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We establish a weighted Lp boundedness of a parametric Marcinkiewicz integral operator

�
ρ
Ω,h if Ω is allowed to be in the block space B(0,−1/2)

q (Sn−1) for some q > 1 and h satis-
fies a mild integrability condition. We apply this conclusion to obtain the weighted Lp

boundedness for a class of the parametric Marcinkiewicz integral operators �
∗,ρ
Ω,h,λ and

�
ρ
Ω,h,S related to the Littlewood-Paley g∗λ -function and the area integral S, respectively.

It is known that the condition Ω ∈ B(0,−1/2)
q (Sn−1) is optimal for the L2 boundedness of

�1
Ω,1.

Copyright © 2006 H. M. Al-Qassem. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Suppose that Sn−1 is the unit sphere of Rn (n≥ 2) equipped with the normalized Lebesgue
measure dσ = dσ(·). Let Ω be a function defined on Sn−1 withΩ∈ L1(Sn−1) and satisfies
the vanishing condition

∫
Sn−1

Ω(x)dσ(x)= 0. (1.1)

For γ > 1, let Δγ(R+) denote the set of all measurable functions h on R+ such that

sup
R>0

1
R

∫ R

0

∣∣h(t)∣∣γdt <∞. (1.2)

It is easy to see that the following inclusions hold and are proper:

L∞
(
R+)⊂ Δβ

(
R+)⊂ Δα

(
R+) for α < β. (1.3)

Throughout this paper, we let x′ denote x/|x| for x ∈ Rn\{0} and p′ denote the con-
jugate index of p; that is, 1/p+1/p′ = 1.
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2 Weighted marcinkiewicz integrals

Suppose that Γ(t) is a strictly monotonic C1 function on R+ and h : R+ → C is a mea-
surable function. Define the parametric Marcinkiewicz integral operator �

ρ
Ω,Γ,h by

�
ρ
Ω,Γ,h f (x)=

(∫∞
0

∣∣Fρ
Ω,Γ,h f (t,x)

∣∣2 dt
t

)1/2
, (1.4)

where

F
ρ
Ω,Γ,h f (t,x)=

1
tρ

∫
|u|≤t

f
(
x−Γ

(|u|)u′)Ω
(
u′
)

|u|n−ρ h
(|u|)du, (1.5)

ρ = σ + iτ (σ ,τ ∈ R with σ > 0), f ∈�(Rn), the space of Schwartz functions.
For the sake of simplicity, we denote �

ρ
Ω,Γ,h =�

ρ
Ω,h if Γ(t)≡ t.

It is well-known that �1
Ω,1 is the classical Marcinkiewicz integral operator of higher di-

mension, corresponding to the Littlewood-Paley g-function, introduced by Stein in [17].
Stein showed that �1

Ω,1 is bounded on Lp(Rn) for p ∈ (1,2] ifΩ∈ Lipα(S
n−1) (0 < α≤ 1).

Subsequently, Benedek et al. proved that �1
Ω,1 is bounded on Lp(Rn) for p ∈ (1,∞) if

Ω∈ C1(Sn−1) (see [3]). Later on, the case of rough kernels (Ω satisfies only size and cance-
lation conditions but no regularity is assumed) became the interest of many authors. For
a sample of past studies, see ([1, 2, 4, 5]). In [2], Al-Qassem and Al-Salman showed that
�1

Ω,1 is bounded on Lp(Rn) for p ∈ (1,∞) if Ω belongs to the block space B(0,−1/2)
q (Sn−1)

and that the condition Ω ∈ B(0,−1/2)
q (Sn−1) is optimal in the sense that there exists an Ω

which lies in B(0,υ)
q (Sn−1) for all −1 < υ <−1/2 such that �1

Ω,1 is not bounded on L2(Rn).
In Hörmander [10] defined the parametric Marcinkiewicz operator �

ρ
Ω,1 for ρ > 0 and

proved that �1
Ω,1 is bounded on Lp(Rn) for p ∈ (1,∞) if Ω ∈ Lipα(S

n−1) (0 < α ≤ 1).
Sakamoto and Yabuta [15] studied the Lp-boundedness of the more general parametric
Marcinkiewicz integral operator �

ρ
Ω,1 if ρ is complex and proved that �

ρ
Ω,1 is bounded

on Lp(Rn) for p ∈ (1,∞) if Re(ρ) = σ > 0 and Ω ∈ Lipα(S
n−1) (0 < α ≤ 1). Recently, in

[1] the author of this paper gave that the more general operator �
ρ
Ω,Γ,h is bounded on

Lp(Rn) for p satisfying |1/p− 1/2| ≤min{1/2,1/γ′} if Re(ρ)= σ > 0, Γ satisfies a convex-

ity condition, Ω ∈ B(0,−1/2)
q (Sn−1) and h ∈ Δγ(R+) for some q,γ > 1. This is an essential

improvement and extension of the results mentioned above.
On the other hand, the weighted Lp boundedness of �1

Ω,h has also attracted the atten-
tion ofmany authors in the recent years. Indeed, Torchinsky andWang in [19] proved that
ifΩ∈ Lipα(S

n−1), (0 < α≤ 1), then �1
Ω,1 is bounded on Lp(ω) for p ∈ (1,∞) and ω ∈Ap

(TheMuckenhoupt’s weight class, see [9] for the definition). In Sato in [16] improved the
weighted Lp boundedness of Torchinsky-Wang by proving that �1

Ω,h is bounded on L
p(ω)

for p ∈ (1,∞) provided that h ∈ L∞(R+), Ω ∈ L∞(Sn−1) and ω ∈ Ap(Rn). Subsequently,
in Ding et al. in [5] were able to show that �1

Ω,h is bounded on Lp(ω) for p ∈ (1,∞)
provided that h∈ L∞(R+), Ω∈ Lq(Sn−1), q > 1 and ωq′ ∈ Ap(Rn). In a recent paper, Lee
and Lin in [13] showed that �1

Ω,h is bounded on Lp(ω) for p ∈ (1,∞) if h ∈ L∞(R+),

Ω ∈ H1(Sn−1) and ω ∈ ÃI
p(R

n), where H1(Sn−1) is the Hardy space on the unit sphere

and ÃI
p(R

n) is a special class of radial weights introduced by Duoandikoetxea [6] whose
definition will recalled in Section 2.
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In this paper, we will investigate the weighted Lp(ω) boundedness of the paramet-
ric Marcinkiewicz operator �

ρ
Ω,Γ,h for ω ∈ ÃI

p(R
n) and under the natural condition Ω∈

B(0,−1/2)
q (Sn−1). To state our results, we will need the following definitions from [8].

