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Abstract

We extend the right and left convex function theorems to weighted Jensen’s type
inequalities, and then combine the new theorems in a single one applicable to a
half convex function f(lu), defined on a real interval | and convex foru <soru > s,
where s e [. The obtained results are applied for proving some open relevant
inequalities.
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1 Introduction
The right convex function theorem (RCF-Theorem) has the following statement (see
[1-3]).

RCF-Theorem. Let flu) be a function defined on a real interval | and convex for
u > s el. The inequality

X1 +X2+---+Xy

flea) +f(x2) + -+ f(xa) = nf( ) )

holds for all x1,x,...,x, € lsatisfying x; + x5 + ... + x,, = ns if and only if
f(x)+ (n=1)f(y) = nf(s) 2)

for all x,y € lwhich satisfy x < s <y and x + (n - 1)y = ns.

Replacing flu) by fi-u), s by -s, x by -x, y by -y, and each x; by -x; for i = 1, 2, ..., n,
from RCF-Theorem we get the left convex function theorem (LCF-Theorem).

LCF-Theorem. Let f(u) be a function defined on a real interval | and convex for

u < s el. The inequality

X1 +X2+ -+ Xy

flea) +f(x2) + -+ fxa) = nf( ) ®)

n
holds for all x1,x,,...,x, € lsatisfying x; + x5 + ... + x,, < ns if and only if
fE)+ (n=1)f(y) = nf(s) 4)

for all x,y € lwhich satisfy x > s >y and x + (n - 1)y = ns.
Notice that from RCF- and LCF-Theorems, we get the following theorem, which we

have called the half convex function theorem (HCF-Theorem).
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HCF-Theorem. Let flur) be a function defined on a real interval | and convex for u < s

oru > s, where s e |. The inequality

1+X2+ -+ Xy

fr) +£G) + -+ fla) = nf ) ©)
holds for all xi,x,,...,x, € lsatisfying x1 + x5 + ... + x,, = ns if and only if
fE)+ (n=1)f(y) z nf(s) (6)

for all x,y € lwhich satisfy x + (n - 1)y = ns.

Applying RCF-, LCF-, and HCF-Theorems to the function flu) = g(e”), and replacing
sbylnr, x by Inx, y by In y, and each x; by In g, for i = 1, 2, .., n, we get the follow-
ing corollaries, respectively.

RCF-Corollary. Let g be a function defined on a positive interval | such that flu) = g

(e") is convex for e* > r € 1. The inequality
g(ar) +g(ax) +--- +g(an) = ng(Varay ... ay) @)
holds for all ay,a,,...,a, € lsatisfying a,a, ... a,, > v" if and only if
8(a) + (n —1)g(b) = ng(r) ®)

for all a,b € |which satisfy a < r < b and ab™" = 1",
LCF-Corollary. Let g be a function defined on a positive interval | such that flu) = g

(e") is convex for e* <1 € l. The inequality
g(ar) +g(az) +--- +g(an) > ng(Varaz ... a,) 9)
holds for all ay,a,,...,a, € lsatisfying ara, ... a,, < v" if and only if
8(a) + (n —1)g(b) = ng(r) (10)

for all a,b € \which satisfy a > r > b and ab™" = 1"
HCEF-Corollary. Let g be a function defined on a positive interval | such that flu) = g
(€") is convex for e" < r or e" > r, where r € . The inequality

8(ar) +g(az) +--- + g(an) = ng(r) (11)
holds for all ay,ay, ..., a, € lsatisfying aya, ... a, = v" if and only if

8(a) + (n —1)g(b) = ng(r) (12)
for all a,b € Vwhich satisfy ab™" = 1.

2 Main results
In order to extend RCF-, LCF-, and HCF-Theorems to weighted Jensen’s type inequal-
ities, we need the following lemma.

Lemma 2.1 Let qy, q» and ry, 1, ..., I, be nonnegative real numbers such that

M+ +--+Ty=qd1+(>, (13)

and let f be a convex function on |. If a,b € l(a < b) and xy, x5, ..., X, € [a, b] such
that
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T1X] + 12X+« + + TiyXm = 14 + g2, (14)
then
rif (1) + raf (x2) + -+ Tnf (%) < g1f (a) + gaf (b). (15)

The weighted right convex function theorem (WRCF-Theorem), weighted left convex
function theorem (WLCF-Theorem), and weighted half convex function theorem
(WHCE-Theorem) are the following.

