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Let T : K — H be a nonlinear mapping from a nonempty closed invex subset K of an
infinite-dimensional Hilbert space H into H. Let f : K — R be proper, invex, and lower
semicontinuous on K and let h: K — R be continuously Fréchet-differentiable on K
with h’, the gradient of h, (1, «)-strongly monotone, and (7, 3)-Lipschitz continuous on
K. Suppose that there exist an x* € K, and numbers a >0, r > 0, p(a < p < a) such
that for all # € [0,1] and for all x € K*, the set $* defined by $* = {(h,5) : h'(x™ +
tx — x*))(x —x*) = (W' (x* + tn(x,x%)),n(x,x*))} is nonempty, where K* = {x € K :
lx —x*|l <r} and : K X K — H is (A)-Lipschitz continuous with the following assump-
tions. (i) 7(x,y) +1(y,x) =0, y(x, y) = n(x,z) +4(z,y), and |ln(x, y)|l < r. (ii) For each
fixed y € K, map x — r(y,x) is sequentially continuous from the weak topology to the
weak topology. If, in addition, &’ is continuous from H equipped with weak topology to
H equipped with strong topology, then the sequence {x*} generated by the general aux-
iliary problem principle converges to a solution x* of the variational inequality problem
(VIP): (T(x*),n(x,x*)) + f(x) — f(x*) = 0 forall x € K.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

A tremendous amount of work, applying the auxiliary problem principle in finite- as well
as in infinite-dimensional Hilbert space settings, on the approximation-solvability of var-
ious classes of variational inequalities and complementarity problems, especially finite-
dimensional cases, has been carried out in recent years. During the course of these in-
vestigations, there has been a significant progress in developing more generalized classes
of mappings in the context of new iterative algorithms. In this paper, we intend based
on a general auxiliary problem principle to present the approximation-solvability of a
class of variational inequality problems (VIP) involving partially relaxed pseudomono-
tone mappings along with some modified results on Fréchet-differentiable functions that
play a pivotal role in the development of a general framework for the auxiliary problem
principle. Results thus obtained generalize/complement investigations of Argyros and
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Verma [1], El Farouq [7], Verma [20], and others. For more details on general variational
inequality problems and the auxiliary problem principle, we refer to [1-23].

Let H be an infinite-dimensional real Hilbert space with the inner product (x, y) and
norm ||x|| for all x,y € H. We consider the variational inequality problem (VIP) as fol-
lows: determine an element x* € K such that

(T(x*),n(x,x*))+f(x)— f(x*) =0 VxeK, (1.1)

where K is a nonempty closed invex subset of H, and 7 : K X K — H is any mapping with
some additional conditions.

When 7(x,x*) = x — x*, the VIP (1.1) reduces to the VIP: determine an element x* €
K such that

(T(x*),x=x*)+ f(x)— f(x*) >0 VxeK, (1.2)

where K is a nonempty closed convex subset of H.
When f =01in (1.2), it reduces to the following: find an element x* € K such that

(T(x*),x—x*)>=0 VxeK. (1.3)

Now we recall the following auxiliary result for the approximation solvability of non-
linear variational inequality problems based on iterative procedures.

LemMa 1.1. For elements u,v,w € H,

lull* + (u,n(v,w)) = —iH’?(%W)HZ- (1.4)

LEmma 1.2. Foru,v € H,

2 = llull2 = [vI?
<um:llu vil !u\l Ivi® (1.5)

Now recall and in some cases upgrade the existing notions in the literature. Let n: H X H —
H be any mapping.

Definition 1.3. A mapping T : H — H is called
(i) ()-monotone if for each x, y € H, there exists,

(T(x) = T(y),n(x,9)) = 0; (1.6)
(ii) (n,r)-strongly monotone if there exists a positive constant r such that
(T(x)—T(y),n(x,p) =rlx—yll*> Vx,y€H; (1.7)
(iii) (r)-expansive if
1T G) = Tl = rlln(e )]s (1.8)

(iv) expansive if r = 1 in (iii),
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(v) (n,y)-cocoercive if there exists a constant y > 0 such that
(T(0) =T y) 2 rl|IT@ T Vxy€H; (19)
(vi) ()-pseudomonotone if
(T(y),n(x,y)) 2 0= (T(x),n(x,y)) = 0; (1.10)
(vii) (#,b)-strongly pseudomonotone if
(T(y),n(x,y)) =0= (T(x),(x,y)) = bllx—yl*> Vx,y€H; (1.11)

