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We study the existence and multiplicity of solutions for the three-point nonlinear bound-
ary value problem u”'(t) +Aa(t) f(u) =0, 0 <t < 1; u(0) = 0 = u(1) — yu(n), where n €
(0,1),y € [0,1), a(t) and f(u) are assumed to be positive and have some singularities, and
A is a positive parameter. Under certain conditions, we prove that there exists A* > 0 such
that the three-point nonlinear boundary value problem has at least two positive solutions
for 0 < A < 1*, at least one solution for A = A*, and no solution for A > A*.

Copyright © 2006 X. Xian and D. O’Regan. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we consider the following second-order three-point boundary value prob-
lem (BVP)
u'(t)+Aa(t) f(u) =0, 0<t<l,
u(0) = 0= u(1) —yu(n),
where € (0,1),y € [0,1),a € C((0,1),(0,+)),and f € C(R*\{0},R"), here A is a pos-
itive parameter and R* = [0,+00).
Now a(t) may have a singularity at t = 0 and t = 1, f(u) may have a singularity at

u =0, so the BVP (1.1,) is a singular problem. The BVP (1.1,) in the case when y = 0 can
be reduced to the Dirichlet BVP

W’ (t)+Aa(t) f(u)=0, 0<t<l,
u(0) =0=u(1).

(L.1y)

(1.23)

The BVP (1.2)) has been studied extensively in the literature, see [1, 2, 5, 9, 12] and the
references therein. Choi [1] studied the particular case where f(u) = e%, a € C*(0,1],
a>0in (0,1), and a can be singular at ¢t = 0, but is at most O(1/t>7%) as t — 0* for some
0. Using the shooting method, he established the following result.
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2 Solutions of three-point nonlinear BVPs

THEOREM 1.1 (see [1]). There exists Ag > 0 such that the BVP (1.2)) has a solution in
C%(0,1] N C[0,1] for 0 < A < Ao, while there is no solution for A > Ag.

Wong [9] studied the more general BVP (1.2,). Using also the shooting method, Wong
proved some existence results for positive solutions of the BVP (1.2;). Recently, Dalmasso
[2] improved Theorem 1.1 and the main results in [9]. Using the upper and lower solu-
tions technique and the fixed point index method, Dalmasso [2] proved the following
result.

THEOREM 1.2 (see [2]). Let a and f satisfy the following assumptions:
(A1) a € C((0,1),[0,00)), a # 0in (0,1), and there exists o, 5 € [0,1) such that

1
L s%(1 —s)Pa(s)ds < oo; (1.1)
(Ay) f € C([0,00),(0,0)) is nondecreasing.
Then,
(1) there exists Ao > 0 such that the BVP (1.2)) has at least one positive solution in
C%(0,1) N C[0,1] for 0 < A < Ao,
(ii) if in addition f satisfies the condition that
(A3) there exists d > 0 such that f(u) = du for u = 0.
Then there exists \* > 0 such that the BVP (1.2)) has at least one positive solution in C*(0,
1) N C[0,1] for 0 < A < A* while there is no such solution for A > A*.

Ha and Lee [5] also considered the BVP (1.2)) in the case when f(u) = e*. They proved
Theorems 1.3 and 1.4.

THEOREM 1.3 (see [5]). Assume the following conditions hold

(By) a>0o0n(0,1);

(B2) a(t) is singular at t = 0 satisfying fol sa(s)ds < oo;

(B3) f(u) = e* forallu e R.
Then there exists Ay such that the BVP (1.2)) has no solution for A > Ay and at least one
solution for 0 < A < Ao.

TueOREM 1.4 (see [5]). Consider (1.2)), where a and f are continuous and satisfy (B, )—
(Bs). Also assume that
(Bs) f is nondecreasing.
Then the number Ay given by Theorem 1.3 is such that
(1) (1.23) has no solution for A > Ao;
(i) (1.23) has at least one solution for A = Ag;
(iii) (1.2)) has at least two solutions for 0 < A < Ao.

Xu and Ma [12] generalized the main results of [1, 2, 5, 9] to an operator equation in
a real Banach space E. In recent years, the multipoint BVP has been extensively studied
(see [3, 4, 6-8, 10, 11, 13] and the references therein). For example, Ma and Castaneda
[7] using the well-known fixed point theorem in cones established some results on the
existence of at least one positive solution for some m-point boundary value problems
if the nonlinearity f is either superlinear or sublinear. The purpose of this paper is to
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extend the main results of [1, 2, 5, 9] to the nonlinear three-point BVP (1.1;). We will
consider the existence and multiplicity of positive solution for the nonlinear three-point
BVP (1.1;). The results of this paper are improvements of the main results in [1, 2, 5, 9].