WRCE-Theorem. Let flu) be a function defined on a real interval | and convex for
u>secl, and let py, ps, ..., p, be positive real numbers such that

p=min{py, 2, ..., pn}, Pr+p2+-+pp=1. (16)
The inequality

pif(x1) + paf (x2) + -+ + puf (xn) = f(P1X1 + p2xa + -+ + PriXn) 17)
holds for all x1,x,,...,x, € lsatisfying p1x1 + paxa + ... + p,x, = s if and only if

pf(x) + (1 =p)f(¥) = f(5) (18)

Sor all x,y € lsuch that x < s <y and px + (1 - p)y =s.
WLCE-Theorem. Let flu) be a function defined on a real interval | and convex for
u<sel, and let py, p> , .., p,, be positive real numbers such that

p=min{py, 2, ..., pn}, Pr+p2+--+pp=1 (19)
The inequality

pif(x1) +paf (x2) + -+ + puf (xn) = f(P1X1 + P2xa + -+ + PuiXn) (20)
holds for all x1,%y, . .., % € SGLSYINg pyts + Pas + o + Dot < s if and only if

pf(x) + (1 =p)f(y) = £ (5) (21)

for all x,y € Ulsuch that x > s >y and px + (1 - p)y = s.
WHCEF-Theorem. Let f{u) be a function defined on a real interval | and convex for u
<soruz>=s where s € l, and let pi, p, .., p,, be positive real numbers such that

p=min{py, 2, ..., pn}, Pr+p2+--+pp=1 (22)
The inequality

pif(x1) + paf (x2) + -+ puf (xn) = f(p1x1 + p2x2 + -+ + Pu) (23)
holds for all x1,%y, ..., % € ISAHSiNg pry + Pos + o + Dun = s if and only if

pf(x) + (1 =p)f(y) = £ (5) (24)

for all x,y € Usuch that px + (1 - p)y = s.

Notice that WLCF-Theorem can be obtained from WRCF-Theorem replacing fluz) by
fl-u), s by -s, x by -x, y by -y, and each x; by -x; for i = 1,2, ..., n.

On the other hand, applying WRCF-, WLCF-, and WHCE-Theorems to the function f
(1) = g(e") and replacing s by 1nr, x by 1nx, y by 1ny, and each x; by In g, for i = 1, 2, ... n,
we get the following corollaries, respectively.
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WRCE-Corollary Let g be a function defined on a positive interval | such that fu) =
g(e") is convex for Inu > r €1, and let pi, ps, ..., p, be positive real numbers such that

p=min{py,p2,....pn}, p1+p2+---+pp=1. (25)
The inequality

p18(ar) +pag(az) + - - +puglan) > glay'ay ...a}") (26)

holds for all ay,ay, ..., a, € lsatisfying a' a2 ...dr > rif and only if
pg(a) + (1 = p)g(b) = 8(7) (27)

for all a,b € lsuch that a < r < b and a’b' " = r.
WLCE-Corollary. Let g be a function defined on a positive interval | such that flu) =
g(e") is convex for et <1 e ll, and let py, ps, ..., p, be positive real numbers such that

p=min{py, 2, ..., pn}, Pr+p2+--+pp=1 (28)
The inequality

p1g(ar) +pag(az) + -+ +pag(an) > g(ay'ay ... djy") (29)
holds for all ay,as, ..., a, € lsatisfying al a2 ...dr <rifand only if

pg(a) + (1 = p)g(b) = 8(r) (30)

for all a,b € lsuch that a > r > b and a’b' " = r.
WHCEF-Corollary. Let g be a function defined on a positive interval | such that flu)
= g(e") is convex for " < r or € = r, where r € I, and let p1, p», ..., p, be positive real

numbers such that
p=min{plrp2!-~-rpn}/ p1+p2+”’+pn=1~ (31)

