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1. Introduction and preliminaries

To unify the theory of continuous and discrete dynamic systems, in 1990 Hilger [16]
proposed the study of dynamic systems on a time scale and developed the calculus for
functions on a time scale (i.e., any closed subset of reals). The purpose of this paper
is to establish some complements of Cauchy’s inequality on time scales, which extend
some results of Cargo [6], Diaz, Goldman, and Metcalf [7-11], Goldman [12], Greub
and Rheinboldt [13], Kantorovich [17], Schweitzer [29], Pélya and Szeg6 [26], and so
forth. For other related results, we refer to [2, 3, 14, 15, 18-20, 23-27, 30, 31]. To do this,
we briefly introduce the time scale calculus as follows.

Definition 1.1. A time scale T is a closed subset of the set R of all real numbers. Assume
throughout this paper that T has the topology that it inherits from the standard topology
onR.Lett e T,if t <supT, define the forward jump operator o : T — T by

o(t):=inf{reT:7>t} (1.1)
and if t > inf T, define the backward jump operator p: T — T by
p(t):=sup{reT:7 <t} (1.2)

The points {t} of a time scale T can be classified into right-scattered, right-dense, left-
scattered, left-dense based on o(t) > t, o(t) = t, p(t) < t, and p(t) = ¢, respectively. More-
over, define the time scale T as follows:

. | T\(p(supT), supT) if supT < oo,
T = . (1.3)
T if supT = oo,
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2 Some complements of Cauchy’s inequality on time scales

Throughout this paper, suppose that

(@) R = (—00,00);

(b) T is a time scale;

(c) an interval means the intersection of a real interval with the given time scale.

Definition 1.2. A mapping f : T — R is called rd-continuous if the following two condi-
tions hold:

(a) f is continuous at each right-dense point or maximal element of T,

(b) the left-sided limit lim,_.,- f(s) = f(¢™) exists at each left-dense point t € T.

Definition 1.3. Assumethatx:T— Randt e T (ift=sup T, assume ¢ is not left-scattered).
Then x is called delta-differentiable at ¢ € T if there exists a § € R such that for any given
€ >0, there is a neighborhood U of ¢ such that forall s € U,

|x(0()) — x(s) — 0(a(t) —5) | <e|o(t)—s|. (1.4)
In this case, 6 is called the delta-derivative of x at t € T and denote it by 6 = x*(t). If x is

delta-differentiable at each point of T, say that x is delta-differentiable on T.
It can be shown thatif x : T — R is continuous at ¢ € T, then

A X(o@®) —x) .. . . i
x2(t) o) —1 if t is right-scattered, (1.5)
XA = liIItl x(ti : :(S if t is right-dense. (1.6)
In this paper, let
Cu(T,R) :={f | f: T — R isard-continuous function}. (1.7)

Definition 1.4. Let f : T — R be a mapping. Then the mapping F : T — R is an antideriv-
ative of f on T if it is delta-differentiable on T and F2(t) = f(t) for t € Tk,

Definition 1.5. If f € Ciq([a,b],R) has an antiderivative F, then define the (Cauchy) in-
tegral of f by

Lt F(r)Ar = F() — F(s), (18)

for any s,t € [a,b].

It follows from Theorem 1.94 of Bohner and Peterson [4] that every rd-continuous
function has an antiderivative.

For further information concerning time scales theory, refer to [4, 5, 21].

2. Main results

First, we state the well-known Cauchy inequality on a time scale T, see [1, 4].
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THEOREM 2.1 (Cauchy’s inequality). Let p, f,g € Cra([a,b],R) with p > 0 on [a,b]. Then

(L p(x) f2(x)Ax) (L p(x)gz(x)Ax) > (L plx) f (x)g(x)Ax)2. (Ry)

Remark 2.2. Cauchy’s inequality has the following variants.