(viii) (#,c)-pseudococoercive if there exists a constant ¢ > 0 such that

(T(1),n(x,)) = 0= (T(x),n(x, ) = c|T(x) - TW)|° Vx,y € H; (1.12)
(ix) (1)-quasimonotone if
(T(y),n(x,9)) >0 = (T(x),n(x,y)) =0 Vx,y € H; (1.13)

(x) (n,L)-relaxed (also called weakly monotone) if there is a positive constant L such
that

(T(x)=T(y)n(x,y)) = (~L)llx—yl* Vx,y€H; (1.14)
(xi) (1)-hemicontinuous if for all x, y,w € H, the function
te[0,1] — (T (y+tn(x,y)),w) (1.15)

is continuous;
(xii) (n,B)-Lipschitz continuous if there exists a constant 5 > 0 such that

I TCe) = Tl < BllnCe s (1.16)

(xiii) (#,y)-partially relaxed monotone if there exists a positive constant y such that

(T(x) = T(y)n(zy)) = (=plz—xl*> Vx,y,z€H; (1.17)

(xiv) (#,y)-partially relaxed pseudomonotone if there exists a positive constant y such
that

(T()n(z,9)) 20= (T(x),n(z,y)) = (-p)llz—xlI* Vx,y,z€ H. (1.18)

LemMa 1.4. Let T : H — H be (1, a)-cocoercive and let n: H X H — H be a mapping such
that
(1) I < Mlx = yll;
(it) 7(x, y) +7(y,x) = 0
(iii) 7(x, y) = n(x,2) +1(z, ).
Then T is (n, — (A*/4))-partially relaxed monotone.
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Proof. Since T : H — H is (4, a)-cocoercive, we have

(T(x) = T(y),n(z,y)) = (T(x) = T(y),n(z,x)) + (T(x) = T(y),n(x,y))
> af|T(x) = T()|[* + (T(x) = T(y),1(z,%))

- oc(”T(x) - Ty} +i(T(x) - T(}/)’rl(z,x») (1.19)

1 2 e 2}
Z_SL406||’7(Z’X)|| }2—{4allz—xll ' 0
Definition 1.5. A mapping T : H — H is said to be u-cocoercive [2] if for each x,y € H,

there exists

(T(x) = T(y),x— y) = | T(x) = T, (1.20)

where 4 is a positive constant.

Example 1.6. Let T : K — H be nonexpansive. Then I — T'is 1/2-cocoercive, where I is the
identity mapping on H. For if x, y € K, we have

I =T)x) — I~ TYWI = llx—y = (T(x) — T)|
= llx—yl2 = 2(x — y, T(x) = T(y)) + || T(x) - T’
<2{llx =yl = (x—y,T(x) = T(y))}

=2{x—y,(I-T)(x) - (I-T)(y)),
(1.21)

that is,

(=@ - T-Tphx-p = 5 [T-D@-T-DGI. (122

A subset K of H is said to be invex if there exists a function #: K X K — H such that
whenever x, y € K and t € [0, 1], it follows that

x+tn(y,x) € K. (1.23)
A function f : K — R s called invex if whenever x, y € K and ¢ € [0,1], it follows that
fx+(y,x) <=0 f(x)+tf(p). (1.24)

2. Some auxiliary results

This section deals with some auxiliary results [2] and their modified versions crucial
to the approximation-solvability of VIP (1.1). Let h: H — R be a continuously Fréchet-
differentiable mapping on a Hilbert space H. It follows that 4’'(x) € L(H,R)—the space
of all bounded linear operators from H into R. From now on, we will denote the real
number k' (x)(y) by (h'(x),y) forall x,y € H.
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LEMMA 2.1. Let H be a real Hilbert space and let K be a nonempty closed invex subset of
H. Let I, the gradient of h: K — R, be (n,«)-strongly monotone on K and let the following
assumptions hold.