The inequality

p18(ar) + pag(az) + - - + pug(an) > g(al'dy ... k") (32)

holds for all ay,a,, ..., a, € lsatisfying al a2 ...d" = rif and only if

pg(a) + (1 —p)g(b) = g(7) (33)

for all a,b e Vsuch that a’b'”? = r.
Remark 2.2. Let us denote

u) —f(s
-, o

h(xy) =

o(u) = g(xi -8

-V
In some applications, it is useful to replace the hypothesis
pf(x) + (1 =p)f(¥) = f(5) (35)

in WRCE-, WLCF-, and WHCF-Theorems by the equivalent condition:
h(x, y) = 0 for all x,y € 1 such that px + (1 - p)y = s.
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This equivalence is true since

pf(x) + (1 = p)f(¥) = f(s) = plf (x) = f ()] + (A = p)[F (¥) — £ (5)]
=p(x—s)8(x) + (1 —p)(y —5)8(»)
=p(1 —p)(x —y)Ig(x) — 8]
=p(1 = p)(x — y)*h(x,y).

Remark 2.3. The required inequalities in WRCF-, WLCF-, and WHCE-Theorems
turn into equalities for x; = x5 = ... = x,,. In addition, on the assumption that p; = min
{p1, P2 - Pu}> equality holds for x; = x and %y = ... = x,, = y if there exist x,y € [, x =
y such that px + (1 - p)y = s and pflx) + (1 - p)Ay) = As).

3 Proof of Lemma 2.1
Consider only the nontrivial case a <b. Since xy, x5, ..., x,,, € [a, b] there exist 14, A, ...,
Am € [0, 1] such that

xi=kia+(1—ki)b, i=1,2,...,m.

From
Xi — b
)"l = ’ 1= 1/ 2/ ,m,
a—>b
we have

;Ti)»i = a—b(;nxi —b;n) = a_b[q1a+q2b_b(q1 +q)] = q1.

Thus, according to Jensen’s inequality, we get

D onf(x) < D nlaif(@) + (1= 2)f ()]
-1 -1
= [f(@) = f®] D _riri+f(0) D1
-1 -1
= [f(a) = f(0) g1 + f(b) (a1 + q2)
= q1f(a) + qaf (b).

4 Proof of WRCF-Theorem

Since the necessity is obvious, we prove further the sufficiency. Without loss of gener-
ality, assume that x; < wy < ... < w,,. If x; > s, then the required inequality follows by
Jensen’s inequality for convex functions. Otherwise, since

PLIX1 +PaXo + -+ PuXy = (P1+ P2 + -+ Pu)s,
there exists k€ {1, 2, .., n - 1} such that

X< X <SS Xpe1 S 000 S Xy
Let us denote

q=P1+"'+Pkr
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By Jensen’s inequality, we have
D pf()) = (e + -+ Pa)f(2) = (1 = ) (),
i=k+1

where

z= Pr+1Xk+1 + -+ - + PnXn

, z>s,z¢€l.
Prs1 + -+ Pn

Thus, it suffices to prove that

k
> o pif () + (1= 9)f (2) = £(S), (36)
i=1
where
S = PLXL + PaXa -+ + Pk = P1X1+P2x2+...+pnxn, s<S<z

pr+p2+---+pPn
Lety, i =1, 2, ..., k, defined by
pxi + (1 —p)yi =s.

We will show that

We have
ViZV2Zz 2V
yk—s=p(i:zk) -0,
- zs—pxl - S — px; _ (pl—p)x1+p2x2+---+pnxn
1—p = 1-p (P —p) +p2+-+ +pn

Since p; - p = p; - min {py, ps, .., pu} = 0, we get

(pl—p)x1+p2x2+---+pnxn - PaXo + -+ + PnXn -

(Pr=p)+patccctpn T pakeciapa

and hence y; < z. Now, from z = y; > y, > ... 2 yk >s, it follows that yq,y2,..., ¥ €.
Then, by hypothesis, we have

pf (i) + (1 = p)f (vi) = f(s)

for i = 1,2, ..., k. Summing all these inequalities multiplied by p;/p, respectively, we
get

k k
1—
Sof) - P pron = 0.
i=1 e p
Therefore, to prove (36), it suffices to show that

k
HCRERVOR ! S ) +£(9) (37)
i=1
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Since S e [s, 2], y;€ (s, 2] fori=1,2, ..,k

k
+1—¢g-= l;pri+1,

i=1

A= RESY =

k
s+(1—q)z= 1;priyi+S,
i=1

(37) is a consequence of Lemma 2.1, where m =k + l,a=s,b=2z,q, =qlp, g =1 -
GTrm=1L2%,=8r=Q0-pplpandx;, =y, fori=1,2, ..,k