(a) Replacing f(x) and g(x) by 4/ f2(x) +g2(x) and f(x)g(x)//f?(x )in (Ry),

respectively, we obtain

(2.1)

(b) Let fg =0 and f # 0 on [a,b]. Replacing f(x) and g(x) by ,/g(x)/f(x) and
f(x)g(x) in (Ry), respectively, then

(LbP( )(J px)f(x x)Ax) (pr(x)g(x)Ax)z. (2.2)

(c) Suppose that g(x) >0 on [a,b]. Let f(x) and g(x) be replaced by f(x)/\/@ and
\/g(x) in (Ry), respectively. Then

(55 )« (s

Remark 2.3. Let p, f,g € Cia([a,b],[0,0)) and I, = ffp(x)(f(x))”g(x)Ax. Then it fol-
lows from Cauchy’s inequality (R;) that

I?

n—

L < Lo (2.4)

for any integer n > 2.
Next, we state and prove some complements of Cauchy’s inequality on time scales.

THuEOREM 2.4. Suppose that p, f,g € Ca([a,b],R), p(x) =0, and f(x) # 0 on [a,b] with
f P(x) f(x)g(x)Ax # 0. If m, M € R are such that

<80 _
m< Ok M (2.5)
for x € [a,b], then the following two statements hold:
J plx Ax+MmJ px) f2(x)Ax
< (M+m) J ) F(x)g(x)Ax (Ry)

<M+ mIJ (Jb () fZ(x)Ax> (Jb p(x)gZ(x)Ax)
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with equality in the first inequality sign “<” if and only if g(x) = mf(x) or g(x) = M f(x)
on [a,b].

2 2 b 2
i(\/%+\/g) :(Z\Z;IZ) (f2 p)f2(x)A )(fap(x)gz(X)Ax)ZL ®)

(f plx) f( x)g(x)Ax)

if Mm >0, that is,

i(g_\/g)l“f”"‘) ) (11 g 0x) - (I 0 L

(f p(x)f(x) x)Ax)

(2.6)
if Mm > 0.
Proof. It follows from (2.5) that
g(x) 87
plx )[f(x m][ f( ]f (x)=0 ona,b]. (2.7)
Thus,
b b b
J Mp(x) f (x)g(x)Ax — J p(x)g2(x)Ax — Mmj p(x) f2(x)Ax
a a a (28)
b
+m L p(x) f(x)g(x)Ax = 0.
This inequality and (R;) imply that (R;) holds.
On the other hand, it follows from Mm > 0 and
b 12 b 1272
[(J p(x)gz(x)Ax) - (Mm J p(x) fz(x)Ax) } >0 (2.9)

that

b 2 b b
(M+m)2<f p(x)f(x)g(x)Ax) 24Mmj (%) fz(x)AxJ P(02Ax.  (2.10)

This and (R;) imply that (R3) holds. This completes the proof. O
Remark 2.5. Clearly, (R;) implies (R3) if Mm > 0. Hence (R;) and (R3) are equivalent.
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Remark 2.6. Under the conditions of Theorem 2.4, if A € (0,1) and Mm > 0, then it fol-

lows from (R;) and the arithmetric-geometric mean inequality that
1 b 1-1 M b A
(7 J p(x)gz(x)Ax) (7’” J p0)f? (x)Ax>
1 - A, a A a
b b
< j ()22 (x)Ax + Mmj () 2(x)Ax

b
< <M+m>j p(0) f(0)g(x)Ax,

which implies that

(pr(x>g2(xmx) B ( Lb p(x)fz(x)Ax)A R T Lb p(x)

Letting A — 0* in inequality (1), we get

J p(x)g”(x)Ax < (M +m) I px) f(x)g(x)Ax

Obviously, (r;) is weaker than the inequality

b b
L ()¢ (x)Ax < J Mp(x) f(x)g(x)Ax ifm <0,

and (r;) is also weaker than the inequality
b b
J p(x)g*(x)Ax < J mp(x) f(x)g(x)Ax if M <O0.

