satisfies the functional inequality

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + ϕ(x, y, z)

for all x,y,z Î G and there exists a constant L with 0 <L < 1 for which the perturbing

function � : G3 ® R+ satisfies

ϕ
( x

n
,
y

n
,
z

n

)
≤ L

n
ϕ(x, y, z) (14)

for all x,y,z Î G. Then, there exists a unique additive mapping h : G ® Y, defined as

h(x)limk→∞
nk

2

(
f (

x
nk

) − f (− x
nk

)
)
, such that

||f (x) − h(x)|| ≤ M2L

2n p
√
1 − Lp

[ϕ(nx, 0,−x) + ϕ(−nx, 0, x)] +
M
2

ϕ(x,−x, 0)

for all x Î G.

Proof. We observe that f(0) = 0 because �(0,0,0) = 0, which follows from the condi-

tion ϕ(0, 0, 0) ≤ L
n

ϕ(0, 0, 0). It follows from the inequality (11) and (14) that

∥∥∥g(x) − nmg
( x
nm

)∥∥∥p ≤ Mp

2p

m−1∑
i=0

nip
[
ϕ

( x
ni
, 0,− x

ni+1

)
+ ϕ

(
− x
ni
, 0,

x
ni+1

)]p

≤ Mp

2pnp

m−1∑
i=0

L(i+1)p[ϕ(nx, 0,−x) + ϕ(−nx, 0, x)]p

for all x Î G, where g(x) =
f (x) − f (−x)

2
, x Î G.

The remaining proof is similar to the corresponding proof of Theorem 2.1. This

completes the proof.

Remark 3.4. Let � : G3 ® R+ and f : G ® Y satisfy the assumptions of Theorem 3.3.

Then, there exists a unique additive mapping h : G ® Y, defined by

h(x) = limk→∞nkf (
x

nk
), such that

||f (x) − h(x)|| ≤ ML

n p
√
1 − Lp

[ϕ(nx, 0,−x) + nϕ(x,−x, 0)]

for all x Î G using the similar argument to Theorem 3.3.

In particular, if a mapping f : X ® Y satisfies the following functional inequality:

||f (x) + f (y) + nf (z)|| ≤
∥∥∥nf (x + y

n
+ z

)∥∥∥ + θ1(||x||r + ||y||r + ||z||r)
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for all x, y, z in a normed space X, where r > 1, θ 1 > 0, then there exists a unique

additive mapping h : X®Y such that

||f (x) − h(x)|| ≤ M
p
√
npr − np

(nr + 2n + 1)θ1||x||r

for all x Î X, by considering L : = n1-r.
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