Definition 1.1. We say that a function Γ satisfies “hypothesis I” if
(a) Γ is a nonnegative C1 function on (0,∞),
(b) Γ is strictly increasing, Γ(2t) ≥ ηΓ(t) for some fixed η > 1 and Γ(2t) ≤ cΓ(t) for

some constant c ≥ η > 1.
(c) Γ′(t) ≥ αΓ(t)/t on (0,∞) for some fixed α ∈ (0, log2 c] and Γ′(t) is monotone on

(0,∞).

Definition 1.2. We say that Γ satisfies “hypothesis D” if
(a′) Γ is a nonnegative C1 function on (0,∞),
(b′) Γ is strictly decreasing, Γ(t) ≥ ηΓ(2t) for some fixed η > 1 and Γ(t) ≤ cΓ(2t) for

some constant c ≥ η > 1.
(c′) |Γ′(t)| ≥ αΓ(t)/t on (0,∞) for some fixed α∈ (0, log2 c] and Γ′(t) is monotone on

(0,∞).
Model functions for the Γ satisfy hypothesis I are Γ(t)= td with d > 0, and their linear

combinations with positive coefficients. Model functions for the Γ satisfy hypothesis D
are Γ(t)= tr with r < 0, and their linear combinations with positive coefficients.

Theorem 1.3. Let h∈ Δγ(R+) for some γ > 1. Assume that Γ satisfies either hypothesis I or

hypothesis D and Ω∈ B(0,−1/2)
q (Sn−1) for some q > 1. Then

∥∥�
ρ
Ω,Ψ,h( f )

∥∥
Lp(Rn) ≤ Cp

∥∥Ω∥∥B(0,−1/2)
q (Sn−1)

∥∥ f ∥∥Lp(Rn) (1.6)

is bounded on Lp(Rn) for |1/p− 1/2| <min{1/γ′,1/2}.
Theorem 1.4. Let h ∈ Δγ(R+) for some γ ≥ 2, 1 < p <∞. Assume that Γ satisfies either

hypothesis I or hypothesisD andΩ∈ B(0,−1/2)
q (Sn−1) for some q > 1. Then there exists Cp > 0

such that the following inequality holds:
∥∥�

ρ
Ω,Γ,h( f )

∥∥
Lp(ω) ≤ Cp

∥∥Ω∥∥B(0,−1/2)
q (Sn−1)

∥∥ f ∥∥Lp(ω) (1.7)

for γ′ < p <∞ and ω ∈ ÃI
p/γ′(R+).

Remark 1.5. (a) In order to make a comparison among the above mentioned results, we
remark that on Sn−1, for any q > 1, 0 < α ≤ 1 and −1 < υ, the following inclusions hold
and are proper:

C1(Sn−1)⊂ Lipα
(
Sn−1

)⊂ Lq
(
Sn−1

)⊂ L
(
log+L

)(
Sn−1

)⊂H1(Sn−1),⋃
r>1

Lr
(
Sn−1

)⊂ B(0,υ)
q

(
Sn−1

)
. (1.8)

With regard to the relationship between B(0,υ)
q (Sn−1) and H1(Sn−1) (for υ >−1) remains

open.
(b) We point out that the result in Theorem 1.3 extends the result of Al-Qassem and

Al-Salman [2] who obtained Theorem 1.3 in the special case h ≡ 1 and Γ(t) ≡ t and
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also improves substantially the result of Sakamoto and Yabuta [15]. We remark also that
Theorem 1.4 represents an improvement and extension of [5, Theorem 1] in the case
ω ∈ ÃI

p(R+).
(c) The method employed in this paper is based in part on ideas from [1, 2, 7, 8, 16],

among others.
The paper is organized as follows. In Section 2 we give some definitions and we estab-

lish the main estimates needed in the proofs of our main results. The proofs of Theorems
1.3 and 1.4 will be given in Section 3. Additional results can be found in Section 4.

Throughout the rest of the paper the letter C will denote a positive constant whose
value may change at each occurrence.

2. Definitions and lemmas

Let us begin by recalling the definition of some special classes of weights and some of
their important properties.

Definition 2.1. Let ω(t) ≥ 0 and ω ∈ L1loc(R+). For 1 < p <∞, we say that ω ∈ Ap(R+) if
there is a positive constant C such that for any interval I ⊂ R+,

(
|I|−1

∫
I
ω(t)dt

)(
|I|−1

∫
I
ω(t)−1/(p−1)dt

)p−1
≤ C <∞. (2.1)

A1(R+) is the class of weightsω for whichM satisfies a weak-type estimate in L1(ω), where
M( f ) is the Hardy-Littlewood maximal function of f .

It is well-known that the class A1(R+) is also characterized by all weights ω for which
Mω(t)≤ Cω(t) for a.e. t ∈ R+ and for some positive constant C.

Definition 2.2. Let 1≤ p <∞. We say that ω ∈ Ãp(R+) if

ω(x)= ν1
(|x|)ν2(|x|)1−p, (2.2)

where either νi ∈A1(R+) is decreasing or ν2i ∈A1(R+), i= 1,2.
Let AI

p(R
n) be the weight class defined by exchanging the cubes in the definitions of

Ap for all n-dimensional intervals with sides parallel to coordinate axes (see [12]). Let

ÃI
p = Ãp∩AI

p. If ω ∈ Ãp, it follows from [6] that the classical Hardy-Littlewood maximal

functionM f is bounded on Lp(Rn,ω(|x|)dx). Therefore, if ω(t)∈ Ãp(R+), then ω(|x|)∈
Ap(Rn).