2. Several lemmas

Let us list some conditions to be used in this paper.
(Hl) )/ € [0) 1))a S C((O) 1)3 (0) OO))’ and

1

J s(1 —s)a(s)ds < oo. (2.1)

0

(H2) f(u) = g(u) +h(u), where g : (0,00) — (0,00) is continuous and nonincreasing,
h:R" — R" is continuous, and

h(u) = bou”, ueR", (2.2)

for some by >0 and w > 1.
(H3) There exists M > 0 such that

h(uz) = h(ur) = =M (uy — ur) (2.3)

for all uy,u, € RY with uy = u;
The main results of this paper are the following theorems.

THEOREM 2.1. Assume that (H,) and (H,) hold. Then there exists A* > 0 such that the BVP
(1.1,) has at least one positive solution for 0 < A < A* and no solution for A > A*.
Moreover, the BVP (1.1)) has at least one positive solution if w > 1.

THEOREM 2.2. Assume that (H,), (H), and (H3) hold, w > 1, and there exists constant
¢ = 0 such that g(u) = ¢ for all u € (0,+00). Then there exists A* >0 such that the BVP
(1.1,) has at least two positive solutions for 0 <A < A*, at least one solution for A = A*, and
no solution for A > A*.

Remark 2.3. Our theorems generalize Theorems 1.1-1.4 and the main results in [9]. In
fact, Theorems 1.1-1.4 are corollaries of our theorems. Moreover, the nonlinear term
f (1) may have singularity at u = 0, therefore, even in the case when y = 0, Theorem 2.1
cannot be obtained by Theorems 1.1-1.4 and the abstract results in [12].

Remark 2.4. The nonlinear term f was assumed to be nondecreasing in Theorems 1.2
and 1.4, but in Theorem 2.2 in this paper, we do not assume that the nonlinear term f is
nondecreasing. Thus, even in the case when y = 0, Theorem 2.2 cannot be obtained from
Theorem 1.4.

Let n € N and let N be the natural numbers set. First, let us consider the BVP of the
form

u’ (t)+Aa(t) <g<u+ %) +h(u)> =0, 0<t<l,
u(0) =0 = u(1) — yu(y).

(2.13)
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Definition 2.5. « € C([0,1],R) N C2((0,1),R) is called a lower solution of (2.1}) if

o' (1) + Aa(t) (g((x(t)+ %) +h(oc(t))> >0, te(0,1),

(2.4)
a(0) <0, a(l)—ya(n)<0.
B € C([0,1],R) n C*((0,1),R) is called an upper solution of (2.1%) if
B (1) +Aa(t) <g (ﬁ(t) + l) +h(ﬁ(t))> <0, te(0,1),
n (2.5)
B0) =0, B(1)—yp(n) = 0.
According to [13, Lemma 4], we have the following lemma.
LEMMA 2.6. Assume that (H,) holds and v = 0. Then the initial value problems
u'(t) =talt)u(t), 0<a<t<l,
u(a) =0, u' (o) =1,
(2.6)

u’ () =ta(t)u(t), 0<t<f<l,
u(p) =0, w(p)=-1

have unique positive solutions p,.(t) € AC[a,1) N C'[a,1) and qp.(t) € AC(0,] N
C'(0,B], respectively. Moreover, p,; and qg are strictly convex. As a result,

t_‘xspa,r(t)ﬁpoc,r(a)((;:(;—)), <t<ac<l,
(B0 27
Bot=apet) < queb) gy, 0<bsts<p
foranya € [a,1) and b € [0,).
When0 <a<f <1, forte |apfl,
@) ) qﬁ,r(t)> Poc,r(t) @ (ﬂ) (2.8)
wo =1 U = 4pe(@) = pas(B). 2.8
(P qﬁ,‘r(t)’ ptx,‘r(t) q‘B p
It is well known that C[0,1] is a Banach space with maximum norm || - ||. For 7 = 0,
denote 0, by
Y(l - ’7) . { Po,r(i’l) ql,r(ﬂ) }
Y , . 2.9
2oe D+ 410D ™ L Por (D) + Pox (1)’ 41e(0) +41e (1) (29)
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Let P = {x € C[0,1]|x(t) = 0 fort € [0,1]} and Q, = {x € P|x(t) = 0. ||x]|t for t € [0,1]}.
It is easy to see that P and Q; are cones in C[0,1]. For T > 0 and each n € N, define operators
L, and F, : C[0,1] — C[0, 1] by

