GENERALIZED PARTIALLY RELAXED PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND GENERAL AUXILIARY PROBLEM PRINCIPLE

RAM U. VERMA

Received 30 April 2004; Accepted 29 August 2004

Let $T: K \to H$ be a nonlinear mapping from a nonempty closed invex subset K of an infinite-dimensional Hilbert space H into H. Let $f: K \to R$ be proper, invex, and lower semicontinuous on K and let $h: K \to R$ be continuously Fréchet-differentiable on K with h', the gradient of h, (η, α) -strongly monotone, and (η, β) -Lipschitz continuous on K. Suppose that there exist an $x^* \in K$, and numbers a > 0, $r \ge 0$, $\rho(a < \rho < \alpha)$ such that for all $t \in [0,1]$ and for all $x \in K^*$, the set S^* defined by $S^* = \{(h,\eta):h'(x^* + t(x-x^*))(x-x^*) \ge \langle h'(x^* + t\eta(x,x^*)), \eta(x,x^*) \rangle \}$ is nonempty, where $K^* = \{x \in K: \|x-x^*\| \le r\}$ and $\eta: K \times K \to H$ is (λ) -Lipschitz continuous with the following assumptions. (i) $\eta(x,y) + \eta(y,x) = 0$, $\eta(x,y) = \eta(x,z) + \eta(z,y)$, and $\|\eta(x,y)\| \le r$. (ii) For each fixed $y \in K$, map $x \to \eta(y,x)$ is sequentially continuous from the weak topology to the weak topology. If, in addition, h' is continuous from H equipped with weak topology to H equipped with strong topology, then the sequence $\{x^k\}$ generated by the general auxiliary problem principle converges to a solution x^* of the variational inequality problem (VIP): $\langle T(x^*), \eta(x,x^*) \rangle + f(x) - f(x^*) \ge 0$ for all $x \in K$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

A tremendous amount of work, applying the auxiliary problem principle in finite- as well as in infinite-dimensional Hilbert space settings, on the approximation-solvability of various classes of variational inequalities and complementarity problems, especially finite-dimensional cases, has been carried out in recent years. During the course of these investigations, there has been a significant progress in developing more generalized classes of mappings in the context of new iterative algorithms. In this paper, we intend based on a general auxiliary problem principle to present the approximation-solvability of a class of variational inequality problems (VIP) involving partially relaxed pseudomonotone mappings along with some modified results on Fréchet-differentiable functions that play a pivotal role in the development of a general framework for the auxiliary problem principle. Results thus obtained generalize/complement investigations of Argyros and

2 Auxiliary problem principle

Verma [1], El Farouq [7], Verma [20], and others. For more details on general variational inequality problems and the auxiliary problem principle, we refer to [1–23].

Let H be an infinite-dimensional real Hilbert space with the inner product $\langle x, y \rangle$ and norm ||x|| for all $x, y \in H$. We consider the variational inequality problem (VIP) as follows: determine an element $x^* \in K$ such that

$$\langle T(x^*), \eta(x, x^*) \rangle + f(x) - f(x^*) \ge 0 \quad \forall x \in K, \tag{1.1}$$

where *K* is a nonempty closed invex subset of *H*, and $\eta: K \times K \to H$ is any mapping with some additional conditions.

When $\eta(x,x^*) = x - x^*$, the VIP (1.1) reduces to the VIP: determine an element $x^* \in K$ such that

$$\langle T(x^*), x - x^* \rangle + f(x) - f(x^*) \ge 0 \quad \forall x \in K, \tag{1.2}$$

where K is a nonempty closed convex subset of H.

When f = 0 in (1.2), it reduces to the following: find an element $x^* \in K$ such that

$$\langle T(x^*), x - x^* \rangle \ge 0 \quad \forall x \in K.$$
 (1.3)

Now we recall the following auxiliary result for the approximation solvability of nonlinear variational inequality problems based on iterative procedures.

LEMMA 1.1. For elements $u, v, w \in H$,

$$||u||^2 + \langle u, \eta(v, w) \rangle \ge -\frac{1}{4} ||\eta(v, w)||^2.$$
 (1.4)

LEMMA 1.2. For $u, v \in H$,

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u\|^2 - \|v\|^2}{2}.$$
 (1.5)

Now recall and in some cases upgrade the existing notions in the literature. Let $\eta: H \times H \to H$ be any mapping.