By following the same argument as in the proof of the elementary properties of Ap

weight class (see, e.g., [9]) we get the following lemma.

Lemma 2.3. If 1≤ p <∞, then the weight class ÃI
p(R+) has the following properties:

(i) ÃI
p1 ⊂ ÃI

p1 , if 1≤ p1 < p2 <∞;

(ii) For any ω ∈ ÃI
p, there exists an ε > 0 such that ω1+ε ∈ ÃI

p;

(iii) For any ω ∈ ÃI
p and p > 1, there exists an ε > 0 such that p− ε > 1 and ω ∈ ÃI

p−ε.

The block spaces originated in the work of Taibleson and Weiss on the convergence of
the Fourier series in connection with the developments of the real Hardy spaces. Below
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we will recall the definition of block spaces on Sn−1. For further background information
about the theory of spaces generated by blocks and its applications to harmonic analysis,
see the book [14].

Definition 2.4. A q-block on Sn−1 is an Lq (1 < q ≤∞) function b(x) that satisfies

(i) supp(b)⊂ I ;

(ii) ‖b‖Lq ≤ |I|−1/q′ ,
(2.3)

where |I| = σ(I), and I = B(x′0,θ0)= {x′ ∈ Sn−1 : |x′ − x′0| < θ0} is a cap on Sn−1 for some
x′0 ∈ Sn−1 and θ0 ∈ (0,1].

Jiang and Lu introduced (see [14]) the class of block spaces B(0,υ)
q (Sn−1) (for υ > −1)

with respect to the study of homogeneous singular integral operators.

Definition 2.5. The block space B(0,υ)
q (Sn−1) is defined by

B(0,υ)
q

(
Sn−1

)=
{
Ω∈ L1

(
Sn−1

)
:Ω=

∞∑
μ=1

ημbμ, M(0,υ)
q

({
ημ
})

<∞
}
, (2.4)

where each ημ is a complex number; each bμ is a q-block supported on a cap Iμ on Sn−1,
υ >−1 and

M(0,υ)
q

({
ημ
})=

∞∑
μ=1

∣∣ημ∣∣
{
1+ log(υ+1)

(∣∣Iμ∣∣−1
)}

. (2.5)

Let ‖Ω‖B(0,υ)
q (Sn−1) = inf{M(0,υ)

q ({ημ}) :Ω=
∑∞

μ=1ημbμ and each bμ is a q-block function

supported on a cap Iμ on Sn−1}. Then ‖ · ‖B(0,υ)
q (Sn−1) is a norm on the space B(0,υ)

q (Sn−1)

and (B(0,υ)
q (Sn−1),‖ · ‖B(0,υ)

q (Sn−1)) is a Banach space.
In their investigations of block spaces, Keitoku and Sato in [11] showed that these

spaces enjoy the following properties:

B(0,υ2)
q

(
Sn−1

)⊂ B(0,υ1)
q

(
Sn−1

)
if υ2 > υ1 >−1;

B(0,υ)
q2

(
Sn−1

)⊂ B(0,υ)
q1

(
Sn−1

)
if 1 < q1 < q2, for any υ >−1;⋃

q>1

B(0,υ)
q

(
Sn−1

)
�
⋃
q>1

Lq
(
Sn−1

)
for any υ >−1.

(2.6)

Definition 2.6. For a suitable C1 function Γ on R+, a measurable function h : R+→ C and

a suitable function b̃μ on Sn−1 we define the family of measures {σb̃μ,t : t ∈ R+} and the

maximal operator σ∗
b̃μ
on Rn by

∫
Rn

f dσb̃μ,t =
1
tρ

∫
(1/2)t<|y|≤t

f
(
Γ
(|y|)y′)h(|y|) b̃μ(y

′)
|y|n−ρ dy,

σ∗
b̃μ
f (x)= sup

t∈R+

∣∣∣
∣∣∣σb̃μ,t

∣∣∣∗ f (x)
∣∣∣,

(2.7)
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where |σb̃μ,t| is defined in the same way as σb̃μ,t, but with b̃μ replaced by |b̃μ| and h replaced
by |h|.

For k ∈ Z, μ ∈ N∪{0}, and a cap Iμ on Sn−1 with |Iμ| < e−2, we let θμ = [log|Iμ|−1]
and ωμ = 2θμ , where [·] denotes the greatest integer function. Now set ak,μ = Γ(ωk

μ) if Γ

satisfies hypothesis I and ak,μ = (Γ(ωk
μ))

−1 if Γ satisfies hypothesis D. Then by the con-
ditions of Γ, it is easy to see that {ak,μ} is a lacunary sequence of positive numbers with
infk∈Z(ak+1,μ/ak,μ)≥ ηθμ > 1.

Lemma 2.7. Let μ∈N∪{0} and h∈ Δγ(R+) for some γ with 1 < γ ≤ 2. Let b̃μ be a function

on Sn−1 satisfying (i)
∫
Sn−1 b̃μ(y)dσ(y) = 0; (ii) ‖b̃μ‖q ≤ |Iμ|−1/q′ for some q > 1 and for

some cap Iμ on Sn−1 with |Iμ| < e−2; and (iii) ‖b̃μ‖1 ≤ 1. Then there exist constants C and
0 < υ < 1/q′ such that if Γ satisfies hypothesis I,

∥∥σb̃μ,t
∥∥≤ C; (2.8)

∫ ωk+1
μ

ωk
μ

∣∣σ̂b̃μ,t(ξ)
∣∣2 dt

t
≤ Cθμ

(
ak,μ
)−2υ/γ′θμ|ξ|−2υ/γ′θμ ; (2.9)

∫ ωk+1
μ

ωk
μ

∣∣σ̂b̃μ,t(ξ)
∣∣2 dt

t
≤ Cθμ

(
ak,μ
)2υ/γ′θμ|ξ|2υ/γ′θμ , (2.10)

and if Γ satisfies hypothesis D,

∥∥σb̃μ,t
∥∥≤ C;