1 L
17()1(1}))0’——()/1301(71) Jo G%O,)l](n,s)a(s)x(s)ds, t=1,
(1)) = 1]} 6l a0+ Lo 22 teloml (210)
! (1) 611,r(t)+)/P:7,r(t)
ML Gl (69a(@x(ds + (L)) TS, v (1),

and (Fnx)(t) = g(x(t) + 1/n) + h(x(t)) for t € [0,1], where

Qﬁ,r(t)ﬁa’T((;)), a<s<t<p,
Glog)(6:5) = " 2.11
e (09) qp.:(s) @.11)
Pa,r(t) s (0()’ = 553[3

From [13, Theorem 5], we have Lemmas 2.7 and 2.9.

LemMA 2.7. Assume that (H,) holds, T > 0, and h € C([0,1],R). Then w(t) is the solution
of the three-point BVP

—w'(t)+Ta(t)w(t) =a(t)h(t), 0<a<t<]l,

(2.12)
w(a) =0=w(l) —yw(yn)
if and only if w € C[0,1] is the solution of the integral equation
w(t) = (Lh)(t), te][0,1]. (2.13)

Remark 2.8. To ensure that py;(1) — yp«r (1) > 0, the following condition is assumed in
[13, Theorem 5]:

3y
‘ra(t) > m (214)
If0 < y < 1, we have
1
Puc (1) = PPas) > pac) (14 | 7a()aie(9)ds—7) >0, (2.15)
1

Thus, if 0 < y < 1, condition (2.14) can be removed.
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LEMMA 2.9. Assume that (Hy) holds, T,a,&*,n* = 0, h € C([0,1],R*). Also suppose that
w € Cla, 1] satisfies

—w'(t)+Talt)w(t) = a(t)h(t), a<t<l,
(2.16)
w(a) = &%, w(l) —yw(n) =

Then w(t) = 0 for t € [a,1].

LEmMMA 2.10. Assume that (H;) holds and T = 0. Then L, : P — Q; is a completely continu-
ous and increasing operator.

Proof. From Lemma 2.6, we have for any x € P and ¢ € [0,1],

K)mﬁﬂ t€ (0,71,
(Lox)(t) = 3 (1) + )
(LTx)(ﬂ)%) te [’1’1])
@mwgby e [0,1], (2.17)
=) L—t+y(t—n)
\(L‘L’x) (l/l) q],T(ﬂ) > te [’1)1])
- y(=mt
B (LTx)(rl)pO,r(l’]) + q1,1(77) ’
_ Po:(1) 1 Po:(s)
L) = s ([ et RS atowonds

1
+J Poc() q“(( ))a(s)x(s)ds> (2.18)

o qu)
~ por(1) - mmﬁm#smwg

_ Po,r(l) n PO,T(5)
(Lx)(n) = por (D) — ypon () (L q1,r(7’l)p0’T(l)a(S)X(S)dS

J Por(n) 1L, T((O)) a(s)x(s)ds) (2.19)

pO‘r ’7)
POT(l )’POT(’] J T S)a
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By (2.18) and Lemma 2.6, we have for any ¢ € [0, 7],

PO,T(S)
PO f(”l)

t
(Lox) (1) = jo anr () 22 a(9)x(5)ds

PO T( )
Po T( )
qu(O)
qWT(O)

+ [ puctt q’”((o (s)x(s)ds + (Lex) () 205
1’] T

Po,:(s)
< JO qw(O)P0 T )a(s x(s) ds+J Do, (s)

n
- f pos()a(s)x(s)ds+ (Lox) ()

a(s)x(s)ds+ (L:x)(n)

q1 (0) +q, r( )

) L) s

(2.20)

here we have used the facts that g, . (0) = po (1) and po.(1) = q1,:(0). From (2.19) and
Lemma 2.6, we have for any ¢ € [7, 1],

(er) (t)

[ pr(1)
= L ql,r(S)pw(l)a(s)x(s)ds

q1,r(t) + ypr],r(t)

qu(ﬂ)
q1,:(m) (1= 1)/(1 =) +ypy (1) ((t=1)/(1~1))
qu(ﬂ)

! ql,‘r(s)
T j par) B a(e)x(s)ds (L) )

