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We first obtain an improved version of the Hölder inequality with Orlicz norms. Then,
as an application of the new version of the Hölder inequality, we study the integrability
of the Jacobian of a composite mapping. Finally, we prove a norm comparison theorem.
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1. Introduction

Carl Gustav Jacob Jacobi (1804–1851), one of the nineteenth century Germany’s most
accomplished scientists, developed the theory of determinants and transformations into
a powerful tool for evaluating multiple integrals and solving differential equations. Since
then, the Jacobian (determinant) has played a critical role in multidimensional analysis
and related fields, including nonlinear elasticity, weakly differentiable mappings, con-
tinuum mechanics, nonlinear PDEs, and calculus of variations. The integrability of Ja-
cobians has become a rather important topic in the study of Jacobians because one of
the major applications of Jacobians is to evaluate multiple integrals. Higher integrabil-
ity properties of the Jacobian first showed up in [2], where Gehring invented reverse
Hölder inequalities and used these inequalities to establish the L1+ε-integrability of the
Jacobian of a quasiconformal mapping, ε > 0. Recently, the integrability of Jacobians of
orientation-preserving mappings of Sobolev class W1,n

loc (Ω,Rn) has attracted the atten-
tion of mathematicians, see [1, 3–7], for instance. The purpose of this paper is to study
the Lp(logL)α(Ω)-integrability of the Jacobian of a composite mapping.

Let 0 < p <∞ and α≥ 0 be real numbers and let E be any subset of Rn. We define the
functional on a measurable function f over E by

[ f ]Lp(logL)α(E) =
(∫

E
| f |p logα

(
e+

| f |
‖ f ‖p

)
dx

)1/p

, (1.1)
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where ‖ f ‖p = (
∫
E | f (x)|pdx)1/p. In this paper, we always assume that Ω is a bounded

open subset ofRn, n≥ 2.We write Lp(logL)α(Ω) for the space of all measurable functions
f onΩ such that [ f ]Lp(logL)α(Ω) <∞. As usual, we simply write Lp(Ω)= L1(logL)0(Ω) and
L logL(Ω)= L1(logL)1(Ω), respectively.

A continuously increasing function ϕ : [0,∞]→ [0,∞] with ϕ(0)= 0 and ϕ(∞)=∞ is
called an Orlicz function. The Orlicz space Lϕ(Ω) consists of all measurable functions f
on Ω such that

∫
Ω
ϕ
( | f |

λ

)
dx <∞ (1.2)

for some λ= λ( f ) > 0. Lϕ(Ω) is equipped with the nonlinear Luxemburg functional

‖ f ‖ϕ = inf
{
λ > 0 :

∫
Ω
ϕ
( | f |

λ

)
dx ≤ 1

}
. (1.3)

A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young function,
then ‖ · ‖ϕ defines a norm in Lϕ(Ω), which is called the Luxemburg norm. For ϕ(t) =
tp logα(e+ t), 0 < p <∞ and α≥ 0, we have

‖ f ‖Lp logα L = inf
{
k :
∫
Ω
| f |p logα

(
e+

| f |
k

)
dx ≤ kp

}
. (1.4)

From Theorem 4.2 that will be proved later in this paper, we see that the Luxemburg
norm ‖ f ‖ϕ is equivalent to [ f ]Lp(logL)α(Ω) defined in (1.1) for any 0 < p <∞ and α ≥ 0.
Hence, the Orlicz space Lψ(Ω) with ψ(t)= tp logα(e+ t) can be denoted by Lp(logL)α(Ω)
and the corresponding norm can also be written as [ f ]Lp(logL)α(Ω). The following version
of Hölder inequality appears in [3, Proposition 2.2].

Theorem 1.1. Let 1 < p, q < ∞, α,β > 0, 1/p + 1/q = 1/r, α/p + β/q = γ/r and f ∈
Lp(logL)α(Ω), g ∈ Lq(logL)β(Ω) . Then fg ∈ Lr(logL)γ(Ω) and

‖ f g‖Lr logγ L ≤ C‖ f ‖Lp logα L‖g‖Lq logβ L. (1.5)

In this paper, we improve the condition 1 < p, q <∞ into 0 < p, q <∞ in Theorem 2.1.
We enjoy the elementary method used in the proof of Theorem 2.1. Then, using the im-
proved Hölder inequality, we study the Lp(logL)α(Ω)-integrability of the Jacobian of the
composition of mappings.