Definition 1.3. A mapping $T: H \to H$ is called

(i) (η) -monotone if for each $x, y \in H$, there exists,

$$\langle T(x) - T(y), \eta(x, y) \rangle \ge 0;$$
 (1.6)

(ii) (η, r) -strongly monotone if there exists a positive constant r such that

$$\langle T(x) - T(y), \eta(x, y) \rangle \ge r ||x - y||^2 \quad \forall x, y \in H;$$
 (1.7)

(iii) (r)-expansive if

$$||T(x) - T(y)|| \ge r||\eta(x, y)||;$$
 (1.8)

(iv) expansive if r = 1 in (iii),

(v) (η, γ) -cocoercive if there exists a constant $\gamma > 0$ such that

$$\langle T(x) - T(y), \eta(x, y) \rangle \ge r ||T(x) - T(y)||^2 \quad \forall x, y \in H;$$
 (1.9)

(vi) (η) -pseudomonotone if

$$\langle T(y), \eta(x, y) \rangle \ge 0 \Longrightarrow \langle T(x), \eta(x, y) \rangle \ge 0;$$
 (1.10)

(vii) (η, b) -strongly pseudomonotone if

$$\langle T(y), \eta(x, y) \rangle \ge 0 \Longrightarrow \langle T(x), \eta(x, y) \rangle \ge b \|x - y\|^2 \quad \forall x, y \in H;$$
 (1.11)

(viii) (η, c) -pseudococoercive if there exists a constant c > 0 such that

$$\langle T(y), \eta(x, y) \rangle \ge 0 \Longrightarrow \langle T(x), \eta(x, y) \rangle \ge c ||T(x) - T(y)||^2 \quad \forall x, y \in H;$$
 (1.12)

(ix) (η) -quasimonotone if

$$\langle T(y), \eta(x,y) \rangle > 0 \Longrightarrow \langle T(x), \eta(x,y) \rangle \ge 0 \quad \forall x, y \in H;$$
 (1.13)

(x) (η, L) -relaxed (also called weakly monotone) if there is a positive constant L such that

$$\langle T(x) - T(y), \eta(x, y) \rangle \ge (-L) \|x - y\|^2 \quad \forall x, y \in H; \tag{1.14}$$

(xi) (η) -hemicontinuous if for all $x, y, w \in H$, the function

$$t \in [0,1] \longrightarrow \langle T(y + t\eta(x,y)), w \rangle \tag{1.15}$$

is continuous;

(xii) (η, β) -Lipschitz continuous if there exists a constant $\beta \ge 0$ such that

$$||T(x) - T(y)|| \le \beta ||\eta(x, y)||;$$
 (1.16)

(xiii) (η, γ) -partially relaxed monotone if there exists a positive constant γ such that

$$\langle T(x) - T(y), \eta(z, y) \rangle \ge (-y) \|z - x\|^2 \quad \forall x, y, z \in H;$$
 (1.17)

(xiv) (η, γ) -partially relaxed pseudomonotone if there exists a positive constant γ such that

$$\langle T(y), \eta(z, y) \rangle \ge 0 \Longrightarrow \langle T(x), \eta(z, y) \rangle \ge (-\gamma) \|z - x\|^2 \quad \forall x, y, z \in H.$$
 (1.18)

LEMMA 1.4. Let $T: H \to H$ be (η, α) -cocoercive and let $\eta: H \times H \to H$ be a mapping such that

- (i) $\|\eta(x, y)\| \le \lambda \|x y\|$;
- (ii) $\eta(x, y) + \eta(y, x) = 0$;
- (iii) $\eta(x, y) = \eta(x, z) + \eta(z, y)$.

Then T is $(\eta, -(\lambda^2/4\alpha))$ -partially relaxed monotone.