1
SJ q1,2(s)a(s)x(s)ds+(Lx)(n)
1

1
< J q1,c(s)a(s)x(s)ds+ (Lx)(n)
n

< pO,r(l) +p0,1(77)

porty) L) U0
(2.21)
here we have used the fact p, +(1) = qu.-(). By (2.20) and (2.21), we have
(L) (n) = min { ql,f(gﬁ(z,f(m ’ po,ﬁ?’l(Zi,T(m } Lol (2:22)
By (2.17) and (2.22), we have
(L:x)(t) = 0: || L x||t. (2.23)

This implies that L, : P — Q;.
Now we will show that L, : P — Q; is completely continuous. It is easy to show that
L, : P~ Q; is continuous and bounded. Let B C P be a bounded set such that ||x|| < Ry
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and || L,x|| < Ry for some Ry > 0. For any ¢ > 0, by (H, ) there exists §; > 0 such that

61 n
2R, G([g))q](s,s)a(s)ds+2RoJ 5 G%g?,ﬂ (s,8)a(s)ds
0 —01
! (2.24)
o (n—s)s T (n—s)s e
< 2Ryq,,-(0) . 7 a(s)ds+2Ropo-(1) P a(s)ds < 3
It is easy to see that there exists § > 0 such that for any #,,£, € [0,7], |t} — 2| <,
LA (7) €
Ro L Glo,y (t155) = Gio (£2,5) )ﬂ(S)dS <3
' (2.25)
R |P0,T(t2) _PO,T(tl) | €
0 < —-.
PO,T(”]) 3
By (2.24)—(2.25), we have for any x € Band t;,t, € [0,%], |t —t:] < 6,
1
| (Lex) (£2) = (Lex) (1) | < L ‘GE(T),)W] (t2s) — GE(T)’)W] (t1,s) 'a(s)x(s)ds
| poe (t2) = po (1) |
+ (L.x . .
( )(}7) PO,T(”)
)
< ZROJ GE(T),)U] (s,8)a(s)ds
0
(2.26)

1
+2R J G\ s,s)a(s)ds
o, , o9

n=01
+Ry L ‘ G%’)n] (t1,s) — G%g,),ﬂ (t2y8) ‘ a(s)ds
1

'R, | poc(t2) = pos(t1) | e

Po,r(ﬂ)
Thus, L,(B) is equicontinuous on [0,#]. Similarly, L,(B) is also equicontinuous on [, 1].
By the Arzela-Ascoli theorem, L,(B) C C[0,1] is a relatively compact set. Therefore, L, :
P — Q; is a completely continuous operator.
Finally, we show that L, : P — Q; is increasing. For any x;,x; € P, x; < x; € P, let
y1=L.x; and y, = Lyx2, u = y, — y1. Then, by Lemma 2.7, we have

—u" () +ralt)u(t) = a(t) (x2(t) —x1(t)) =0, te€(0,1),

u(0) = 0 = u(1) — yu(n). (2.27)

Then Lemma 2.9 implies that u(t) = 0 for t € [0,1], and so, y, = y;. The proof is com-
plete. O

LemMA 2.11. Assume (H;) and (Hy) hold. Let A > 0 be fixed. If there exists Ry > 0 such that
(2.12) has at least one positive solution x, with ||x,|l < Ry for each positive integer n, then
there exist x € C[0,1] and a subsequence {x,,} %} of {x,}=) such that x,, — X as k — +oo.
Moreover,  is a positive solution of the BVP (1.1,)
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Proof. Letzy(t) = 1fort € [0,1],and z)(¢) = Ag(Ry +1)(L;20)(t) for t € [0,1]. Since Ly is
increasing and g is nonincreasing, then we have for any n € N,

% (t) = MLoFnxn) (£) = Ag(Ry +1) (Lozo) (1) = za(t),  t € [0,1]. (2.28)

Let us define the function F by

F(f) = Ll(l _9a(s)ds, te 0,1], (2.29)

Obviously, F € C(0,1], F(1) = 0, and F is nonincreasing on (0,1]. Foreachn e N, x, is a
concave function on [0,1]. Then there exists " € (0,1) such that x;,(#") = 0. By (H,), we
have

h(R))

—x;, () < Aa(t)g(xn(t)) <1 + 2R+ 1) ), te(0,1), (2.30)

where h(R)) = maxseqo,r,] 1(s). Integrate (2.30) from " to t (t € (t",1)) to obtain