Letting A — 1~ in inequality (ro), we get

pr(x)f dvs () Lb px) F(x)g(x)Ax

b b
_ J p(x) f(x)‘%Ax+L p(x) f(x)g](w—x)Ax

Evidently, it follows from (2.5) that

b b
I p(0) f2(x)Ax < f p(x) f(x)g(—x)Ax ifm >0,

x)

’ 2 ’ glx .
[ pea o= [ peofeESax it <o

f(x)g(x)Ax

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Remark 2.7. The inequality (R;) extends [6, Theorems 1 and 2] and inequality (3.3) in

Makai [22].
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Remark 2.8. Let F € Cyy([a,b],(0,0)). If f = F~/2, ¢ = F/2, then (R,) is reduced to

b b b
L p(0)F(x)Ax + Mm J %Ax < (M+m)L p(0)AX, (R?)

which extends Rennie’s result [28].
Conversely, if we take F = g/f, p = pfg, then (RY) is reduced to (Ry). Thus, (R;) and
(R¥) are equivalent if F € C4([a,b], (0, )).

Remark 2.9. Let F € Cyy([a,b],(0,0)). If f = F~/2, ¢ = F/2, then (R3) is reduced to

(M+mP [ p)F(0)Ax [ (p(x)/F(x))Ax _

> 1, (RY)
4Mm (2 p(x)Ax)’ ’
which generalizes some results in [17, 29, 31]. Conversely, if F =g/f, p = pfg, then (RY)
is reduced to (R3). Hence, (R3) and (R}) are equivalent.

Moreover, if p(x) = 1, then (R3) is reduced to

(M+m)? _ [} fPoAxc[) @0Ax

> R**
4Mm (J) f(x)g(x)Ax)? ()

which extends a result in [26]. Obviously, (R3) and (R} *) are also equivalent if f and g
are replaced by /p f and ./pg, respectively, in (R3*).

Remark 2.10. Let p(x) >0on [a,b]. If g(x) is replaced by f(x)/p(x), then (Rs3) is reduced
to

M+m) ([P p) f20)Ax) (7 (f2(x)/p(x))Ax)

=

4Mm (J) f2(x)Ax)?

> 1. (2.17)

Similarly, we can prove the following.

THEOREM 2.11. Let p, f,g € Cia([a,b],R) with p(x) = 0 on [a,b]. Suppose that there exist
four constants h,H,m,M € R such that

(Mf(g) —hg(x)) (Hg(x) —mf(x)) =0 (2.18)
on [a,b]. Then
b b
MmJ p(x)fz(x)Ax+HhJ p(x)g*(x)Ax
b
< (HM+hm)J p(x) f(x)g(x)Ax (2.19)

< |HM + hm)| <pr(x)f2(x)Ax) (pr(x)gz(x)Ax>.
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Moreover, if HMhm > 0, then

(J, pearne) (], peogons) = (S50 ([ s tonss)

(2.20)

Hence
[ i) o B | o)
< (i) () et

Remark 2.12. Theorem 2.11 extends a result in [20, page 18].

(2.21)

The following is an extension of [24, Theorem 1, page 122].

TueOREM 2.13. Let p, f,g € Ca([a,b],[0,)). Suppose that there exist six constants o, 3, h,
H,m,M € (0,00) such that h < f(x) < H, m < g(x) <M on [a,b], 1 >a = >0 and a +
B = 1. Then the following two inequalities hold:

([ ([ 2] <t ),
([ peoreons) ([ p(x)g%x)Ax) < ﬂﬂq PU)f (X)g(Ax). (Rs)
Proof. Since (acf (x) — fh)(f(x) — H) = 0 on [a,b], we have
af?(x)— (aH +ph) f(x) + BHh < 0. (2.22)
Thus,
ap(x) f(x +/3Hh§( ; < («H +Bh)p (Re)

A direct consequence of the foregoing inequality with appeal to the arithmetric-geometric
mean inequality leads to