4 Auxiliary problem principle

Proof. Since $T: H \to H$ is (η, α) -cocoercive, we have

$$\langle T(x) - T(y), \eta(z, y) \rangle = \langle T(x) - T(y), \eta(z, x) \rangle + \langle T(x) - T(y), \eta(x, y) \rangle$$

$$\geq \alpha ||T(x) - T(y)||^{2} + \langle T(x) - T(y), \eta(z, x) \rangle$$

$$= \alpha \left(||T(x) - T(y)||^{2} + \frac{1}{\alpha} \langle T(x) - T(y), \eta(z, x) \rangle \right)$$

$$\geq -\left\{ \frac{1}{4\alpha} ||\eta(z, x)||^{2} \right\} \geq -\left\{ \frac{\lambda^{2}}{4\alpha} ||z - x||^{2} \right\}.$$

Definition 1.5. A mapping $T: H \to H$ is said to be μ -cocoercive [2] if for each $x, y \in H$, there exists

$$\langle T(x) - T(y), x - y \rangle \ge \mu ||T(x) - T(y)||^2,$$
 (1.20)

where μ is a positive constant.

Example 1.6. Let $T: K \to H$ be nonexpansive. Then I - T is 1/2-cocoercive, where I is the identity mapping on H. For if $x, y \in K$, we have

$$||(I-T)(x) - (I-T)(y)||^{2} = ||x - y - (T(x) - T(y))||^{2}$$

$$= ||x - y||^{2} - 2\langle x - y, T(x) - T(y)\rangle + ||T(x) - T(y)||^{2}$$

$$\leq 2\{||x - y||^{2} - \langle x - y, T(x) - T(y)\rangle\}$$

$$= 2\langle x - y, (I-T)(x) - (I-T)(y)\rangle,$$
(1.21)

that is,

$$\langle (I-T)(x) - (I-T)(y), x-y \rangle \ge \frac{1}{2} ||(I-T)(x) - (I-T)(y)||^2.$$
 (1.22)

A subset K of H is said to be invex if there exists a function $\eta: K \times K \to H$ such that whenever $x, y \in K$ and $t \in [0,1]$, it follows that

$$x + t\eta(y, x) \in K. \tag{1.23}$$

A function $f: K \to R$ is called invex if whenever $x, y \in K$ and $t \in [0, 1]$, it follows that

$$f(x+t\eta(y,x)) \le (1-t)f(x)+tf(y).$$
 (1.24)

2. Some auxiliary results

This section deals with some auxiliary results [2] and their modified versions crucial to the approximation-solvability of VIP (1.1). Let $h: H \to R$ be a continuously Fréchet-differentiable mapping on a Hilbert space H. It follows that $h'(x) \in L(H,R)$ —the space of all bounded linear operators from H into R. From now on, we will denote the real number h'(x)(y) by $\langle h'(x), y \rangle$ for all $x, y \in H$.

LEMMA 2.1. Let H be a real Hilbert space and let K be a nonempty closed invex subset of H. Let h', the gradient of $h: K \to R$, be (η, α) -strongly monotone on K and let the following assumptions hold.

(i) There exist an $x^* \in K$ and a number $r \ge 0$ such that for all $x \in K^*$ and $t \in [0,1]$, the mapping $\eta: K \times K \to H$ satisfies

$$||\eta(x,y)|| \le r. \tag{2.1}$$

(ii) The set S^* defined by

$$S^* = \{ (h, \eta) : h'(x^* + t(x - x^*))(x - x^*) \ge \langle h'(x^* + t\eta(x, x^*)), \eta(x, x^*) \rangle \}$$
 (2.2)

is nonempty, where $h: K \to R$ is a continuously Fréchet-differentiable mapping, and the set K^* is defined by

$$K^* = \{ x \in K : ||x - x^*|| \le r \}. \tag{2.3}$$

Then for all $x \in K^*$ and $(h, \eta) \in S^*$,

$$h(x) - h(x^*) - \langle h'(x^*), \eta(x, x^*) \rangle \ge \frac{\alpha}{2} ||x - x^*||^2.$$
 (2.4)

LEMMA 2.2. Let H be a real Hilbert space and let K be a nonempty closed convex subset of H. Let h', the gradient of $h: K \to R$, be (α) -strongly monotone on K and let $h: K \to R$ be a continuously Fréchet-differentiable mapping. Then for all $x, x^* \in K$,

$$h(x) - h(x^*) - \langle h'(x^*), x - x^* \rangle \ge \frac{\alpha}{2} ||x - x^*||^2.$$
 (2.5)

LEMMA 2.3. Let H be a real Hilbert space and let K be a nonempty closed invex subset of H. Let h', the gradient of $h: K \to R$, be (η, δ) -Lipschitz continuous on K and let the following assumptions hold.