∫ ωk+1
μ

ωk
μ

∣∣∣σ̂b̃μ,t(ξ)
∣∣∣2 dt

t
≤ Cθμ

(
ak,μ
)−2υ/γ′θμ∣∣ξ∣∣2υ/γ′θμ ;

∫ ωk+1
μ

ωk
μ

∣∣∣σ̂b̃μ,t(ξ)
∣∣∣2 dt

t
≤ Cθμ

(
ak,μ
)2υ/γ′θμ|ξ|−2υ/γ′θμ ,

(2.11)

where ‖σb̃μ,t‖ stands for the total variation of σb̃μ,t. The constant C is independent of k, μ, ξ

and Γ(·).
Proof. We will only present the proof of the lemma if Γ satisfies hypothesis I, since the
proof for the case that Γ satisfies hypothesisD will be essentially the same. By (iii) and the
definition of σb̃μ,t, one can easily see that (2.8) holds with a constant C independent of t

and μ. Next we prove (2.9). By definition,

σ̂b̃μ,t(ξ)=
1
tρ

∫ t

(1/2)t

∫
Sn−1

e−iΨ(s)ξ·xb̃μ(x)
h(s)
s1−ρ

dσ(x)ds. (2.12)
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By Hölder’s inequality, a change of variable and since |∫Sn−1 e−iΨ(s)ξ·xb̃μ(x)dσ(x)| ≤ 1, we
obtain

∣∣σ̂b̃μ,t(ξ)
∣∣≤

(∫ t

(1/2)t

∣∣h(s)∣∣γ ds

s

)1/γ(∫ t

(1/2)t

∣∣∣∣
∫
Sn−1

e−iΨ(s)ξ·xb̃μ(x)dσ(x)
∣∣∣∣
γ′ ds

s

)1/γ′

≤ C
(∫ t

(1/2)t

∣∣∣∣
∫
Sn−1

e−iΨ(s)ξ·xb̃μ(x)dσ(x)
∣∣∣∣
2 ds

s

)1/γ′

= C
(∫

Sn−1×Sn−1
b̃μ(x)b̃μ(y)Iμ,t(ξ,x, y)dσ(x)dσ(y)

)1/γ′
,

(2.13)

where

Iμ,t(ξ,x, y)=
∫ 1

1/2
e−iΓ(ts)ξ·(x−y)

ds

s
. (2.14)

Write Iμ,t(ξ,x, y) as

Iμ,t(ξ,x, y)=
∫ 1

1/2
Y ′t (s)

ds

s
, (2.15)

where

Yt(s)=
∫ s

1/2
e−iΓ(tw)ξ·(x−y)dw, 1/2≤ s≤ 1. (2.16)

Now, using the assumptions on Γ, we obtain

d

dw

(
Γ(tw)

)= tΓ′(tw)≥ α
Γ(tw)
w

≥ α
Γ(t/2)

s
≥ α

c

Γ(t)
s

for 1/2≤w ≤ s≤ 1. (2.17)

Thus by van der Corput’s lemma, |Yt(s)| ≤ (c/α)|Γ(t)ξ/s|−1|ξ′ · (x− y)|−1. By integration
by parts, we get

∣∣Iμ,t(ξ,x, y)∣∣≤ C
∣∣Γ(t)ξ∣∣−1∣∣ξ′ · (x− y)

∣∣−1, (2.18)

which when combined with the trivial estimate |Iμ,t(ξ,x, y)| ≤ log2 and choosing τ such
that 0 < τ < 1/q′ yields

∣∣Iμ,t(ξ,x, y)∣∣≤ ∣∣Γ(t)ξ∣∣−τ∣∣ξ′ · (x− y)
∣∣−τ . (2.19)

By Hölder’s inequality and (ii) we get

∣∣∣σ̂b̃μ,t(ξ)
∣∣∣≤ C

∣∣Γ(t)ξ∣∣−τ/γ′
∥∥∥b̃μ
∥∥∥2/γ

′

q

×
(∫

Sn−1×Sn−1
∣∣ξ′ · (x− y)

∣∣−τq′dσ(x)dσ(y)
)1/(q′γ′)

≤ C
∣∣Γ(t)ξ∣∣−τ/γ′∣∣Iμ∣∣−2/(q′γ′).

(2.20)
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Therefore,

∫ ωk+1
μ

ωk
μ

∣∣σ̂b̃μ,t(ξ)
∣∣2 dt

t
≤ Cmin

{
log
(∣∣Iμ∣∣−1), log(∣∣Iμ∣∣−1)∣∣Γ(ωk

μ

)
ξ
∣∣−2τ/γ′∣∣Iμ∣∣−2/(q′γ′)

}

≤ C log
(∣∣Iμ∣∣−1)∣∣Γ(ωk

μ

)
ξ
∣∣−2τ/γ′ log(|Iμ|−1),

(2.21)

which proves (2.9). To prove (2.10), we use the cancellation condition of b̃μ to get

∣∣∣σ̂b̃μ,t(ξ)
∣∣∣≤

∫
Sn−1

∫ t

t/2

∣∣e−iΓ(s)ξ·x − 1
∣∣∣∣h(s)∣∣

∣∣∣b̃μ(x)
∣∣∣ds
s
dσ(x). (2.22)

Hence, by (iii) and since Γ is increasing we get

∣∣∣σ̂b̃μ,t(ξ)
∣∣∣≤ C

∣∣Γ(t)ξ∣∣. (2.23)

By using the same argument as above we get (2.10). The lemma is proved. �

Lemma 2.8. Let μ ∈ N∪{0}, h ∈ Δγ(R+) for some γ > 1, γ′ < p <∞ and ω ∈ Ãp/γ′(R+).