(i) There exist an x* € K and a number r = 0 such that for all x € K* and t € [0,1], the
mapping 1 : K x K — H satisfies

[lnCe )l < 7. (2.1)
(ii) The set S* defined by
S = {(hm) W (¥ 4 t(x — %)) (x—x%) = (' (" + g (56)) g (56°))] (22)

is nonempty, where h: K — R is a continuously Fréchet-differentiable mapping, and the set
K* is defined by

K*={xeK:||x—x*|| <r}. (2.3)
Then for all x € K* and (h,n) € §*,
h(x) = h(x*) = (K (x*),n(x,x7)) = %le—x*llz- (2.4)

LemMA 2.2. Let H be a real Hilbert space and let K be a nonempty closed convex subset of
H. Let IV, the gradient of h: K — R, be («)-strongly monotone on K and let h: K — R be a
continuously Fréchet-differentiable mapping. Then for all x,x* € K,

h(x) —h(x*) — (b (x*),x —x*) Z%Hx—x*”z. (2.5)

LEMMA 2.3. Let H be a real Hilbert space and let K be a nonempty closed invex subset of H.
Let I, the gradient of h: K — R, be (y,0)-Lipschitz continuous on K and let the following
assumptions hold.

(i) There exist an x* € K and a number q = 0 such that for all x € K, and t € [0,1], the
mapping n: K X K — H satisfies

llnCe )l < q. (2.6)
(i) The set S, defined by
Si={(hn) b (x* +t(x—x*)) (x —x*) < (W (x* + tn(x,x%)),n(xx*))} - (27)

is nonempty, where h: K — R is a continuously Fréchet-differentiable mapping, and the set
K, is defined by

Ki={xeK:|lx—x*|| <q}. (2.8)
Then for all x € K, and (h,n) € Sy,

2

[ —x*||". (2.9)

) = h(x) = ( () () < 5
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3. General auxiliary problem principle

In this section, we present the approximation-solvability of the VIP (1.1) using the con-
vergence analysis for the general auxiliary problem principle.

AvrGoriTHM 3.1. For arbitrarily chosen initial point x° € K, determine an iterate x*! such
that

(T (x*) +h (1) = 1 (x5, (0,5 1)) +p (f (x) = f (1)) = 0, (3.1)
for all x € K, where h: K — R is continuously Fréchet-differentiable, f : K — R is proper,
invex, and lower semicontinuous, p >0, and 1 : K X K — H is any mapping.

AvrGoriTHM 3.2. For arbitrarily chosen initial point x° € K, determine an iterate X' such
that

(PT(H) + 1 (1) = (&), x =) 4 p(f(x) - f(#)) 20, (32)

for all x € K, where h: K — R is continuously Fréchet-differentiable, p >0, and K is a
nonempty closed convex subset of H.

AvrcoriTHM 3.3. For arbitrarily chosen initial point x° € K, determine an iterate x**' such
that

(pT (xF) + 1 (x¥*1) — B’ (x%),x — 51 > 0, (3.3)

for all x € K, where h: K — R is continuously Fréchet-differentiable, p >0, and K is a
nonempty closed convex subset of H.

We now present, based on Algorithm 3.1, the approximation solvability of the VIP
(1.1) in a Hilbert space setting.

TaEOREM 3.4. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty
closed invex subset of H. Let T : K — H be (y,y)-partially relaxed pseudomonotone. Let
f K — R be proper, invex, and lower semicontinuous on K, let h : K — R be continuously
Fréchet-differentiable on K with I, the gradient of h, (1, a)-strongly monotone, and (1, 3)-
Lipschitz continuous, and let h' be continuous from H equipped with weak topology to H
equipped with strong topology. Suppose that the following assumptions hold.

(i) There exist a y* € K and numbers a >0, r = 0, p(a < p < a/2y) such that for all
t € [0,1] and for all x € K*, the set S* defined by

§* = {(hm) ' (y* +t(x—y*)) (x = y*) = (W (y* +tn(x,y*)),n(x,y*))}  (3.4)
is nonempty, where
K*={xeK:|lx—y*||<r} cK (3.5)

(ii) The mapping 1 : K X K — H is (A)-Lipschitz continuous.
(iii) n(u,v) + n(v,u) = 0 and n(u,v) = n(u - w) +n(w,v).
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(iv) For each fixed y € K, the map x — y(y,x) is sequentially continuous from the weak
topology to the weak topology.

W) ()l <.
Then an iterate x**' is a unique solution to (3.1).