2. Improved Hölder inequality

Using Theorem 1.1 and the basic properties of logarithmic functions, we have the follow-
ing generalized Hölder inequality.
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Theorem 2.1. Let m,n,α,β > 0, 1/s = 1/m+ 1/n, α/m+ β/n = γ/s. Assume that f ∈ Lm

(logL)α(Ω) and g ∈ Ln(logL)β(Ω). Then, fg ∈ Ls(logL)γ(Ω) and

(∫
Ω
| f g|s logγ

(
e+

| f g|
‖ f g‖s

)
dx

)1/s

≤ C

(∫
Ω
| f |m logα

(
e+

| f |
‖ f ‖m

)
dx

)1/m(∫
Ω
|g|n logβ

(
e+

|g|
‖g‖n

)
dx

)1/n

,

(2.1)

where C is a positive constant.

Note that (2.1) can be written as

[ f g]Ls(logL)γ(Ω) ≤ C[ f ]Lm(logL)α(Ω)[g]Ln(logL)β(Ω). (2.2)

Proof. Using the elementary inequality log(e+ xa)≤ log(e+ x)a+1 for a > 0, x > 0, we have

log

(
e+

(| f |s|g|s)1/s∥∥| f |s|g|s∥∥1/s1

)
≤ log

(
e+

| f |s|g|s∥∥| f |s|g|s∥∥1
)1/s+1

=
(
1
s
+1
)
log

(
e+

| f |s|g|s∥∥| f |s|g|s∥∥1
)
,

log

(
e+

( | f |
‖ f ‖m

)s)
≤ log

(
e+

| f |
‖ f ‖m

)s+1

≤ (s+1)log

(
e+

| f |
‖ f ‖m

)
,

log

(
e+

( |g|
‖g‖n

)s)
≤ log

(
e+

|g|
‖g‖n

)s+1

≤ (s+1)log

(
e+

|g|
‖g‖n

)
.

(2.3)

From Hölder inequality (1.5) with 1 = 1/m/s + 1/n/s (note that m/s > 1, n/s > 1 since
1/s= 1/m+1/n) and (2.3), we have

∫
Ω
| f g|s logγ

(
e+

| f g|
‖ f g‖s

)
dx

=
∫
Ω

(| f |s|g|s) logγ
(
e+

‖ f |s|g|s|1/s∥∥| f |s|g|s∥∥1/s1

)
dx

≤ C1

∫
Ω

(| f |s|g|s) logγ(e+ | f |s|g|s∥∥| f |s|g|s∥∥1
)
dx

≤C2

(∫
Ω

(| f |s)m/s
logα

(
e+

| f |s∥∥| f |s∥∥m/s

)
dx

)s/m(∫
Ω

(|g|s)n/s logβ
(
e+

|g|s∥∥|g|s∥∥n/s
)
dx

)s/n

= C2

(∫
Ω
| f |m logα

(
e+

( | f |
‖ f ‖m

)s)
dx

)s/m(∫
Ω
|g|n logβ

(
e+

( |g|
‖g‖n

)s)
dx

)s/n

≤ C3

(∫
Ω
| f |m logα

(
e+

| f |
‖ f ‖m

)
dx

)s/m(∫
Ω
|g|n logβ

(
e+

|g|
‖g‖n

)
dx

)s/n

.

(2.4)



4 Global integrability of the Jacobian of a composite mapping

Hence, we conclude that

(∫
Ω
| f g|s logγ

(
e+

| f g|
‖ f g‖s

)
dx

)1/s

≤ C4

(∫
Ω
| f |m logα

(
e+

| f |
‖ f ‖m

)
dx

)1/m(∫
Ω
|g|n logβ

(
e+

|g|
‖g‖n

)
dx

)1/n

.

(2.5)

The proof of Theorem 2.1 has been completed. �

From Theorem 2.1, we have the following general result immediately.

Corrollary 2.2. Let pi > 0, αi > 0 for i = 1,2, . . . ,k, 1/p1 + 1/p2 + ···+1/pk = 1/p, and
α1/p1 + α2/p2+···+αk/pk=α/p. Assume that fi ∈ Lpi(logL)αi(Ω) for i=1,2, . . . ,k. Then
f1 f2 ··· fk ∈ Lp(logL)α(Ω) and

[
f1 f2 ··· fk

]
Lp(logL)α(Ω) ≤ C

[
f1
]
Lp1 (logL)α1 (Ω)

[
f2
]
Lp2 (logL)α2 (Ω) ···

[
fk
]
Lpk (logL)αk (Ω), (2.6)

where C is a positive constant and the norms [ f1 f2 ··· fk]Lp(logL)α(Ω) and [ fi]Lpi (logL)αi (Ω),
i= 1,2, . . . ,k, are defined in (1.1).