([ s (] 25
- ([ eocons) e 125

< ﬁ ((x Lb p(x) f(x)Ax + BHh Lb %Ax)

)

(2.23)

Thus, (Ry) holds.
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Replacing p(x) and f(x) by p(x)f(x)g(x) and f(x)/g(x) in (R4), respectively, and
using W/M < f(x)/g(x) < H/m, we obtain

([ i) ([ s = S0 ).
(2.24)

Hence, (Rs) holds. O

Remark 2.14. Let p, f,g € Cua([a,b],R) with p(x) = 0 on [a,b]. Suppose that there are
o, B,mM e Rsuchthat 0<f<a<1,a+f=1,and

(x)
(x)

oq

m=<

<M ona,b]. (2.25)

~~

Replacing i, H and f (x) by m, M and g(x)/ f (x) in (Re), respectively, and then integrating
the resulting inequality from a to b, we obtain

b b b
o J p(x)g2(x)Ax + BMm J () F2(x)Ax < (Bm +aM) J P f(0g(0A,  (2.26)

which is an extension of inequality (R;).

Remark 2.15. Clearly, (R4) and (Rs) are equivalent. In fact, let f?(x) = F(x), g*(x) =
1/F(x), where F € Cq([a,b],(0,)).If 0 <k < F(x) <K on [a,b], then

h:=\/—sf(x)s\/f:=H,
(2.27)

1 1
ﬁsg(x)ﬁﬁ::M'

m:i=

Thus, (Rs) is reduced to (R4). Similarly, (R4) is reduced to (Rs). Hence, (R4) and (Rs) are
equivalent.

Remark 2.16. Let « = 3 = 1/2. Then (Rs) is reduced to

(HM+hm)? _ (J2 p(x) f2()Ax) ([} p(x g(x)Ax)
sHMhm ~ (2 p(x)f(x)g(x)Ax)?

>1, (R3*™)

which is an extension of a result in Greub and Rheinboldt [13], see also [3, 23, 24]. In
fact, (R3) and (R}**) are equivalent.

The following is an example of the presented theory with T = Z.
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Remark2.17. Let p;20,0<h<a;<H,0<m=<b;<Mfori=12,...,nlf I1>a=>0
with a+ 8 = 1, then (R3), (R4) and (R**) are reduced to

n */n B n
pi 06H+ﬂh
(2pm) (35) =Far (Zp) @
n X /n B n
ocHM+[3hm

(/HM | h >2 (HM+hm)2>(Zizlpiai)<2izlpibi2> ©
4HMhm (Z,(l:lpia,-bi)z >

respectively (see [24, pages 121 and 122]). Inequality (c) generalizes some results of [13
16].
If « = B = 1/2, then (a), (b) are reduced to

(za’) (2 ) = (Z;IZ) n*  (Schweitzer [29]), (a*)
i=1

n Pz>_(H+h ( ) (Kantorovich [17]) )
<IZ ) (; a; 4Hh z; antorovic , a

n n 2
2.4 2. b < T (Za ) (Pélya and Szego [26]). (b*)
i=1 =1

3. More results

In this section, we give some inequalities on time scales which extend some results in
(23,27, 31]. To do this, let f,g € Ciq([a,b],R) and p € C4([a,b],[0,0)), we define the
operator T,(f,g) as follows:

T,(f.8):= J Jp f(x)— f(1)) (g(x) — g(t)) AxAt. (3.1)

In fact,

= ([, peome) ([ oo stsions) - [ pimasirse) (] pesgrss)

(3.2)

and T,(f, f) = 0. Invoking (3.1) and Cauchy’s inequality (R;) yields the following in-
equality

[T,(f,9)]° < Tp(f> /)Ty (g:8). (3.3)
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Remark 3.1. It follows from (3.3) that