(0 iy
gxa(t)) ~ A( ) La(s)ds. (2.31)

Then integrate (2.31) from " to 1 to obtain

[ o) oo e

On the other hand, by (2.28), we have

WO ds xa(t?) —xa(1) _ xa()(1—y) _ 2a(n)(1-y)
o 50 5] = o) % g (239
By (2.32) and (2.33), we have
. AR\ ama-y
= o1+ 0]t -

Let By € (0,1] be such that

B AR) \1 ami-y)
F(ﬁo)_[a(ug(mﬂ))} eI (2.35)

Then (2.34) implies that t” < . Similarly, we can show that there exists oy > 0 such that
t" > ag for each n € N. Let us define the function I : R* — R* by I(x) = [y ds/g(s) for
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x € R*. Forany t;,t, € [fo,1], t1 < t,, by (2.31), we have

xn(t1) t " (s)d
it [

Xu(t2) g(S)
t
/\<1+ R)L+1 )J dtJl)a(s)dS
(1_,_;[(&‘))([& (ta—s)a(s)ds+ (t, — ¢ )I“ a(s)ds)
gD )\ ), T

}_I(R)l) t 1-(ta—t1)
(2.36)

IA

IA
~

IA

This and the inequalities (2.21) in [11] imply that the set I({x,};>,) is equicontinuous
on [fo,1]. It is easy to see that ™! the inverse function of I, is unlformly continuous
on [0,I(Ry)]. Therefore, the set {x,}}=, is equcontinuous on [fy, 1]. Similarly, {x,} % is
equcontinuous on [0,ap].

From (2.30), we have for any t € [ay,50],

12,(0)| s/l(g( min z,\(t))+fz(R,\)>Jﬁ0a(s)ds. (2.37)

te[ao,Po] o

Thus, {x,, = ® is equcontinuous on [ag,Bo]. Then, by the Arzela-Ascoli theorem, we see
that {x,},= C C[0,1] is a relatively compact set. Thus, there exist x € C[0,1] and a sub-
sequence {x,, };% of {x,};= such that x, — %. By a standard argument (see [11]), we
have that X is a positive solution of the BVP (1.1;). The proof is complete. O

LeEMMA 2.12. Assume that (H,) and (H,) hold. Then for small enough A > 0, the BVP (1.1,)
has at least one positive solution.

Proof. Let Ry >0 and Ay be such that

1 Ro ds B fl(Ro) B
0<)L0<—LROg(S)(J (—s)a(s)ds> (HW) . (2.38)

By Lemma 2.10, AgLoF, : P — Qp is a completely continuous operator for each n € N.
Now we will show that

proLoFuu#u, ue[0,1], ucdB(6,Ry), n €N, (2.39)

where B(6,Ry) = {x € Qolllx|l < Ro}. Suppose (2.39) is not true. Then there exist yy €
[0,1], up € 0B(6,Ry), and ny € N such that poAoLoFp o = up. Obviously, uy > 0.
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By Lemma 2.7, we have

1

ug (£) + poAoal(t) (g<u0+ n—) +h(u0)) =0, 0<t<]l,
0

(2.40)

1up(0) = 0 = ug(1) — yuo(#).

Thus ug is a concave function on [0,1], and there exists ty € (0,1) such that u(f) = 0.
A similar argument as in the proof of (2.32) guarantees that

wlo)_ds B(Ry) \ ('
Juwr 50 SAO”‘)(Hg(&JH)) J (1= sa)ds

A()‘uo ]:l(R()) 1
< <1+g(R0+1)>I s(1 = s)a(s)ds, (2.41)

to 0

wl) ds Ao (. h(Ry) !
Jug(o) g(s) “1-1t (1 +g(R0+ 1)) L s(1—s)a(s)ds.

Since u(fy) = Ry and uy(1) = yuo(y) < yRo, by (2.41), we have

(g BR) N\ [ ) b ds
M_2(<l+g(R0+l)>J'os(l s)a(s)ds LROg(S), (2.42)

which contradicts (2.38). Therefore, (2.39) holds, and so
i(/l()L()Fn,B(G,R()),Q()) =1, ne N. (243)

This means that for each n € N, the operator AgLoF, has at least one positive fixed point
x,, such that || x,|| < Ry. By Lemma 2.7, the BVP (2.1%) has a positive solution x,, such that
X, |l < Ro. Then by Lemma 2.11, the BVP (1.1,) has at least one positive solution. The
proof is complete. O