5 Applications
Proposition 5.1. Let ay, a,, ..., a, (n = 3) be positive real numbers such that a,a, ... a,
= 1. If p and q are nonnegative real numbers such that p + q = n - 1, then [4]

1 1 1 n
5+ , et , = .
1+pa; +qa; 1+pax +qa; 1+pay,+qa; — 1+p+q

Proof. Write the desired inequality as
8(a1) +g(az2) +-- - + glan) = ng(1),

where

8(0) = 1+pt+qt?’

To prove this inequality, we apply HCF-Corollary for » = 1. Let
f(u) =g(e") = . +pe“1+q62“' ueR.

Using the second derivative,
) = e[4q°¢™ + 3pqe* + (p* — dq)e" —p]

(1 + pe* + ge?¥)3

we will show that flu) is convex for e > r = 1. We need to show that
44°6 + 3pgt® + (p* —4q)t—p >0

for ¢ > 1. Indeed,

44°6 +3pqt® + (p* — 4q)t — p = (4q° +3pq +p* — 49 — p)t
=[(p+2a9)(p +a—2) +24° +pt > O,
because p + g2 n-12 2.
By HCF-Corollary, it suffices to prove that g(a) + (n - 1)g(b) = ng(1) for all a, b > 0
such that ab”' = 1. We write this inequality as

p2n—2 n—1 n

> .
b2 + pb"1 + g "1 +pb+qb? ~ 1+p+q
Applying the Cauchy-Schwarz inequality, it suffices to prove that

v '+n—1)? _n
(b2=2 4 pb"1 4+ q)+ (n—1)(1+pb+qb?) ~ 1+p+q’
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which is equivalent to
pB +qC > A,
where
A=n-1)(b""'-1)> >0,

A
B=(b""'—-1)?+nE-= +nE,
n—1

A
C=@""'-1)*+nF= L H1E
with
E=b"'4+n—-2—-(n—1)b, F=20""'4+n—-3—(n—1)b*

By the AM-GM inequality applied to # - 1 positive numbers, we have E > 0 and F >
0 form>3.Since A>0and p + g > n - 1, we have

pB+qC—A=>pB+qC— =n(pE + gF) > 0.

(p+q)A
n—1
Equality holds for a; = a; = .. =a, = 1.
Remark 5.2. For p + ¢ = n - 1 and n = 3, by Proposition 5.1 we get the following
beautiful inequality

1 1 1

+ o
1+pay +qai 1+ pay +qa3 1+ pay +qa ~

If p=n-1and g =0, then we get the well-known inequality

1 1 1
+ +e >1
1+(n—1)a; 1+(n—1)ay 1+(n—1)a, ~

1 2
Remark 5.3. For p=q= ,0<r< ) and n > 3, by Proposition 5.1 we obtain
T n—

the inequality

1 1 1 n
5t PR 22 .
r+ay+a; T+dy+a; T+ap+a;  T+2

2
In addition, for r = X n = 3, we get

n

1 1
Z 2 22
= 2+ (n—1)(ai+a;)

Remark 5.4. For p = 2r, q = r*, 1 > \/n — 1 and 1 > 3, by Proposition 5.1 we obtain

1 1 1 - n
+ et .
(1+7a1)? (1 +ray)? (1 +7a,)? ~ (1+71)2

Proposition 5.5. Let a,, as, ..., a, (n > 4) be positive real numbers such that a,a, ...
a, = 1. If p, q, r are nonnegative real numbers such that p + q + r 2 n - 1, then [4]
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" 1 n

>
2 3 = :
P 1+ pa; + qa; + 1a; l+p+qg+r

Proof. Write the required inequality as
8(a1) +g(az) +-- - + glan) = ng(1),

where

1

, >0,
1+pt+qt2 +163

g(t) =

and apply HCF-Corollary to g(¢) for r = 1. Let
1

1+ pet + ge?" + redt’

f(u) = g(e") =
defined on R. For n > 4, which implies p + g + r > 3, we claim that f'is convex for
e” > 1. Since