Assume that b̃μ ∈ L1(Sn−1) and Γ satisfies either hypothesis I or hypothesis D. Then there
exists a positive constant Cp such that

∥∥∥∥σ∗b̃μ ( f )
∥∥∥∥
Lp(ω)

≤ Cp

∥∥∥b̃μ
∥∥∥
L1
(
Sn−1
)‖ f ‖Lp(ω). (2.24)

Proof. By Hölder’s inequality, we have

∣∣∣∣σb̃μ,t
∣∣∗ f (x)

∣∣

≤
(∫ t

(1/2)t

∣∣h(s)∣∣γ ds
s

)1/γ(∫ t

(1/2)t

∣∣∣∣
∫
Sn−1

b̃μ(y′) f
(
x−Γ(s)y′

)
dσ(y′)

∣∣∣∣
γ′ ds

s

)1/γ′

≤ C
∥∥b̃μ∥∥1/γL1(Sn−1)

(∫ t

(1/2)t

∫
Sn−1

∣∣∣b̃μ(y′)
∣∣∣∣∣ f (x−Γ(s)y′

)∣∣γ′dσ(y′)ds
s

)1/γ′
.

(2.25)

Thus

σ∗
b̃μ
f (x)≤ C

∥∥∥b̃μ
∥∥∥1/γ
L1(Sn−1)

(∫
Sn−1

∣∣∣b̃μ(y′)
∣∣∣MΓ,y′

(| f |γ′)(x)dσ(y′)
)1/γ′

, (2.26)

where

MΓ,y′ f (x)= sup
t∈R+

∣∣∣∣
∫ t

t/2
f
(
x−Γ(s)y′

)ds
s

∣∣∣∣. (2.27)
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Let w = Γ(s). Assume first that Γ satisfies hypothesis I. By the assumptions on Γ, we have
ds/s≤ dw/αw. So, by a change of variable we have

MΓ,y′ f (x)≤ sup
t∈R+

(∫ Γ(t)

Γ(t/2)

∣∣ f (x−wy′)
∣∣dw
w

)

≤ sup
t∈R+

(∫ cΓ(t/2)

Γ(t/2)

∣∣ f (x−wy′)
∣∣dw
w

)

≤ CMy′ f (x),

(2.28)

where

My′ f (x)= sup
R>0

R−1
∫ R

0

∣∣ f (x−wy′)
∣∣dw (2.29)

is the Hardy-Littlewood maximal function of f in the direction of y′. On the other hand,
if Γ satisfies hypothesis D, as above we have ds/s≤−dw/αw and

MΓ,y′ f (x)≤ 1
α
sup
t∈R+

(∫ Γ(t/2)

Γ(t)

∣∣ f (x−wy′)
∣∣dw
w

)

≤ 1
α
sup
t∈R+

(∫ Γ(t/2)

(1/c)Γ(t/2)

∣∣ f (x−wy′)
∣∣dw
w

)

≤ CMy′ f (x).

(2.30)

By (2.26)–(2.30) and Minkowski’s inequality for integrals we get

∥∥∥σ∗
b̃μ
( f )
∥∥∥
Lp(ω)

≤ C
∥∥∥b̃μ
∥∥∥1/γ
L1(Sn−1)

(∫
Sn−1

∣∣∣b̃μ(y′)
∣∣∣∥∥My′

(| f |γ′)∥∥Lp/γ′ (ω)dσ(y
′)
)1/γ′

. (2.31)

By [6, equation (8)] and since ω ∈ Ãp/γ′(R+) we have

∥∥My′ f
∥∥
Lp/γ′ (ω) ≤ C‖ f ‖Lp/γ′ (ω) (2.32)

with C independent of y′. Thus, by (2.31)–(2.32) we get (2.24). This completes the proof
of the lemma. �

Lemma 2.9. Let μ ∈ N∪{0}, h ∈ Δγ(R+) for some γ ≥ 2, γ′ < p <∞ and ω ∈ Ãp/γ′(R+).

Assume that b̃μ ∈ L1(Sn−1) and Γ satisfies either hypothesis I or hypothesis D. Then there
exists a positive constant Cp such that the inequality

∥∥∥∥∥
(∑

k∈Z

∫ ωk+1
μ

ωk
μ

∣∣∣σb̃μ,t ∗ gk
∣∣∣2 dt

t

)1/2∥∥∥∥∥
Lp(ω)

≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2∥∥∥b̃μ
∥∥∥
L1(Sn−1)

∥∥∥∥∥
(∑

k∈Z

∣∣gk∣∣2
)1/2∥∥∥∥∥

Lp(ω)

,

(2.33)

holds for any sequence of functions {gk}k∈Z on Rn.
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Proof. Let γ′ < p <∞. By a change of variable, we have

(∑
k∈Z

∫ ωk+1
μ

ωk
μ

∣∣∣σb̃μ,t ∗ gk
∣∣∣2 dt

t

)1/2

≤
(∑

k∈Z

∫ ωμ

1

∣∣∣σb̃μ,ωk
μt
∗ gk

∣∣∣2 dt
t

)1/2

. (2.34)

By Hölder’s inequality and following a similar arguments as in the proof of (2.25) we get

∣∣∣σb̃μ,t ∗ gk(x)
∣∣∣γ

′

≤ C
∥∥∥b̃μ
∥∥∥
L1(Sn−1)

(∫ t

t/2

∫
Sn−1

∣∣∣b̃μ(y′)
∣∣∣∣∣gk(x−Γ(s)y′

)∣∣γ′dσ(y′)ds
s

)
.

(2.35)

Let d = p/γ′. By duality, there is a nonnegative function f ∈ Ld
′
(ω1−d′ ,Rn) satisfying

‖ f ‖Ld′ (ω1−d′ ) ≤ 1 such that

∥∥∥∥∥
(∑

k∈Z

∫ ωμ

1

∣∣∣σb̃μ,ωk
μt
∗ gk

∣∣∣γ
′ dt

t

)1/γ′∥∥∥∥∥
γ′

Lp(ω)

=
∫
Rn

∑
k∈Z

∫ ωμ

1

∣∣∣σb̃μ,ωk
μt
∗ gk(x)

∣∣∣γ
′ dt

t
f (x)dx.