(] o) [ o) - ([ o) (] o) |
= [(J:pooss) ([ prons) - ([ s |

. [(ij(x)Ax) (J:P(x)gz(x)Ax) - (pr(x)g(x)Ax>2],

that is,

([ perae) ([ prstonns)
L) [ oo Lo [ sy
([ roseons)' ([ oserns)
= ([ st ([ s o) ([ porgeons)
([ o) [ o) [ o)
([ prrerne) ([ o) ([ picons)

2

+(Lh p(x) f(x)Ax) (J e )Ax) ,

which implies that

(o) (oo

[([; o) ([ P<x>f<x>g(xmx>

([ gt (| osens)

72< I p(x) f(x)Ax) (J p(x)g(x)Ax) (J (%) f(x)g(x)Ax)].
(Ry7)

(3.5)

Jp( )Ax
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It follows from the arithmetric-geometric mean inequality that the right-hand side of
inequality (R7) is greater than or equal to

o [2( [ ) ([ pogeonns)
([ pwreoa) ([ pwgcons)
([ peosigmns) ([} o seons) ([ pwgeas) | @9
([ ) [ o)

x [(J px)f ()g(Ax) - (j P00 f(x)gx) | =0

This means (Ry) is stronger than inequality (R;).

Tueorem 3.2. Let p, f,g € Cia([a,b], [0, )).
(a) If there exist four constants H,h,M,m € R such that [Hg(x) — mf(x)][Mf(x) —
hg(x)] = 0 on [a,b], then

(HM + hm) J plx) f(x)g( x)Ax>HhJ plx )Ax+MmJ p(x) fA(x)Ax.  (3.7)

(b) If there exist four constants H,h, M, m € R such that for all x,t € [a,b] with [Hg(x) —
mf(t)]IMf(t) —hg(x)] =0, then

(HM + hm) (pr (x) f(x) Ax) (Ibp(x)g(x)Ax>

>Hh(J p(x)Ax) (J plx )Ax) (3.8)
+Mm(L p(x)Ax) (J () fz(x)Ax).

(¢) If Hh > 0 and Mm > 0, then

(HM + hm) (pr(x f(x) Ax)(pr(x x)Ax)

2 5 (3.9)
>Hh<J pla)g( Ax) +Mm<J plx) f(x) Ax) .
d) IfHh >0 and Mm >0, then
(HM+hm)(pr(x)Ax) (pr(x)f(x)g(x)AX> 1)

> Hh(4[{1271)(x)g(x)Ax>2 +Mm(pr(x)f(x)Ax)2.
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Proof

Case (a). It follows from the assumption that

p(x)(Hg(x) —mf(x)) (Mf(x) —hg(x)) =0 on [a,b], (3.11)
which implies that
(HM +hm)p(x) f(x)g(x) = Hhp(x)g*(x) + Mmp(x) f*(x) on [a,b]. (3.12)
Thus,
(HM+hm)J () f(0)g(x)Ax = th i )Ax+MmJ PO f2()Ax. (3.13)

Case (b). It follows from the assumption that for x,t € [a,b],

p()p(t) (Hg(x) —mf () (Mf(t) — hg(x)) = 0, (3.14)
which implies that

HMp(x)p(t) f (£)g(x) + hmp(x)p(¢) f (£)g(x)

>th(x)p(t) 2(x) + Mmp(x) p(t) f2(1) (3.15)

Therefore,

(HM + hm) ( Lb p(x)g(x)Ax) ( Lb () f(t)At)

> Hh(Lb p(x)Ax) ( Lb p(x)gZ(x)Ax) +Mm<Lb p(x)Ax) (Jb () fz(x)Ax).

(3.16)

Cases (c) and (d). It follows from Cauchy’s inequality (R;) that

(o) [t (o).
(Ll]p(x)Ax) (pr(x)gz(x)Ax> > <pr(x)g(x)Ax)2.