(i) There exist an $x^* \in K$ and a number $q \ge 0$ such that for all $x \in K_1$ and $t \in [0,1]$, the mapping $\eta : K \times K \to H$ satisfies

$$||\eta(x,y)|| \le q. \tag{2.6}$$

(ii) The set S_1 defined by

$$S_{1} = \{(h,\eta): h'(x^{*} + t(x - x^{*}))(x - x^{*}) \le \langle h'(x^{*} + t\eta(x,x^{*})), \eta(x,x^{*}) \rangle \}$$
 (2.7)

is nonempty, where $h: K \to R$ is a continuously Fréchet-differentiable mapping, and the set K_1 is defined by

$$K_1 = \{ x \in K : ||x - x^*|| \le q \}. \tag{2.8}$$

Then for all $x \in K_1$ and $(h, \eta) \in S_1$,

$$h(x) - h(x^*) - \langle h'(x^*), \eta(x, x^*) \rangle \le \frac{\delta}{2} ||x - x^*||^2.$$
 (2.9)

3. General auxiliary problem principle

In this section, we present the approximation-solvability of the VIP (1.1) using the convergence analysis for the general auxiliary problem principle.

Algorithm 3.1. For arbitrarily chosen initial point $x^0 \in K$, determine an iterate x^{k+1} such that

$$\langle \rho T(x^k) + h'(x^{k+1}) - h'(x^k), \eta(x, x^{k+1}) \rangle + \rho(f(x) - f(x^{k+1})) \ge 0,$$
 (3.1)

for all $x \in K$, where $h: K \to R$ is continuously Fréchet-differentiable, $f: K \to R$ is proper, invex, and lower semicontinuous, $\rho > 0$, and $\eta: K \times K \to H$ is any mapping.

Algorithm 3.2. For arbitrarily chosen initial point $x^0 \in K$, determine an iterate x^{k+1} such that

$$\langle \rho T(x^k) + h'(x^{k+1}) - h'(x^k), x - x^{k+1} \rangle + \rho (f(x) - f(x^{k+1})) \ge 0,$$
 (3.2)

for all $x \in K$, where $h: K \to R$ is continuously Fréchet-differentiable, $\rho > 0$, and K is a nonempty closed convex subset of H.

Algorithm 3.3. For arbitrarily chosen initial point $x^0 \in K$, determine an iterate x^{k+1} such that

$$\langle \rho T(x^k) + h'(x^{k+1}) - h'(x^k), x - x^{k+1} \rangle \ge 0,$$
 (3.3)

for all $x \in K$, where $h: K \to R$ is continuously Fréchet-differentiable, $\rho > 0$, and K is a nonempty closed convex subset of H.

We now present, based on Algorithm 3.1, the approximation solvability of the VIP (1.1) in a Hilbert space setting.

Theorem 3.4. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty closed invex subset of H. Let $T: K \to H$ be (η, γ) -partially relaxed pseudomonotone. Let $f: K \to R$ be proper, invex, and lower semicontinuous on K, let $h: K \to R$ be continuously Fréchet-differentiable on K with h', the gradient of h, (η, α) -strongly monotone, and (η, β) -Lipschitz continuous, and let h' be continuous from H equipped with weak topology to H equipped with strong topology. Suppose that the following assumptions hold.

(i) There exist a $y^* \in K$ and numbers a > 0, $r \ge 0$, $\rho(a < \rho < \alpha/2\gamma)$ such that for all $t \in [0,1]$ and for all $x \in K^*$, the set S^* defined by

$$S^* = \{(h, \eta) : h'(y^* + t(x - y^*))(x - y^*) \ge \langle h'(y^* + t\eta(x, y^*)), \eta(x, y^*) \rangle \}$$
(3.4)

is nonempty, where

$$K^* = \{ x \in K : ||x - y^*|| \le r \} \subset K.$$
 (3.5)

- (ii) The mapping $\eta: K \times K \to H$ is (λ) -Lipschitz continuous.
- (iii) $\eta(u, v) + \eta(v, u) = 0$ and $\eta(u, v) = \eta(u \cdot w) + \eta(w, v)$.