(2.36)

Therefore, by (2.35)–(2.36) and a change of variable we get

∥∥∥∥∥
(∑

k∈Z

∫ ωμ

1

∣∣∣σb̃μ,ωk
μt
∗ gk

∣∣∣γ
′ dt

t

)1/γ′∥∥∥∥∥
γ′

Lp(ω)

≤ C
(
log
∣∣Iμ∣∣−1

)∥∥∥b̃μ
∥∥∥
L1(Sn−1)

∫
Rn

∑
k∈Z

∣∣gk(x)∣∣γ′M∗
μ f (x)dx,

(2.37)

where

M∗
μ f (x)= sup

t∈R+

∫
(1/2)t<|y|≤t

f
(
x+Γ

(|y|)y′)
∣∣∣b̃μ(y′)

∣∣∣|y|−ndy. (2.38)

By Hölder’s inequality, we obtain

∥∥∥∥∥
(∑

k∈Z

∫ ωμ

1

∣∣∣σb̃μ,ωk
μt
∗ gk

∣∣∣γ
′ dt

t

)1/γ′∥∥∥∥∥
γ′

Lp(ω)

≤ C
(
log
∣∣Iμ∣∣−1

)∥∥∥b̃μ
∥∥∥
L1(Sn−1)

∥∥∥∥∥
(∑
k∈Z

∣∣gk∣∣γ′
)1/γ′∥∥∥∥∥

γ′

Lp(ω)

∥∥∥M∗
μ f
∥∥∥
Ld′ (ω1−d′ )

.

(2.39)

It is easy to verify that ω ∈ Ãd(R+) if and only if ω1−d′ ∈ Ãd′(R+). By the same argument
as in the proof of Lemma 2.8, we have

∥∥M∗
μ f
∥∥
Ld′ (ω1−d′ ) ≤ Cp

∥∥∥b̃μ
∥∥∥
L1(Sn−1)

(2.40)
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which in turn implies

∥∥∥∥∥
(∑

k∈Z

∫ ωμ

1

∣∣∣∣σb̃μ,ωk
μt
∗ gk

∣∣∣∣
γ′ dt

t

)1/γ′∥∥∥∥∥
Lp(ω)

≤ C
(
log
∣∣Iμ∣∣−1

)1/γ′∥∥∥b̃μ
∥∥∥2/γ

′

L1(Sn−1)

∥∥∥∥∥
(∑

k∈Z

∣∣gk∣∣γ′
)1/γ′∥∥∥∥∥

Lp(ω)

.

(2.41)

On the other hand, by Lemma 2.8, we get

∥∥∥∥∥sup
k∈Z

sup
t∈[1,ωμ]

∣∣∣∣∣σb̃μ,ωk
μt
∗ gk

∣∣∣
∥∥∥
Lp(ω)

≤
∥∥∥∥σ∗

(
sup
k∈Z

∣∣gk∣∣
)∥∥∥∥

Lp(ω)
≤ C

∥∥∥b̃μ
∥∥∥
L1(Sn−1)

∥∥∥∥∥sup
k∈Z

∣∣gk∣∣
∥∥∥∥∥
Lp(ω)

.

(2.42)

Now, we define a linear operator T on any function g = gk(x) by T(gk(x)) = σb̃μ,ωk
μt
∗

gk(x). Then by (2.41), we have

∥∥∥
∥∥∥∥∥T(g)∥∥

L
γ′ ([1,ωμ],dt/t)

∥∥∥
lγ′ (Z)

∥∥∥
Lp(Rn,ω(x)dx)

≤ C
(
log
∣∣Iμ∣∣−1

)1/γ′∥∥∥‖g‖
l
γ′ (Z)

∥∥∥
Lp(Rn,ω(x)dx)

.

(2.43)

Also, by (2.42) we get

∥∥∥
∥∥∥∥∥T(g)∥∥L∞ ([1,ωμ],dt/t)

∥∥∥
l∞(Z)

∥∥∥
Lp(Rn,ω(x)dx)

=
∥∥∥
∥∥∥∥∥T(g)∥∥L∞ ([1,ωμ],dt)

∥∥∥
l∞(Z)

∥∥∥
Lp(Rn,ω(x)dx)

≤ C
∥∥‖g‖l∞(Z)∥∥Lp(Rn,ω(x)dx).

(2.44)

Therefore, we can interpolate (2.43) and (2.44) (See [9, page 481] for the vector-valued
interpolation) to get (2.33). The lemma is proved. �

By following the same argument as in the proof of [1, Lemma 3.4], we get the following
lemma.

Lemma 2.10. Let μ ∈N∪{0}, h ∈ Δγ(R+) for some γ ∈ (1,2]. Assume that b̃μ ∈ L1(Sn−1)
and Γ satisfies either hypothesis I or hypothesis D. Then, for any p satisfying |1/p− 1/2| <
1/γ′, there exists a positive constant Cp such that

∥∥∥∥∥
(∑

k∈Z

∫ ωk+1
μ

ωk
μ

∣∣∣σb̃μ,t ∗ gk
∣∣∣2 dt

t

)1/2∥∥∥∥∥
Lp(Rn)

≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2∥∥∥b̃μ
∥∥∥
L1(Sn−1)

∥∥∥∥∥
(∑

k∈Z

∣∣gk∣∣2
)1/2∥∥∥∥∥

Lp(Rn)

(2.45)

holds for arbitrary functions {gk(·)}k∈Z on Rn. The constant Cp is independent of μ.
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3. Proofs of main results

We will only present the proof of Theorems 1.3 and 1.4 for the case Γ satisfies hypoth-
esis I, since the proofs for the case Γ satisfies hypothesis D are essentially the same. As-

sume that Ω ∈ B(0,−1/2)
q (Sn−1) for some q > 1 and satisfies (1.1). Thus Ω can be writ-

ten as Ω =∑∞
μ=1 λμbμ, where λμ ∈ C, bμ is a q-block supported on a cap Iμ on Sn−1 and

M(0,−1/2)
q ({λμ}) <∞. To each block function bμ(·), let b̃μ(·) be a function defined by

b̃μ(x)= bμ(x)−
∫
Sn−1

bμ(u)dσ(u). (3.1)