Lemma 2.13. Let a(t) and B(t) be lower and upper solutions of (2.1%) for some n € N and
A>0,0 < a(t) < B(t). Then (2.1) has at least one positive solution u,,) such that

al(t) < u,a(t) < (1), tel0,1]. (2.44)

Proof. Let us define the function F;* by
( 1
g(ﬂ(t) + ;) +h(B(D), x=p),

(F*x)(t) = «g<x+%> T h(x), a(t) <x < B(2), (2.45)

g(tx(t) + %) Fh(a®), alt) <x,
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for x € P. Then there exists a constant C, > 0 such that 0 < (F;fx)(t) < C, for x € P. Now
Lemma 2.10 and Schauder’s fixed point theorem guarantees that the operator ALyF;* has
at least one fixed point. Then the BVP

u” (£)+Aa(t)(FFu)(t) =0, te€(0,1),

u(0) =0=u(1) — yu(n) (2.46)

has at least one solution u,(f). Now, we will show that a(t) < u,(t) < 5(¢) for t €
[0,1]. Suppose that &y = max¢eio, 1] {un 1 (t) — B(£)} > 0. Let yu2(£) = up 2 () — f(t). Then,
yna(t) < g fort € [0,1]. Let ty € [t1,1,] C [0,1] be such that

(@) yna(to) = o,

(B) yua(£) >0for t € (t1,12),

(c) [t1,12] is the maximal interval which has the properties (a) and (b).
Then we have the following three cases.

(1) If to € (0,1), then ty € (t1,12), ¥, (to) = 0. Also

-yt = a0 g0+ 3 ) +h(B®) ~g(Bw+ 1) ~hB®) | =0 247
for t € [t1,t2]. Then y, ;(t) <0 for t € (t1,t), and y, ,(t) = 0 for t € (ty,t2).
Since yu,(ty) = maxse[o,1] Yn,1 (1), then y, 1(t) = & for t € [t;,1,], contradicting
the properties (b) and (c).
(2) If to = 1, then y, 2 (1) = upa (1) = B(1) < y(una (1) = B(1)) = yyur(n) < yynar(1),
and so y,,1(1) = 0, a contradiction.
(3) If to = 0, then 5,1 (0) = u,,2(0) — 5(0) < 0, a contradiction.
Therefore, B(t) = u, (t) for t € [0,1]. Similarly, we can show that a(f) < u, (¢) for
t € [0,1]. Thus, u,(t) is a positive solution of (2.1}). The proof is complete. O

3. Proof of the main results

Proof of Theorem 2.1. Let
A = {1 €(0,+)|(1.13) has at least one positive solution}. (3.1)

By Lemma 2.12, A # &. Assume that 1y € A. Then we can show that
(1) V" e Aforany 0 < A" < Ao,
(2)

-1

Ao < o) (mes a(s)ds | max bl 2(2) | (3.2)

Assume that (1.1;) has a positive solution zy(#). It is easy to see that zy(¢) and 0 are upper
and lower solutions of (2.1},) for each n € N, respectively. By Lemma 2.13, for each n € N,
(2.1%) has a positive solution x,, - such that 0 < x,, ) < zp. Thus, by Lemma 2.11, there
exist Xy € C[0,1] and a subsequence {x,, 1 };> of {x,1 15 such that x,, 1 — X1 as
k — +o00 and %y is a positive solution of (1.1y-). Thus, A" € A.



X. Xian and D. O’'Regan 13
From Lemma 2.7, we have x,, »» = A'LoF,, xp,,)'. Then by Lemma 2.10,
X (1) = O |x 1 ||t £ € [0,1]. (3.3)
If ||x,,,1 || < 1, then by (H,), we have

82V pop(1)
Poo — YPoo(n)

_ 82)A poo(1) g Po,o(s) qLo(S)
= —Po,o(l)—)/Po,o(’Y) [J o(n ) o) a(s ds+J Do )O(O)a(s)ds] (3.4)

1 = ||xnk,)t’|| = -xnk,/\’("]) =

J G[O 1](71, S)dS

g(2)V q10(1)
> 0 ds,
= Poo(1) = ypool(n) J(l/z)nsa(s) s
and so

-1

+  Poo(D) = ypoo(n) (7
 8@)qu0(n) (J(l/z)qsa(s)d5> : (3.5)

If l|x,,,1 || = 1, then by (H») and (3.3), we have

||xnk,/\’ || = Xy, N/ (T’])