(iv) For each fixed $y \in K$, the map $x \to \eta(y,x)$ is sequentially continuous from the weak topology to the weak topology.

 $(v) \| \eta(u, v) \| \le r.$

Then an iterate x^{k+1} is a unique solution to (3.1).

If, in addition, $x^* \in K$ is a solution to VIP (1.1) and $||T(x^k) - T(x^*)|| \to 0$, then the sequence $\{x^k\}$ generated by Algorithm 3.1 converges weakly to x^* .

Proof. First to show that x^{k+1} is a unique solution to (3.1), assume that y^{k+1} is another distinct solution to (3.1). Since h' is (η, α) -strongly monotone, it follows applying (3.1) that

$$-\langle h'(x^{k+1}) - h'(y^{k+1}), \eta(x^{k+1}, y^{k+1}) \rangle \ge 0, \tag{3.6}$$

or

$$||x^{k+1} - y^{k+1}||^2 \le 0,$$
 (3.7)

a contradiction.

Since $x^* \in K$ is a solution to the VIP (1.1), we define a function Δ^* by

$$\Delta^*(x) := h(x^*) - h(x) - \langle h'(x), \eta(x^*, x) \rangle. \tag{3.8}$$

Then applying Lemma 2.1, we have

$$\Delta^*(x) := h(x^*) - h(x) - \langle h'(x), \eta(x^*, x) \rangle \ge \frac{\alpha}{2} ||x^* - x||^2.$$
 (3.9)

It follows that

$$\Delta^*(x^{k+1}) := h(x^*) - h(x^{k+1}) - \langle h'(x^{k+1}), \eta(x^*, x^{k+1}) \rangle. \tag{3.10}$$

Now we can write

$$\Delta^{*}(x^{k}) - \Delta^{*}(x^{k+1}) = h(x^{k+1}) - h(x^{k}) - \langle h'(x^{k}), \eta(x^{k+1}, x^{k}) \rangle
+ \langle h'(x^{k+1}) - h'(x^{k}), \eta(x^{*}, x^{k+1}) \rangle
\geq \frac{\alpha}{2} ||x^{k+1} - x^{k}||^{2} + \langle h'(x^{k+1}) - h'(x^{k}), \eta(x^{*}, x^{k+1}) \rangle
\geq \frac{\alpha}{2} ||x^{k+1} - x^{k}||^{2} + \rho \langle T(x^{k}), \eta(x^{k+1}, x^{*}) \rangle
+ \rho (f(x^{k+1}) - f(x^{*})),$$
(3.11)

for $x = x^*$ in (3.1).

Therefore, we have

$$\Delta^*(x^k) - \Delta^*(x^{k+1}) \ge \frac{\alpha}{2} ||x^{k+1} - x^k||^2 + \rho \langle T(x^k), \eta(x^{k+1}, x^*) \rangle + \rho (f(x^{k+1}) - f(x^*)).$$
(3.12)

If we replace x by x^{k+1} in (1.1), we obtain

$$\langle T(x^*), \eta(x^{k+1}, x^*) \rangle + f(x^{k+1}) - f(x^*) \ge 0.$$
 (3.13)

Since *T* is (η, γ) -partially relaxed pseudomonotone, it implies in light of (3.13) that

$$\Delta^{*}(x^{k}) - \Delta^{*}(x^{k+1}) \ge \frac{\alpha}{2} ||x^{k+1} - x^{k}||^{2} - \rho \gamma ||x^{k+1} - x^{k}||^{2} = \left(\frac{\alpha}{2} - \rho \gamma\right) ||x^{k+1} - x^{k}||^{2}$$
(3.14)

for $\rho < (\alpha/2\gamma)$.