Let J = {μ ∈ N :|Iμ| < e−2}. Let b̃0 =Ω− ∑∞
μ∈Jημb̃μ. Then for some positive constant C,

the following holds for all μ∈ J∪{0}:
∫
Sn−1

b̃μ(u)dσ(u)= 0, (3.2)
∥∥∥b̃μ
∥∥∥
q
≤ C

∣∣Iμ∣∣−1/q′ , (3.3)
∥∥∥b̃μ
∥∥∥
1
≤ C, (3.4)

Ω=
∑

μ∈J∪{0}
λμb̃μ, (3.5)

where I0 is a cap on Sn−1 with |I0| = e−3.
By (3.5) we have

�
ρ
Ω,Γ,h( f )≤

∑
μ∈J∪{0}

∣∣λμ∣∣�
ρ

b̃μ,Γ,h
( f ). (3.6)

Therefore, Theorems 1.3 and 1.4 are proved if we can show that

∥∥∥�
ρ

b̃μ ,Γ,h
( f )
∥∥∥
Lp(Rn)

≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2‖ f ‖Lp(Rn) (3.7)

for p satisfying |1/p− 1/2| <min{1/γ′,1/2}; and
∥∥∥∥�

ρ

b̃μ,Γ,h
( f )
∥∥∥∥
Lp(ω)

≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2‖ f ‖Lp(ω) (3.8)

for all ω ∈ ÃI
p/γ′(R+) and γ′ < p <∞.

Proof of (3.7). SinceΔγ(R+)⊆ Δ2(R+) for γ ≥ 2, wemay assume that 1 < γ ≤ 2. Therefore,
it suffices to prove (3.7) for p satisfying |1/p− 1/2| < 1/γ′. Let {φk,μ}∞−∞ be a smooth
partition of unity in (0,∞)adapted to the interval �k,μ = [a−1k+1,μ,a

−1
k−1,μ]. To be precise, we
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require the following:

φk,μ ∈ C∞, 0≤ φk,μ ≤ 1,
∑
k

φk,μ(t)= 1;

suppφk,μ ⊆�k,μ;
∣∣∣∣d

sφk,μ(t)

dts

∣∣∣∣≤ Cs

ts
,

(3.9)

where Cs is independent of the lacunary sequence {aμ,k : k ∈ Z}. Let Υ̂k,μ(ξ)= φk,μ(|ξ|).
By Minkowski’s inequality we have

�
ρ

b̃μ,Γ,h
f (x)=

(∫∞
0

∣∣∣∣∣
∞∑
k=0

2−kρσb̃μ,2−kt ∗ f (x)

∣∣∣∣∣
2
dt

t

)1/2

≤
∞∑
k=0

2−kσ
(∫∞

0

∣∣∣σb̃μ,2−kt ∗ f (x)
∣∣∣2 dt

t

)1/2

= Cσ

(∫∞
0

∣∣∣σb̃μ,t ∗ f (x)
∣∣∣2 dt

t

)1/2
.

(3.10)

Decompose

f ∗ σb̃μ,t(x)=
∑
j∈Z

∑
k∈Z

(
Υk+ j,μ∗ σb̃μ,t ∗ f

)
(x)χ[ωk

μ ,ωk+1
μ )(t) :=

∑
j∈Z

Gj,μ(x, t) (3.11)

and define

Tj,μ f (x)=
(∫∞

0

∣∣Gj,μ(x, t)
∣∣2 dt

t

)1/2
. (3.12)

Then

�
ρ

b̃μ,Γ,h
( f )≤ Cσ

∑
j∈Z

Tj,μ( f ) (3.13)

holds for f ∈�(Rn). Thus, to prove (3.7), it is enough to show that

∥∥Tj,μ( f )
∥∥
Lp(Rn) ≤ Cp

(
log
∣∣Iμ∣∣−1)1/2η−αp| j|‖ f ‖Lp(Rn) (3.14)

for some αp > 0 and for p satisfying |1/p− 1/2| < 1/γ′.
To prove (3.14), let us first compute the L2-norm of Tj,μ( f ). By using Plancherel’s

theorem, we have

∥∥Tj,μ( f )
∥∥2
L2(Rn) =

∑
k∈Z

∫
Rn

∫ ωk+1
μ

ωk
μ

∣∣∣Υk+ j,μ∗ σb̃μ,t ∗ f (x)
∣∣∣2 dt

t
dx

≤
∑
k∈Z

∫
ηk+ j,μ

(∫ ωk+1
μ

ωk
μ

∣∣∣σ̂b̃μ,t(ξ)
∣∣∣2 dt

t

)∣∣ f̂ (ξ)∣∣2dξ,
(3.15)

where

ηk,μ =
{
ξ ∈ Rn :

∣∣ξ∣∣∈�k,μ
}
. (3.16)
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By Lemma 2.7 we have

∥∥Tj,μ( f )
∥∥
L2(Rn) ≤ C

(
log
∣∣Iμ∣∣−1

)1/2
η−β| j|‖ f ‖L2(Rn). (3.17)

Next, let us compute the Lp boundedness of the operator Tj,μ. For |1/p− 1/2| < 1/γ′,
we have

∥∥Tj,μ( f )
∥∥
Lp(Rn) ≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2∥∥∥∥∥
(∑

k∈Z

∣∣Υk+ j,μ∗ f
∣∣2
)1/2∥∥∥∥∥

Lp(Rn)

≤ Cp
(
log
∣∣Iμ∣∣−1)1/2‖ f ‖Lp(Rn).

(3.18)

The last two inequalities are obtained by applying Lemma 2.10 and applying the
Littlewood-Paley theory and Theorem 3 along with the remark that follows its statement
in [18, page 96].