_t[9r?0 + 11grt* + (2pr + 44°) 6 + (3pg — 9r)E* + (p* — 4q)t — p]
(1 +pt+qt2 +r63)° '

f"(u)
where ¢ = €” > 1, we need to show that
9r2¢° + 1grt* + (2pr + 4¢°)2 + 3pq — )2 + (p* —4q)t —p > 0
Since
92 + 1grt* + (2pr + 4¢°)E — p > (972 + 11qr + 2pr + 4¢*)t> — pt,
it suffices to show that
(977 + 11qr + 2pr + 4¢°)t> + (3pq — )t +p* —p — 4q > 0.
Using the inequality £ > 2¢ - 1, we still have to prove that At + B > 0, where
A = 1812 + 22qr + 4pr + 84° + 3pq — 9r,
B =—91" — 11gr — 2pr — 4q* + p> — p — 44.
Since p + q + r = 3, we have

A > 1817 +22qr + 4pr + 84 + 3pq — 3r(p +q +1)
= 1512 + 19qr + pr + 84° + 3pq > 0.

Therefore,

At+B > A+B=p>+4q* + 91 + 3pq + 11qr + 2pr — (p + 4q + 97)

> p? + 4% + 9% + 3pq + 11qr + 2pr — (p+4q+9;)(p+q+r)
_2(p —1)* + 94 + 1617 + 4pq + 20qr =0

3

According to HCF-Corollary, it suffices to prove that g(a) + (n - 1) g(b) = ng(1) for
all @, b > 0 such that ab™" = 1. We write this inequality as
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p3n—3 n—1 n

b33 4+ pb2n=2 4 qb"~1 + 1 "1 +pb + gb? + b3 = l+p+g+1
or

pPAn +q*Axy + ?Ass + pA1n + qrAas +pAs > Ap + Bq + Cr,
where

Au = b2n72(bn —nb+n— 1),
Ay = bnil(bzn —nb?+n— 1),

A33=b3"—nb3+n—1,

A12 - b3n71 + b3n72 + (n _ 1)(b2n72 + bnfl) _ n(bzn 4 bn),
Axs =" 4+ 0" 4 (n— D)™ + 1) — n(b™? +b2),
Az ="+ P2 4 (n— 1)(bP"% + 1) — n(0*™! +b),

A=b0"2[(n— 1" —nb" + 1],
B=b"1(n—-1)p*" —nb*2 + 1),
C=mn—-1)>" —nb®3 +1.

Since A,B,C = 0 (from the AM-GM inequality applied to #n positive numbers) and p
+q+r=>mn-1,itsuffices to show that

(n — 1)(p?A1n + G° Ay + 17 As3 + pgA1 + qrAaz + 1pA3) >
>(p+qg+1)(Ap+Bg+Cr),
which is equivalent to
p?Bii +q*Bay +1°B3s + pqB1a + qrBys + 1pB3; > 0, (38)
where

Bu=(m—1)An —A=nb"?[b"" — (n—1)b+n—2],
By =(n—1)Ayp —B=nb""'[p""? — (n—1)b* +n - 2],
Biz=(n—1)As53—C=n[b>" > — (n—1)b> +n—2],

B]2 = (Tt— 1)A12 —A—B
=nb" 267" — (- "+ (n—2)b" — (n— 1)b+n—2]
=nb? 220" —(n— D +n—=3]+nb" [P — (n—1)b+n—2],

B23 = (n— 1)A23 —B-C
=n[20°" 3 —(n— )" + (n = 20" — (n — 1)b* +n - 2],

Bgl = (1’1— 1)A31 —C-A
=267 — (n— 1B 4 (n— 2)b?" 2 — (n— 1)b+n—2].
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We see that B;;, Bas, B3z, Bis = 0 (by the AM-GM inequality applied to # - 1 posi-

tive numbers). Also, we have

B
2B — (= 1)bP +n— 4]+ 20" (0 = 1)2
n

+0" 2 —(n—1)b*+n—-2>0,
since
3 —(n—-1)P+n—-4>0, V" rP-(n-1)p+n—-2>0

(by the AM-GM inequality applied to # - 1 positive numbers). Using the inequality
b - (n-1)b + n- 2= 0,we get By, > D, where

D =nb"'[2b*"% — (n — 1)b"™? + (n — 2)b" ' —1].