- boA po,o(1)
~ poo(1) = ypoo(n)

bod'gLolm6y_ (* " (3.6)
mjm a(s)dSHx"k,)t’H

boA’ q1,0(1) 05 J"
= poo(1) = ypoo(n) Jasy

J G[Oll(q,s)a(s)[ng] ds

2a(s)ds| [ x, 11

and so

-1
, Po,o(l)—)/Po,o(fl)( g 5 )
N <io—— s d . 3.7
= b0 qi0(n) mes als)ds G-7

Then, (3.2) follows from (3.5) and (3.7), and (3.2) implies that A is a bounded set. Let
A* = sup A. Therefore, (1.1,) has at least one positive solution for 0 < A < 1*.

Finally, we will show that A* € A if w > 1. Let {A,} C A be an increasing number se-
quence such that 1, — A* as n — +oc0, and A, > A*/2 for n = 1,2,.... Assume that (1.1,,)
has positive solution z, for each n € N. Then z, is an upper solution of (2.1’/{n) and 0 is
a lower solution of (2. ll)in) for each k € N. By Lemma 2.13, (2. lljn) has a positive solution
Zn such that 0 < z, ¢ < z,. Then, by Lemma 2.7,

Znk = AnLOFan,k (38)
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Let k € N be fixed. Now we will show that {z,x};%] is bounded. In fact, by (3.8) and
Lemmas 2.6 and 2.10, we have

||Zn,k||Z (AnLOszmk)(n)

A* poo(1) " Po,o(s)
~ 2(poo(1) = ypoo(n)) J(l/z)qql’O(n)Po,o(l) A (zni(s))ds

- A*boqi,0(17) " w (3.9)
i Ty L poo(s)als) [znk(s)]"ds

1/2)n
- A*bo0y q1,0(1)
~ 2(poo(1) = ypoo(n))

va s2a(s) ||z (s)]|" ds,
(1/2)y

and so

1o/ (w=1)
2(poo(1) = ypoo(n)) ( T, ) }
k|| = . 1
|lznkll < [ V*qro(n)bobl mes a(s)ds (3.10)

This means that {z,x};>, is a bounded set. Using the fact that Lo: P — Qo is a com-
pletely continuous operator and {A,};% is a bounded set, we see that {z,x} is a rela-
tively compact set. Without loss of generality, we assume that z,, x — zox as n — +00. Now
the Lebesgue dominant convergence theorem guarantees that zox = A* LoFxzo k. Then, by
Lemma 2.7, z is a positive solution of (l.llj*). By Lemma 2.11, (1.1)+) has a positive
solution u*. The proof is complete. O

Proof of Theorem 2.2. Let A* be defined as in Theorem 2.1 and let A € (0, A*) be fixed. Let
us define the nonlinear operators F and T) by

(Fx)(t) = f(x(t)) + Mx(¢), t € [0,1], x€P, (3.11)

and (Tyx)(t) = (AL\yFx)(t) forall x € Pand t € [0,1]. It follows from Lemma 2.7 that to
show that (1.1, ) has at least two positive solutions, we only need to show that the operator
T) has at least two fixed points.

Letzo(t)=1forte[0,1] and Q) = {x € Quu | A7 >0such that T)x <u™ —1(Lyyzo)(1)}.
Since u* is a positive solution of (1.1)«), then

—(u*)" () + AMa(t)u* (t) = Aa(t) (Fu*) (t) + (A* = N)a(t) f (u*(£)), 0<t<]l, 512)
u*(0) =0, u*(1) = yu*(n). '

By Lemma 2.7, we have u* = Tyu* + (A* — A)Lyy f (u™). Since Lyy is increasing and
f(u*) = ¢, then we have

Thu* <u® —c(A* = 1) (Lapzo) (8). (3.13)

This means that u* € ), and so Q) # &.
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For any xo € O, by Lemma 2.10, we have

Apoan(1) J” Ppoam(s)
12 .1 ) Poam (1)

|u*|| = (Thx) () = a(s)h(x(s))ds

— poam(l) = yporm(n)

/1‘]1,/\M(7’I) g w
= Pom (1) = ypom(n) J(l/zmsa(s)bo[xo(s)] ds (3.14)

o bOAQquLAM(ﬂ)
— poam (1) = yporni(n) Jary

s2a(s)|xo(s)||" ds,

and so

pom(1) = yponm(n) ( L )
< d
[Foll < [ boA0Lyqiam (1) Lm)ns ads

-1

1/w
Hu*ﬂ =: Ry. (3.15)