It follows that the sequence $\{\Delta^*(x^k)\}$ is a strictly decreasing sequence except for $x^{k+1} = x^k$, and in that situation x^k is a solution to (1.1). Since the difference of two consecutive terms tends to zero as $k \to \infty$, it implies that

$$||x^{k+1} - x^k|| \longrightarrow 0 \quad \text{as } k \longrightarrow \infty.$$
 (3.15)

On the top of that, in light of Lemma 2.1, we have

$$||x^* - x^k||^2 \le \frac{2}{\alpha} \Delta^*(x^k),$$
 (3.16)

and so the sequence $\{x^k\}$ is bounded. Let x' be a cluster point of the sequence $\{x^k\}$, that is, there exists a subsequence $\{x^{kj}\}$ of the sequence $\{x^k\}$ such that $\{x^{kj}\}$ converges weakly to x'. Since h' is (η,β) -Lipschitz continuous and $a < \rho$, it follows using (3.1) that for some $x \in K$, we have

$$\langle \rho T(x^{k}), \eta(x, x^{k+1}) \rangle + \rho(f(x) - f(x^{k+1})) \ge -\langle h'(x^{k+1}) - h'(x^{k}), \eta(x, x^{k+1}) \rangle \ge -\beta ||x^{k+1} - x^{k}|| ||\eta(x, x^{k+1})||,$$
(3.17)

or

$$\langle T(x^k), \eta(x, x^{k+1}) \rangle + f(x) - f(x^{k+1}) \ge -\frac{\beta}{a} ||x^{k+1} - x^k|| ||\eta(x, x^{k+1})||.$$
 (3.18)

Since $T(x^{kj})$ converges strongly to $T(x^*)$ and $||x^{kj+1} - x^{kj}|| \to 0$, and f is invex and lower semicontinuous (and hence f is weakly lower semicontinuous), it follows from (3.18) that

$$\langle T(x^*), \eta(x, x') \rangle + f(x) - f(x') \ge 0 \quad \forall x \in K,$$
 (3.19)

while

$$\langle T(x'), \eta(x^{kj}, x') \rangle + f(x) - f(x^{kj}) \longrightarrow 0,$$

$$\langle T(x'), \eta(x^{kj}, x') \rangle \longrightarrow 0.$$
 (3.20)

At this stage, if T(x') = 0, then x' is a solution to the VIP (1.1); and if $T(x') \neq 0$, then we express it in the form

$$\eta(y^{kj}, x^{kj}) = -\frac{\langle T(x'), \eta(x^{kj}, x') \rangle T(x')}{||T(x')||^2}.$$
(3.21)

It follows that

$$\langle T(x'), \eta(y^{kj}, x') \rangle = 0, \tag{3.22}$$

and thus, we have

$$||\eta(y^{kj}, x^{kj})|| \longrightarrow 0. \tag{3.23}$$

It follows that

$$y^{kj} - x'. \tag{3.24}$$

Applying (3.22), we have

$$0 = \langle T(x'), \eta(y^{kj}, x') \rangle = \langle T(x'), \eta(y^{kj}, x^*) \rangle + \langle T(x'), \eta(x^*, x') \rangle. \tag{3.25}$$

Since
$$T(x') \neq 0$$
, it follows that $y^{kj} \rightarrow x^*$ and $x^* = x'$, a solution to the VIP (1.1).

COROLLARY 3.5. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty closed invex subset of H. Let $T: K \to H$ be (η, γ) -pseudococoercive. Let $f: K \to R$ be proper, invex, and lower semicontinuous on K, let $h: K \to R$ be continuously Fréchet-differentiable on K with h', the gradient of h, (η, α) -strongly monotone and (η, β) -Lipschitz continuous, and let h' be continuous from H equipped with weak topology to H equipped with strong topology. Suppose that the following assumptions hold.

(i) There exist a $y^* \in K$ and numbers a > 0, $r \ge 0$, $\rho(a < \rho < \alpha/2\gamma)$ such that for all $t \in [0,1]$ and for all $x \in K^*$, the set S^* defined by

$$S^* = \{(h, \eta) : h'(y^* + t(x - y^*))(x - y^*) \ge \langle h'(y^* + t\eta(x, y^*)), \eta(x, y^*) \rangle \}$$
 (3.26)

is nonempty, where

$$K^* = \{ x \in K : ||x - y^*|| \le r \} \subset K. \tag{3.27}$$

- (ii) The mapping $\eta: K \times K \to H$ is (λ) -Lipschitz continuous.
- (iii) $\eta(u, v) + \eta(v, u) = 0$ and $\eta(u, v) = \eta(u \cdot w) + \eta(w, v)$.
- (iv) For each fixed $y \in K$, the map $x \to \eta(y,x)$ is sequentially continuous from the weak topology to the weak topology.
 - $(\mathbf{v}) \| \eta(u, \mathbf{v}) \| \leq r.$

Then an iterate x^{k+1} is a unique solution to (3.1).