If, in addition, x* € K is a solution to VIP (1.1) and || T(x*) — T(x*)|l — 0, then the
sequence {x*} generated by Algorithm 3.1 converges weakly to x*.

Proof. First to show that x**! is a unique solution to (3.1), assume that y**! is another

distinct solution to (3.1). Since h’ is (#,«)-strongly monotone, it follows applying (3.1)
that

—(h'(xkﬂ)—h'(ka),ﬂ(ka,ka)) >0, (3.6)
or
[l = y*11* <, (3.7)

a contradiction.
Since x* € K is a solution to the VIP (1.1), we define a function A* by

A*(x) := h(x*) = h(x) — (W' (x),n(x*,x)). (3.8)
Then applying Lemma 2.1, we have
N () 1= h(x*) = h(x) = (' (0,1 (x,%)) = 5l = s (3.9)
It follows that
A (1) 2= () — R — G (), (1)), (3.10)
Now we can write
AF (xF) = A% (FH1) = R(x**T) — h(xF) = (B (x5),n (6", 55))
+ (B (K1) = B (xF), (%, xF71))

> %||xk+1 —xk||2+ (h'(ka) —h'(xk),l/](x*,xkﬂ)) (3.11)

>
o Fy kel k2 T (xk K+l %
= Sl =24 (T () (7 x7))

+p(f (") = £ (x*)),

for x = x* in (3.1).
Therefore, we have

A% () = 8% (A1) = Sk — 2P (T (), (41, x)) (£ (54 = £ (7)),
(3.12)

If we replace x by x**! in (1.1), we obtain

(T(x*),n (%)) + F(*1) = f(x*) = 0. (3.13)



8 Auxiliary problem principle

Since T is (#,y)-partially relaxed pseudomonotone, it implies in light of (3.13) that

A7 (54) = (401 = S pyl o 7 = (G = py T
(3.14)
for p < (a/2y).
It follows that the sequence {A*(x¥)} is a strictly decreasing sequence except for x**1 =

x¥, and in that situation x* is a solution to (1.1). Since the difference of two consecutive
terms tends to zero as k — oo, it implies that

||xF — ¥k — 0 ask — oo. (3.15)

On the top of that, in light of Lemma 2.1, we have
* kN2 _ 2 asqk
[l =" < AT (), (3.16)

and so the sequence {x} is bounded. Let x be a cluster point of the sequence {x*}, that
is, there exists a subsequence {x*/} of the sequence {x*} such that {x*/} converges weakly
to x’. Since K’ is (#, 8)-Lipschitz continuous and a < p, it follows using (3.1) that for some
x € K, we have

(pT ("), n (6, 1)) +p(f(x) = f (") = = (0 (51) = ' (%), 7 (0,51))

(3.17)
= Bl = 2| (e I,

or

(T(xk),q( k+1)>+f(x f( k+1 /))kaJrl k||||11(x)xk+l)||' (3.18)

Since T(x/) converges strongly to T'(x*) and ||x¥/*! — xK/|| — 0, and f is invex and lower
semicontinuous (and hence f is weakly lower semicontinuous), it follows from (3.18)
that

(T (x*),n(x,x" )+ f(x)— f(x') =0 VxeK, (3.19)

while

(TG (6,x)) + ) = f(6M) —

(T(x"),n(xk,x")) — 0. (3.20)

At this stage, if T(x") = 0, then x’ is a solution to the VIP (1.1); and if T(x") # 0, then we
express it in the form

(T(x"),n(xF,x")) T(x")
[lxealls

n(yM,xM) = - (3.21)
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It follows that
(TGm(y9,2)) =0, (3.22)
and thus, we have
17 (y4,65)[| — 0. (3.23)
It follows that
Yk — X (3.24)
Applying (3.22), we have
0= (T()n(yM,x)) = (T, (P,2%)) + (T () (x*,x)). (3.25)
Since T(x') # 0, it follows that y*/ — x* and x* = x’, a solution to the VIP (1.1). O

CoROLLARY 3.5. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty
closed invex subset of H. Let T : K — H be (,y)-pseudococoercive. Let f : K — R be proper,
invex, and lower semicontinuous on K, let h: K — R be continuously Fréchet-differentiable
on K with W, the gradient of h, (y,)-strongly monotone and (v, 8)-Lipschitz continuous,
and let h' be continuous from H equipped with weak topology to H equipped with strong
topology. Suppose that the following assumptions hold.