3. Integrability of Jacobians of composite mappings

In this section, we explore applications of the new version of the Hölder inequality estab-
lished in the last section. Specifically, we study the integrability of the Jacobian of the com-
position of mappings f :Ω→ Rn, f = ( f 1(u1,u2, . . . ,un), f 2(u1,u2, . . . ,un), . . . , f n(u1,u2,

. . . ,un)) of Sobolev classW
1,p
loc (Ω,Rn), where ui = ui(x1,x2, . . . ,xn), i= 1,2, . . . ,n, are func-

tions of x = (x1,x2, . . . ,xn)∈Ω with continuous partial derivatives ∂ui/∂xj , j = 1,2, . . . ,n.
Assume that the distributional differential D f (u)= [∂ f i/∂uj] and Du(x)= [∂ui/∂xj] are
locally integrable functions with values in the space GL(n) of all n×n-matrices. As usual,
we write

J(x, f )= detD f (u(x))= ∂
(
f 1 ··· f n)

∂
(
x1 ···xn

) , (3.1)

J(u, f )= detD f (u)= ∂
(
f 1 ··· f n)

∂
(
u1 ···un

) , (3.2)

J(x,u)= detDu(x)= ∂
(
u1 ···un

)
∂
(
x1 ···xn

) , (3.3)

respectively. Using Theorem 2.1, we have the following integrability theorem for the Ja-
cobian of the composition of mappings.

Theorem 3.1. Let s, t,β,γ > 0, with 1/p = 1/s + 1/t and β/s + γ/t = α/p. Assume that
J(x, f ), J(u, f ), and J(x,u) are Jacobians defined in (3.1), (3.2), and (3.3), respectively. If
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J(u(x), f )∈ Ls(logL)β(Ω) and J(x,u)∈ Lt(logL)γ(Ω), then J(x, f )∈ Lp(logL)α(Ω) and

(∫
Ω

∣∣J(x, f )∣∣p logα
(
e+

∣∣J(x, f )∣∣∥∥J(x, f )∥∥p
)
dx

)1/p

≤ C

(∫
Ω

∣∣J(u, f )∣∣s logβ
(
e+

∣∣J(u, f )∣∣∥∥J(u, f )∥∥s
)
dx

)1/s

×
(∫

Ω

∣∣J(x,u)∣∣t logγ(e+
∣∣J(x,u)∣∣∥∥J(x,u)∥∥t

)
dx
)1/t

,

(3.4)

where C is a positive constant.

Proof. Note that the Jacobian of the composition of f and u can be expressed as

J(x, f )= ∂
(
f 1 ··· f n)

∂
(
x1 ···xn

) = ∂( f 1 ··· f n)
∂
(
u1 ···un

) · ∂
(
u1 ···un

)
∂
(
x1 ···xn

) = J(u, f ) · J(x,u). (3.5)

Applying Theorem 2.1 and (3.5) yields

(∫
Ω

∣∣J(x, f )∣∣p logα
(
e+

∣∣J(x, f )∣∣∥∥J(x, f )∥∥p
)
dx

)1/p

=
(∫

Ω

∣∣J(u, f ) · J(x,u)∣∣p logα
(
e+

∣∣J(u, f ) · J(x,u)∣∣∥∥J(u, f ) · J(x,u)∥∥p
)
dx

)1/p

≤ C

(∫
Ω

∣∣J(u, f )∣∣s logβ
(
e+

∣∣J(u, f )∣∣∥∥J(u, f )∥∥s
)
dx

)1/s

×
(∫

Ω

∣∣J(x,u)∣∣t logγ
(
e+

∣∣J(x,u)∣∣∥∥J(x,u)∥∥t
)
dx

)1/t

<∞

(3.6)

since J(u(x), f )∈ Ls(logL)β(Ω) and J(x,u)∈Lt(logL)γ(Ω). Thus, J(x, f )∈ Lp(logL)α(Ω)
from (3.6). The proof of Theorem 3.1 has been completed. �

Applying the Hölder inequality with Lp-norms

‖ f g‖s,E ≤ ‖ f ‖α,E · ‖g‖β,E, (3.7)

where 0 < α, β <∞, s−1 = α−1 + β−1, and f and g are any measurable functions on a
measurable set E ⊂ Rn, we have the following Lp-integrability theorem for the Jacobian
of a composite mapping.