Now by interpolation between (3.17) and (3.18) we get (3.14). This completes the
proof of Theorem 1.3. �

Proof of (3.8). Assume that ω ∈ ÃI
p/γ′(R+) and p > γ′. As above, to prove (3.8), it suffices

to show that

∥∥Tj,μ( f )
∥∥
Lp(ω) ≤ C

(
log
∣∣Iμ∣∣−1

)1/2
η−αp| j|‖ f ‖Lp(ω). (3.19)

To this end, let us compute the Lp(ω) norm of Tj,μ( f ). For all ω ∈ ÃI
p/γ′(R+) and γ′ < p <

∞, we have

∥∥Tj,μ( f )
∥∥
Lp(ω) ≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2∥∥∥∥∥
(∑

k∈Z

∣∣Υk+ j,μ∗ f
∣∣2
)1/2∥∥∥∥∥

Lp(ω)

≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2‖ f ‖Lp(ω),

(3.20)

where the first inequality follows by Lemma 2.9 and the last inequality follows from
a well-known weighted Littlewood-Paley inequality since ω ∈ Ãp/γ′(R+) ⊂ Ap(R+) (see
[12]). By interpolating between (3.17) and (3.20) with ω = 1 we get

∥∥Tj,μ( f )
∥∥
Lp(Rn) ≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2
η−αp| j|‖ f ‖Lp(Rn) for γ′ < p <∞. (3.21)

By Lemma 2.3, for any ω ∈ ÃI
p/γ′(R+), there is an ε > 0 such that ω1+ε ∈ ÃI

p/γ′(R+). Thus

∥∥Tj,μ( f )
∥∥
Lp(ω1+ε) ≤ Cp

(
log
∣∣Iμ∣∣−1

)1/2‖ f ‖Lp(ω1+ε) for γ′ < p <∞. (3.22)

By interpolating with change of measures between (3.20) and (3.21) we get (3.19). �

4. Further results

As an application of Theorem 1.4, we get the weighted Lp boundedness for a class of
parametric Marcinkiewicz operators �

∗,ρ
Ω,Γ,h,λ and �

ρ
Ω,Γ,h,S related to the Littlewood-Paley
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g∗η -function and the area integral S, respectively. The definition and the precise statement
of the results regarding these operators are given as follows.

Theorem 4.1. Let h∈ Δγ(R+) with γ ≥ 2, 1 < p <∞. Assume Γ satisfies either hypothesis I

or hypothesis D and Ω∈ B(0,−1/2)
q (Sn−1). Then there exists Cp > 0 such that

∥∥�
ρ
Ω,Γ,h,S( f )

∥∥
Lp(ω) +

∥∥�
ρ,∗
Ω,Γ,h,λ( f )

∥∥
Lp(ω) ≤ Cp‖Ω‖B(0,−1/2)

q (Sn−1)‖ f ‖Lp(ω) (4.1)

for 2≤ p <∞ and ω ∈ ÃI
p/2(R+). Here �

ρ
Ω,Γ,h,S are �

∗,ρ
Ω,Γ,h,λ are defined by

�
ρ
Ω,Γ,h,S f (x)=

(∫
Γ(x)

∣∣Fρ
Ω,Γ,h f (t, y)

∣∣2 dydt
tn+1

)1/2

,

�
∗,ρ
Ω,Γ,h,λ f (x)=

(∫
Rn+1
+

(
t

t+ |x− y|
)nη∣∣Fρ

Ω,Γ,h f (t, y)
∣∣2 dydt

tn+1

)1/2

,

(4.2)

where η > 1 and Γ(x)= {(y, t)∈ Rn+1
+ : |x− y| < t}.

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Let λ > 1. Then, for any nonnegative locally integrable function g, we have

∫
Rn

(
�

ρ,∗
Ω,Ψ,h,λ f (x)

)2
g(x)dx ≤ Cσ

∫
Rn

∣∣ f (x)∣∣2Mg(x)dx. (4.3)

A proof of this lemma can be obtained by Theorem 1.3 and following a similar argu-
ment as in the proof of Theorem 5 in Torchinsky and Wang [19].

Proof of Theorem 4.1. Since �
ρ
Ω,Ψ,h,S f (x) ≤ 2nλ/2�

ρ,∗
Ω,Ψ,h,λ f (x), we only consider the op-

erator �
ρ,∗
Ω,Ψ,h,λ. If p = 2, we have ω ∈ ÃI

1(R+) ⊂ Ã1(R+) ⊂ A1(R+) and hence Mω(x) ≤
Cω(x) a.e. Therefore, by Lemma 4.2 we have

∫
Rn

(
�

ρ,∗
Ω,Ψ,h,λ f (x)

)2
ω(x)dx ≤ C

∫
Rn

∣∣ f (x)∣∣2ω(x)dx, (4.4)

and hence we get �
ρ,∗
Ω,Ψ,h,λ is bounded on L2(ω). When 2 < p <∞, we set d = p/2. By

Lemma 4.2 and Hölder’s inequality we get

∥∥∥�
ρ,∗
Ω,Ψ,h,λ f

∥∥∥2
Lp(ω)

= sup
g

∣∣∣∣
∫
Rn

(
�

ρ,∗
Ω,Ψ,h,λ f (x)

)2
g(x)dx

∣∣∣∣

≤ Cσ sup
g

∫
Rn

∣∣ f (x)∣∣2M(|g|)(x)dx
≤ Cσ‖ f ‖2Lp(ω) sup

g
‖Mg‖Ld′ (ω1−d′ )

≤ Cσ‖ f ‖2Lp(ω),

(4.5)

where the supremum is taken over all functions g satisfying ‖g‖Ld′ (ω1−d′ ) ≤ 1. Hence, the
proof of Theorem 4.1 is completed. �
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One of the important special classes of radial weights is the power weights |x|α,α∈ R.
It is know that |x|α ∈ Ap(Rn) if and only if −n < α < n(p− 1).

Our result regarding this class of weights is the following theorem.

Theorem 4.3. Let h∈ Δγ(R+) with γ ≥ 2. Assume Γ satisfy either hypothesis I or hypothesis

D. If Ω∈ B(0,−1/2)
q (Sn−1), and γ′ < p <∞, then

∥∥�
ρ
Ω,Γ,h( f )

∥∥
Lp(ω) ≤ ‖ f ‖Lp(ω) (4.6)

for all ω(x) = |x|α and α ∈ (−1, p/γ′ − 1). Similar results hold regarding the operators
�

ρ
Ω,Ψ,h,S and �

ρ,∗
Ω,Ψ,h,λ.

A proof of this theorem can be obtained by Theorem 4.3 and noticing that |x|α ∈
ÃI

p(R+) for α∈ (−1, p− 1).
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