If $x^* \in K$ is a solution to VIP (1.1), then the sequence $\{x^k\}$ generated by Algorithm 3.1 converges weakly to x^* .

For f = 0 and $\eta(u, v) = u - v$ in Corollary 3.5, it reduces to the following corollary.

COROLLARY 3.6. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty closed convex subset of H. Let $T: K \to H$ be (y)-pseudococoercive. Let $h: K \to R$ be continuously Fréchet-differentiable on K with h', the gradient of h, (α) -strongly monotone, and (β) -Lipschitz continuous, and let h' be continuous from H equipped with weak topology to H equipped with strong topology. Then an iterate x^{k+1} is a unique solution to (3.3). If $x^* \in K$ is

a solution to VIP (1.3), then the sequence $\{x^k\}$ generated by Algorithm 3.3 converges weakly to x^* .

Note that Corollary 3.6 is proved in [7, Theorem 4.1] with an additional imposition of the uniform continuity on the mapping T, but we feel that the uniform continuity is not required for the convergence purposes.

Theorem 3.7. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty closed invex subset of H. Let $T: K \to H$ be (η, γ) -partially relaxed pseudomonotone. Let $f: K \to R$ be proper, invex, and lower semicontinuous on K, let $h: K \to R$ be continuously Fréchet-differentiable on K with h', the gradient of h, (η, α) -strongly monotone, and (η, β) -Lipschitz continuous, and let h' be continuous from H equipped with weak topology to H equipped with strong topology. Suppose that the following assumptions hold.

(i) There exist a $y^* \in K$ and numbers a > 0, $r \ge 0$, $q \ge 0$, $p(a such that for all <math>t \in [0,1]$ and for all $x \in K^*$, the set S^* defined by

$$S^* = \{ (h, \eta) : h'(y^* + t(x - y^*))(x - y^*) \ge \langle h'(y^* + t\eta(x, y^*)), \eta(x, y^*) \rangle \}$$
(3.28)

is nonempty, where

$$K^* = \{ x \in K : ||x - y^*|| \le r \} \subset K. \tag{3.29}$$

- (ii) The mapping $\eta: K \times K \to H$ is (λ) -Lipschitz continuous.
- (iii) $\eta(u,v) + \eta(v,u) = 0$ and $\eta(u,v) = \eta(u \cdot w) + \eta(w,v)$.
- (iv) For each fixed $y \in K$ the map $x \to \eta(y,x)$ is sequentially continuous from the weak topology to the weak topology.
 - (v) $\|\eta(u,v)\| \le r$.

Then an iterate x^{k+1} is a unique solution to (3.1). If $x^* \in K$ is a solution to VIP (1.1) and $||T(x^k) - T(x^*)|| \to 0$, then the sequence $\{x^k\}$ generated by Algorithm 3.1 converges weakly to x^* .

In addition, assume that

(vi) there exist a $y^* \in K$ such that for all $x \in K_1$, the set S_1 defined by

$$S_1 = \{(h, \eta) : h'(y^* + t(x - y^*))(x - y^*) \le \langle h'(y^* + t\eta(x, y^*)), \eta(x, y^*) \rangle \}$$
(3.30)

is nonempty, where

$$K_1 = \{x \in K : ||x - y^*|| \le q\} \subset K,$$
 (3.31)

with $\|\eta(x, y^*)\| \leq q$.

Then the sequence $\{x^k\}$ generated by Algorithm 3.1 converges to x^* .

Proof. Since based on the proof of Theorem 3.4, x' is a weak cluster point of the sequence $\{x^k\}$, we define a function Λ^* by

$$\Lambda^*(x^k) = h(x') - h(x^k) - \langle h'(x^k), \eta(x', x^k) \rangle.$$
 (3.32)

Applying Lemmas 2.1 and 2.3, we have the following:

$$\Lambda^{*}(x^{k}) = h(x') - h(x^{k}) - \langle h'(x^{k}), \eta(x', x^{k}) \rangle \ge \frac{\alpha}{2} ||x' - x^{k}||^{2}.$$
 (3.33)

$$\Lambda^*(x^k) = h(x') - h(x^k) - \langle h'(x^k), \eta(x', x^k) \rangle \le \frac{\beta}{2} ||x' - x^k||^2.$$
 (3.34)

It follows from (3.34) that

$$\lim_{n \to \infty} \Lambda^* \left(x^k \right) = 0. \tag{3.35}$$

Applying (3.35) to (3.33), it follows that the entire sequence $\{x^k\}$ generated by Algorithm 3.1 converges to x'.