(1) There exist a y* € K and numbers a >0, r > 0, p(a < p < a/2y) such that for all
t € [0,1] and for all x € K*, the set S* defined by

§* = {(hn) ' (y* +1(x = y*)) (x = y*) = (W (y* +tn(x,y*)),n(x,y*))}  (3.26)
is nonempty, where
K*={xeK:|lx—y*||<r} cK (3.27)

(ii) The mapping 1 : K x K — H is (A)-Lipschitz continuous.

(iii) n(u,v) +n(v,u) = 0 and n(u,v) = n(u - w) +y(w,v).

(iv) For each fixed y € K, the map x — y(y,x) is sequentially continuous from the weak
topology to the weak topology.

) In(u)ll <.
Then an iterate x**' is a unique solution to (3.1).

If x* € K is a solution to VIP (1.1), then the sequence {x*} generated by Algorithm 3.1
converges weakly to x*.

For f = 0 and #(u,v) = u — v in Corollary 3.5, it reduces to the following corollary.

COROLLARY 3.6. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty
closed convex subset of H. Let T : K — H be (y)-pseudococoercive. Let h : K — R be contin-
uously Fréchet-differentiable on K with W', the gradient of h, («)-strongly monotone, and
(B)-Lipschitz continuous, and let h' be continuous from H equipped with weak topology to H

equipped with strong topology. Then an iterate x**! is a unique solution to (3.3). If x* € K is
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a solution to VIP (1.3), then the sequence {x*} generated by Algorithm 3.3 converges weakly
to x*.

Note that Corollary 3.6 is proved in [7, Theorem 4.1] with an additional imposition of
the uniform continuity on the mapping T, but we feel that the uniform continuity is not
required for the convergence purposes.

THEOREM 3.7. Let H be a real infinite-dimensional Hilbert space and let K be a nonempty
closed invex subset of H. Let T : K — H be (y,y)-partially relaxed pseudomonotone. Let
f 1K — R be proper, invex, and lower semicontinuous on K, let h: K — R be continuously
Fréchet-differentiable on K with I', the gradient of h, (1, &)-strongly monotone, and (,[3)-
Lipschitz continuous, and let h" be continuous from H equipped with weak topology to H
equipped with strong topology. Suppose that the following assumptions hold.

(i) There exist a y* € K and numbers a >0, r >0, ¢ =0, p(a < p < a/2y) such that for
allt € [0,1] and for all x € K*, the set S* defined by

§* = {(hm):h (y* +t(x = y™)) (x=y*) = (W (y* +1n(x,y*)),n(xy*))}  (3.28)
is nonempty, where
K*={xeK:||x—y*||<r} CcK. (3.29)

(ii) The mapping 1 : K x K — H is (A)-Lipschitz continuous.

(iii) n(u,v) +n(v,u) = 0 and n(u,v) = n(u - w) +y(w,v).

(iv) For each fixed y € K the map x — 3(y,x) is sequentially continuous from the weak
topology to the weak topology.

W) Inu,v)ll < r.
Then an iterate x**' is a unique solution to (3.1). If x* € K is a solution to VIP (1.1) and
| T(xK) — T(x*)|l — 0, then the sequence {x*} generated by Algorithm 3.1 converges weakly
to x*.

In addition, assume that

(vi) there exist a y* € K such that for all x € K,, the set S, defined by

Si={(hn) b (y* +t(x—y*)) (x = y*) < (W (y* +tn(x,y"))n(xy*))}  (3.30)
is nonempty, where
Ki={xeK:|lx-y*||<q} CK, (3.31)

with [[n(x, y*)Il < q.
Then the sequence {x*} generated by Algorithm 3.1 converges to x*.

Proof. Since based on the proof of Theorem 3.4, x” is a weak cluster point of the sequence
{xF}, we define a function A* by

AF(xF) = h(x) = h(x*) = (W' (x9), 7 (x,2)). (3.32)
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Applying Lemmas 2.1 and 2.3, we have the following:

N () = )~ h() - (8 () () = Sl P (339
N () = h) () — (0 ()0 < Bl - )

It follows from (3.34) that
lim A* (x%) = 0. (3.35)

Applying (3.35) to (3.33), it follows that the entire sequence {x*} generated by
Algorithm 3.1 converges to x”. O
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