Theorem 3.2. Let J(x, f ), J(u, f ), and J(x,u) be the Jacobians defined in (3.1), (3.2), and
(3.3), respectively. If J(u(x), f ) ∈ Ls(Ω) and J(x,u) ∈ Lt(Ω), s,t > 0, then J(x, f ) ∈ Lp(Ω)
and

‖J(x, f )‖Lp(Ω) ≤ C
∥∥J(u(x), f )∥∥Ls(Ω)

∥∥J(x,u)∥∥Lt(Ω), (3.8)
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where C is a positive constant and the integrability exponent p of J(x, f ) determined by
1/p = 1/s+1/t is the best possible.

The following example shows that the integrability exponent p of J(x, f ) cannot be
improved anymore.

Example 3.3. We consider the mappings

f (x, y)= ( f 1, f 2)=
(

x(
x2 + y2

)σ , y(
x2 + y2

)σ
)
, (x, y)∈D = {(x, y) : 0 < x2 + y2 ≤ ρ2

}
,

x = r−k cosθ, y = r−k sinθ, (r,θ)∈Ω= {(r,θ) : 0 < r < ρ, 0 < θ ≤ 2π},
(3.9)

where σ and ρ are positive constants. After a simple calculation, we obtain the following
Jacobians:

J1 = ∂( f 1, f 2)
∂(r,θ)

= k(2σ − 1)
r4σ+2k+1

, J2 = ∂( f 1, f 2)
∂(x, y)

= 1− 2σ
r4σ

,

J3 = ∂(x, y)
∂(r,θ)

= −k
r2k+1

, 0 < r < ρ.

(3.10)

It is easy to see that J1 ∈ L1/(4σ+2k+1)(Ω) but J1 	∈ Lp(Ω) for any p > 1/(4σ +2k +1). Sim-
ilarly, J2 ∈ L1/4σ(Ω) but J2 	∈ Ls(Ω) for any s > 1/4σ and J3 ∈ L1/(2k+1)(Ω) but J3 	∈ Lt(Ω)
for any t > 1/(2k+1). Here, the integrability exponent p = 1/(4σ +2k+1) of ∂( f 1, f 2)/∂
(r,θ) is determined by

1
p
= (4σ +2k+1)= 1

s
+
1
t
, (3.11)

where s = 1/4σ and t = 1/(2k+1) are the integrability exponents of Jacobians
∂( f 1, f 2)/∂(x, y) and ∂(x, y)/∂(r,θ), respectively.

The above example shows that, in Theorem 3.2, the integrability exponent p of J(x, f )
that is determined by 1/p = 1/s+1/t is the best possible, where s is the integrability expo-
nent of J(u(x), f ) and t is the integrability exponent of J(x,u).

Example 3.4. Let J1 = ∂( f 1, f 2)/∂(r,θ), J2 = ∂( f 1, f 2)/∂(x, y), and J3 = ∂(x, y)/∂(r,θ) be
the Jacobians obtained in Example 3.3. For any ε > 0, there exists a constant C1 > 0 such
that

∣∣J1∣∣p log
(
e+

∣∣J1∣∣∥∥J1∥∥p
)
≤ C1

∣∣J1∣∣p+ε/(4σ+2k+1). (3.12)
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Using (3.10) and (3.12), we have

∫
Ω

∣∣J1∣∣p log
(
e+

∣∣J1∣∣∥∥J1∥∥p
)
drdθ

= 2π
∫ ρ

0

∣∣J1∣∣p log
(
e+

∣∣J1∣∣∥∥J1∥∥p
)
dr

= C2

∫ ρ

0

(
1

r4σ+2k+1

)p

log

(
e+

∣∣(2σ − 1)k/r4σ+2k+1
∣∣∥∥(2σ − 1)k/r4σ+2k+1
∥∥
p

)
dr

≤ C3

∫ ρ

0
r−(4σ+2k+1)p

(
r−(4σ+2k+1)

)ε/4σ+2k+1
dr ≤ C4

∫ ρ

0
r−(4σ+2k+1)p−εdr = C5 <∞

(3.13)

for any p satisfying 0 < p ≤ 1/(4σ + 2k + 1)− ε/(4σ +2k+1). Since ε > 0 is arbitrary, we
know that J1 ∈ Lp logL(Ω) for any p with 0 < p < 1/(4σ +2k+1). Similarly, we have J2 ∈
Ls logL(Ω) for any swith 0 < s < 1/4σ and J3 ∈ Lt logL(Ω) for any t with 0 < t < 1/(2k+1).
This example shows that the integrability exponent p of ∂( f 1, f 2)/∂(r,θ) that is deter-
mined by 1/p = 1/s+1/t is the best possible when α= β = γ = 1 in Theorem 3.1.