Combining (a), (b), and the preceding two inequalities, we see that

(3.17)

(HM + hm)( Lb p(x)Ax) (Ib p(x) f(x)g(x)Ax)

> Hh(LlJp(x)Ax) (th(x)g2(x)Ax) +Mm(pr(x)Ax> (Jabp(x)fZ(x)Ax>

> Hh(ij(x)g(x)Ax)2 +Mm<pr(x)f(x)Ax>2.
(3.18)

This completes the proof of (c).
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Furthermore,

(HM + hm) ( Lb p(x) f(x)Ax) (Jb p(x)g(x)Ax)

Hh(Lb p(x)Ax) ( Lb p(x)gz(x)Ax) +Mm<Lb p(x)Ax) (Jb p(x) fz(x)Ax)

%

> Hh(Lb p(x)g(x)Ax)2 +Mm<Lb ) f(x)Ax)z.

(3.19)
Hence, (d) holds. O
Remark 3.3. It follows from (a) of Theorem 3.2 that
et ([ peon) ([ peoseogons)
T Hh ( Lb p(x)Ax) (Jb p(x)gz(x)Ax> (3.20)
+Mm(pr<x>Ax) ( Lh Pl (Ax) <0,
hence
— (HM+hm)Ty(f.g) +Hh(Lb P (jb Px)g*(x) )
 Mm ( Lb p(x)Ax) (Ib p(x) fz(x)Ax) (3.21)

< (HM + hm) ( Lb p(x) f(x)Ax) (Jb p(x)g(x)Ax),

where T, (f,g) is defined as in (3.1). The foregoing inequality is stronger than Theorem
3.2(b). Hence, by Cauchy’s inequality,

—~(HM+hm)T,(f,g) +Hh<pr(x)g(x)Ax>2 +Mm(pr(x)f(x)Ax)2
‘ ¢ (Rs)

< (HM + hm) ( Lb p(x) f(x)Ax) (Jb p(x)g(x)Ax).

Remark 3.4. If HMhm > 0, then it follows from (a) of Theorem 3.2 that

(HM + hm) ( Lb (%) f(x)g(x)Ax) > zJ HMhm ( I ab p(x) fZ(x)Ax) (Jb p(x)gZ(x)Ax>.
(3.22
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Moreover, if [ p(x) f(x)g(x)Ax > 0, then

(HM+hm)> /—HM W Jpx)fz )Ax) (f, p(x)g*(x)Ax)
- 4HMhm hm o) f(x)g(x)Ax>2 .

(3.23)

This is a generalized Cauchy’s inequality.

Remark 3.5. It follows from (b) of Theorem 3.2 that

(HM+hm)2(pr(x)f( Ax)Z(pr g(x)Ax)z

e[ pos) [ o)

+M2m2(L p(x)Ax) (L p(x)fz(x)Ax)2 (3.24)

+2HMhm<Jhp )2<pr )2 (0A )(pr g x)Ax)

>4HMhm<I p(x)Ax) (J p(x) fz(x)Ax)<J e )Ax>

Hence, if HMhm > 0, then

([ o) s

_ (HM +hm)? (jf p() f (x)Ax f) p(x)g(x)Ax>2 (329
= 4HMhm 17 p(x)Ax ‘
Remark 3.6. It follows from (b) of Theorem 3.2 that
b b
— (HM +hm) ( J p(x) f(x)Ax) (J p(x)g(x)Ax)
b b
+Hh(J p(x)Ax) (J p(x)gz(x)Ax> (3.26)

+Mm(pr(x)Ax) (pr(x)fz(x)Ax) <0
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hence
(HM + hm) [ ( Lb p(x)Ax) (Jb p(x) f(x)g(x)Ax)

([ st ] oo
n Hh(Lb p(x)Ax) (Jb p(x)gz(x)Ax) +Mm<Lb p(x)Ax) (Jb p(x) f2 (x)Ax)
b b
< (HM+hm)(L p(x)Ax) (J p(x) f(x)g(x)Ax).