References

- [1] I. K. Argyros and R. U. Verma, *On general auxiliary problem principle and nonlinear mixed variational inequalities*, Nonlinear Functional Analysis and Applications **6** (2001), no. 2, 247–256.
- [2] ______, Generalized partial relaxed monotonicity and solvability of nonlinear variational inequalities, Panamerican Mathematical Journal 12 (2002), no. 3, 85–104.
- [3] G. Cohen, *Auxiliary problem principle and decomposition of optimization problems*, Journal of Optimization Theory and Applications **32** (1980), no. 3, 277–305.
- [4] ______, Auxiliary problem principle extended to variational inequalities, Journal of Optimization Theory and Applications **59** (1988), no. 2, 325–333.
- [5] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Mathematics of Operations Research 18 (1993), no. 1, 202–226.
- [6] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming Series A 55 (1992), no. 3, 293–318.
- [7] N. El Farouq, Pseudomonotone variational inequalities: convergence of the auxiliary problem method, Journal of Optimization Theory and Applications 111 (2001), no. 2, 305–326.
- [8] _______, Pseudomonotone variational inequalities: convergence of proximal methods, Journal of Optimization Theory and Applications 109 (2001), no. 2, 311–326.
- [9] S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps, Journal of Optimization Theory and Applications 18 (1976), no. 4, 445–454.
- [10] S. Karamardian and S. Schaible, *Seven kinds of monotone maps*, Journal of Optimization Theory and Applications **66** (1990), no. 1, 37–46.
- [11] B. Martinet, *Régularisation d'inéquations variationnelles par approximations successives*, Revue Française d'Informatique Recherche Opérationnelle **4** (1970), Ser. R-3, 154–158 (French).
- [12] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 188, Marcel Dekker, New York, 1995.
- [13] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research 1 (1976), no. 2, 97–116.
- [14] ______, Monotone operators and the proximal point algorithm, SIAM Journal Control Optimization 14 (1976), no. 5, 877–898.
- [15] R. U. Verma, Nonlinear variational and constrained hemivariational inequalities involving relaxed operators, Zeitschrift für Angewandte Mathematik und Mechanik 77 (1997), no. 5, 387–391.
- [16] ______, Approximation-solvability of nonlinear variational inequalities involving partially relaxed monotone (PRM) mappings, Advances in Nonlinear Variational Inequalities 2 (1999), no. 2, 137– 148.

12 Auxiliary problem principle

- [17] _______, A new class of iterative algorithms for approximation-solvability of nonlinear variational inequalities, Computers & Mathematics with Applications 41 (2001), no. 3-4, 505–512.
- [18] ______, General auxiliary problem principle involving multivalued mappings, Nonlinear Functional Analysis and Applications 8 (2003), no. 1, 105–110.
- [19] ______, Generalized strongly nonlinear variational inequalities, Revue Roumaine de Mathématiques Pures et Appliquées. Romanian Journal of Pure and Applied Mathematics 48 (2003), no. 4, 431–434.
- [20] ______, Nonlinear implicit variational inequalities involving partially relaxed pseudomonotone mappings, Computers & Mathematics with Applications **46** (2003), no. 10-11, 1703–1709.
- [21] ______, Partial relaxed monotonicity and general auxiliary problem principle with applications, Applied Mathematics Letters **16** (2003), no. 5, 791–796.
- [22] ______, Partially relaxed cocoercive variational inequalities and auxiliary problem principle, Journal of Applied Mathematics and Stochastic Analysis **2004** (2004), no. 2, 143–148.
- [23] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators, Springer, New York, 1990.

Ram U. Verma: Department of Mathematics, University of Toledo, Toledo, OH 43606, USA *E-mail address*: verma99@msn.com