To prove (38), it suffices to show that p*> By + r*Bs3 + prD > 0. This is true if
4B,,Bs3 > D? that is,

4 —(n—1)b+n=2][p*" 3 —(n—-1)P+n—-2] >
> [207"72 — (n— 1)V + (n— 2)b" ' — 1]%.

In the case n = 4, (39) becomes in succession

4(b> —3b+2)(1° — 30> +2) > (b° — 2b° + 1)?,
4(b—1)2(b+2)(b> — 1)*(B* +2) = (b® — 1)*,
(b— 1)*(b®> — 1)?(3b* + 5b° — 3b* + 6b + 15) > 0.

Clearly, the last inequality is true. The inequality (39) also holds for # = 5, but we
leave this to the reader to prove. Equality occurs for a; = a, = ... = a,, = 1.

Remark 5.6. For n = 4 and p + q + r = 3, by Proposition 5.5 we get the following
beautiful inequality

4

1
> 1.
; 1 +pa; +qa? +ra; ~

In addition, for p = ¢ = r = 1, we get the known inequality ([2])

Conjecture 5.7. Let ay,a», ..., a, be positive real numbers such that aa, ... a, = 1,
and let ky,ky, ..., k,,, be nonnegative real numbers such that ky + ky + ... + k,, =2 n - L. If
m<n-1, then

n

1 n
> . 40
;1+k1ai+k2ai2+~~+kma{”_1+k1+k2+~~~+km (40)

Remark 5.8. For m = n -1 and k; = ky = ... = k,, = 1, (40) turns into the known
beautiful inequality ([2])
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n

1
Z n—1 > 1

: 2 e
P 1+a;i+a;+ +d;

Remark 5.9. For ky = (7')r,kz = (3)12,..., km = (1) 7™, (40) turns into the known
inequality [1,2]
n

- 1
> ’7
; (I +ra))™ = (1+1)m

which holds for 1 <m <n-land r> /n—1.0

Proposition 5.10. If xy, X, ..., x,, are nonnegative real numbers such that

nn+1)
x1+2x2+...+nxn= )
2
then
nn+1
(n—1)(n+2)[x§+2x§+...+nx73[_ (2 )]Z
nn+1
Z2(n2+n—1)|:x:1)'+2x§+...+nx%_ (2+ )]

Proof. Since the inequality is trivial for n = 1, consider further that n > 2. Write the
inequality as
prf(x1) + pof (x2) + -+ + puf () = (151 + paxa + -+ - + puXn),
where
2i
n(n+1)’
fwy=m-1)n+2)u>-2(n*+n—1)u? u=0.

pi = i=1,2,...,n

The function flu) is convex for u > s = 1, since
f'uw)y=6(n—1)(n+2)u—4n*+n—1)
>6(n—1)(n+2)—4n*+n—-1)=2(n*+n—-4)>0

for u = 1. According to WHCE-Theorem and Remark 2.2, it suffices to prove that /
(%, ¥) 2 0 for all x, y = 0 such that px + (1 - p)y = 1, where

p=min{py, p2,....pu} = n(n2+ 1)’
We have
g(u) = f(“L)l :fl(l) =)+ ru+1) =2 +n—1)(u+1),

h(x,y) = g(xi -8 _ (

n—1)(n+2)(x+y+1)—2(n*+n—1).

From px + (1 - p)y = 1, we get

L—px  1+(1—2p)x

1-p  1—p
_rz(r1+1)+(112+r1—4)x> n(n+1)

h (n—1)(n+2) “(n-1)n+2)

X+y=x+
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and hence

n(n+1)

h(x,y)2(n—1)(n+2)|:(n_1)(n+2) +1i|—2(n2+n—1)=0.

This completes the proof. Equality holds for a; = a, = ... 4, = 1, and also for a; = 0
n(n+1)

and a =---=a, = (n—1)(n+2)
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