4. The norm comparison theorem

In this section, we discuss the relationship between norms ‖ f ‖Lp logα L and [ f ]Lp(logL)α(Ω),
which will provide a different way to prove Theorems 2.1 and 3.1. First, we recall the
following more general inequality appearing in [3, Theorem A.1].

Theorem 4.1. Suppose that A,B,C : [0,∞)→ [0,∞) are continuous, monotone increasing
functions for which there exist positive constants c and d such that

(i) B−1(t)C−1(t)≤ cA−1(t) for all t > 0,
(ii) A(t/d)≤ 1/2A(t) for all t > 0.
Suppose that G is an open subset of Rn, for f ∈ LB(G) and g ∈ LC(G). Then f g ∈ LA(G)

and

‖ f g‖A ≤ cd‖ f ‖B‖G‖C. (4.1)

In [6], Iwaniec and Verde prove that the norm ‖ f ‖Lp logα L is equivalent to the norm
[ f ]Lp(logL)α(Ω) for 1 < p <∞. Similar to the proof of [6, Lemma 8.6], we have the relation-
ship between the norm ‖ f ‖Lp logα L and the norm [ f ]Lp(logL)α(Ω).

Theorem 4.2. For each f ∈ Lp(logL)α(Ω), 0 < p <∞ and α≥ 0,

‖ f ‖p ≤ ‖ f ‖Lp logα L ≤ [ f ]Lp(logL)α(Ω) ≤ C‖ f ‖Lp logα L, (4.2)

where C = 2α/p(1+ (α/ep)α)1/p is a constant independent of f .
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Proof. Let K = ‖ f ‖Lp logα L. Then, by the definition of the Luxemburg norm, we have

K =
(∫

Ω
| f |p logα

(
e+

| f |
K

)
dx
)1/p

. (4.3)

It is clear that K ≥ ‖ f ‖p and

K ≤
(∫

Ω
| f |p logα

(
e+

| f |
‖ f ‖p

)
dx

)1/p

= [ f ]Lp(logL)α(Ω), (4.4)

that is,

‖ f ‖Lp logα L ≤ [ f ]Lp(logL)α(Ω). (4.5)

On the other hand, using K ≥ ‖ f ‖p and the elementary inequality |a + b|s ≤ 2s(|a|s +
|b|s),s≥ 0, we obtain that

∫
Ω
| f |p logα

(
e+

| f |
‖ f ‖p

)
dx =

∫
Ω
| f |p logα

(
e+

| f |
K
· K

‖ f ‖p

)
dx

≤
∫
Ω
| f |p

(
log
(
e+

| f |
K

)
+ log

(
K

‖ f ‖p

))α

dx

≤ 2α
∫
Ω
| f |p logα

(
e+

| f |
K

)
+2α

∫
Ω
| f |p logα

(
K

‖ f ‖p

)
dx

= 2αK p +2α‖ f ‖pp logα
(

K

‖ f ‖p

)
.

(4.6)

Note that the function h(t)= tp logα(K/t), 0 < t ≤ K , has its maximum value (α/ep)αK p

at t = K/eα/p. Then

‖ f ‖pp logα
(

K

‖ f ‖p

)
≤
(
α

ep

)α
K p. (4.7)

Combining (4.6) and (4.7) gives

∫
Ω
| f |p logα

(
e+

| f |
‖ f ‖p

)
dx ≤ 2α

(
1+
(
α

ep

)α)
Kp, (4.8)

which is equivalent to

[ f ]Lp(logL)α(Ω) ≤ C‖ f ‖Lp logα L, (4.9)

where C = 2α/p(1+ (α/ep)α)1/p. The proof of Theorem 4.2 has been completed. �

It is easy to see that Theorem 4.2 indicates that, for any 0 < p <∞ and α≥ 0, the Lux-
emburg norm ‖ f ‖Lp logα L is equivalent to the norm [ f ]Lp(logL)α(Ω) defined in (1.1). Hence,
we can also prove Theorems 2.1 and 3.1 using Theorem 4.1 with suitable choices of func-
tions A(t), B(t), and C(t).
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