(3.27)
Then by Cauchy’s inequality (R;),
b 2 b 2
(HM +hm)T( f,g)+Hh<J p(x)g(x)Ax) +Mm< J p(x) f(x)Ax)
¢ ‘ (Ro)
b b
< (HM+hm)(L p(x)Ax) (J () f(x)g(x)Ax),
where T, (f,g) is defined as (3.1).
Remark 3.7. If HMhm > 0, then it follows from (c) of Theorem 3.2 that
b b
(HM + hm) (J plx Ax)(J p(x) f(x)g(x)A )
(3.28)

>2\JHMhm<J plx x)Ax) <J px)f(x Ax) .
Hence

HM | hm HM+hm _ f p(x)f(x)Ax)(f p(x)g(x)Ax) (3.29)
\/ hm NHM ) T 2 HMAm X)Ax) ([P p(x) f(x)g(x)Ax) '
Tueorem 3.8. Let p, f,g € Cia([a,b],[0,)). Then
(a)

[(pr(x)Ax) (pr(x)f2(x)Ax> + (th(x)f(x)Ax>2]
X [(LZ)(x)Ax) (pr(x)gZ(x)Ax) + (pr(x)g(x)Ax)z]
> [(Jb p(x)Ax) (Jb p(x) f(x)g(x)Ax) ; (Jb () f(x)Ax) (Jb p(x)g(x)Ax) ]2.

(3.30)

Moreover, under the assumption of (a) and (b) in Theorem 3.2, then the following two in-
equalities hold:
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(b)

(HK +hm)? [ < Lb p(x)Ax) (Jb (%) f(x)g(x)Ax)

o ([ ptoreons) ([ pwgeons)| -
>4HMhm[(J p(x)Ax)(J P02 (x Ax) (J p(x)g(x)Ax) ]

x[(J p(x)Ax) (J p(x) fZ(x)Ax) N <J (%) f(x)Ax) ]2.

3.31)

(c)
b b
ls[<L p(x)Ax)(L p(x)fz(x)Ax> (J plx x)Ax)]
b 2
. [ pG)ax) (J7 g (x)Ax) + ([} px)g(0)Av)° 532)
[ (2 p0)Ax) (17 p() f(x)gx)Ax) + (7 p(o) f () Ax) () p(x)g(x)A) |
(HM + hm)?
= 4HMhm
Proof

Case (a). A straightforward calculation shows that

(]} poons) ([ peorros) ([} i) |

X [(ij(x)Ax)(Jahp(x)gz(x)Ax> (J P x)Ax) ]

= (J, peome) (], perrse) (] pongions)
() s )

([ pmseons) (], perss) ([ oogtions)

+([ peoseons) ([ peogeone)

Z[th(x)Ax)(Jb (0 f (g x)Ax)]2+2(pr Ax)(pr(x)f(x)Ax>
<([] peogeo )J(Jp )2 Ax)(j PRI )

(L px)f(x ) (L p(x)g(x )Ax) (by Cauchy’s inequality)
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> [(Jb Pl (Jb ) f(x)g(x)Ax)]z
+2(pr(xmx)( jbp(x) Ax)(j plx x)Ax)(pr(x)f(x)g(x)Ax>
+[(pr(x) Ax)(J px g(x)Ax)]

= [([ ptons) ([ st fgeons) « ([ prsens) ([ peogton)]

(3.33)

Case (b). Tt is follows from (Rg) and (Ry) that

it ([ peons) ([ oo fgeons)
o([ ptoseons) ([ pwgeons)|
(o) s [ s |
+Mm[(jbp<xmx) ([ peoreons) + ([ p(x)f(x)Ax)Z} I |
] ([ s (] s« ] o]

X [(Jb p(x)Ax) (Jb (%) fZ(x)Ax) i (Jb p(x) f(x)Ax)z} )

This completes the proof of (b).

3.34)

Case (c). Clearly, (c) follows from (a) and (b).
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