This means that Q) is a bounded set.
For any xy € O, there exists 79 > 0 such that Thxy < u™* — 79(Lamzo)(f). For any x €
Qim> by Lemma 2.10, we have for t € [0,1],

(Tax)(t) — (Taxo) (t) = (ALxps (Fx — Fxo) ) (t) < A||Fx — Fxol|(Laarzo) (£), (3.16)

and since F is continuous on Qy, then there exists § > 0 such that

MIFx — Fxol| < % (3.17)
for any x € Quu with [|x — x| < 6.
By (3.16) and (3.17), we have
(Tax) (£) < Taxo(t) + %(L,\MZQ)(t) <u*(t) - %(L)LMZO)(t), tef0,1], (3.18)

for any x € Quum with ||x — xo|| < 8. This implies that x € O, and so Q, is an open set.
Now we will show that

phx +x, xe€dy, uel0,1]. (3.19)

Suppose (3.19) is not true. Then there exist xo € 0Qy, o € [0, 1] such that pyTrxo = xo.
Obviously, Thxy < u*, and so xo = poTaxo < u*. Since T} is increasing, we have

Thxo < Thu™ <u® —c(A* = 1) (Lanzo) (8). (3.20)
This implies that xy € ), a contradiction. Thus, (3.19) holds, and so
i(Th, 1, Qum) =i(6,0,Qum) = 1. (3.21)

Let

pont(1) = ypont () {7 ey
Ry = | ER S TEA (J 2 d) } , (3.22)
0 [ BB A () \Jamy® SS9
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and R; > max{R,Ry}. For any x € d(B(0,R;) N Qaur), we have

Apom(l) 1 Pou(s)
ql,/\M(rl)pO,)LM(]-) ¢

[|Tax|| = (ATx)(n) =

— poam(1) = ypoam(n) Jy2 (h(x(s))ds

Aboqiam (1) 1
~ poam (1) = yporm(n) Jyn

sa(s)[x(s)]" ds (3.23)

OyAboqram (1) o ,
= ds > R;.
pO,)LM(l) — YPO,)LM(T]) 71/25 a(S)Hx(s)” S 1

Then, we have

i(Ty, B(6,R1) N Qum> Qum) = 0. (3.24)
By (3.21) and (3.24), we have

i(A, (B(6,R1) N Qi) \ 0, Qi) =0—1=—1. (3.25)

It follows from (3.21) and (3.25) that T) has at least two fixed points in (B(6,R;) N
Qum)\ and Q) respectively. Thus (1.1;) has at least two positive solutions for 0 < A <
A, |

References

[1] Y. S. Choi, A singular boundary value problem arising from near-ignition analysis of flame struc-
ture, Differential and Integral Equations. An International Journal for Theory and Applications
4(1991), no. 4, 891-895.

[2] R. Dalmasso, Positive solutions of singular boundary value problems, Nonlinear Analysis. The-
ory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and
Methods 27 (1996), no. 6, 645-652.

[3] W.Fengand].R. L. Webb, Solvability of m-point boundary value problems with nonlinear growth,
Journal of Mathematical Analysis and Applications 212 (1997), no. 2, 467—480.

[4] C.P. Guptaand S. L. Trofimchuk, Existence of a solution of a three-point boundary value problem
and the spectral radius of a related linear operator, Nonlinear Analysis. Theory, Methods & Appli-
cations. An International Multidisciplinary Journal. Series A: Theory and Methods 34 (1998),
no. 4, 489-507.

[5] K.S. Ha and Y.-H. Lee, Existence of multiple positive solutions of singular boundary value prob-
lems, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary
Journal. Series A: Theory and Methods 28 (1997), no. 8, 1429-1438.

[6] X. Liu, Nontrivial solutions of singular nonlinear m-point boundary value problems, Journal of
Mathematical Analysis and Applications 284 (2003), no. 2, 576-590.

[7] R. Ma and N. Castaneda, Existence of solutions of nonlinear m-point boundary-value problems,
Journal of Mathematical Analysis and Applications 256 (2001), no. 2, 556-567.

[8] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index
theory, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary
Journal. Series A: Theory and Methods 47 (2001), no. 7, 4319-4332.

[9] E H. Wong, Existence of positive solutions of singular boundary value problems, Nonlinear Analy-
sis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: The-
ory and Methods 21 (1993), no. 5, 397-406.



X. Xian and D. O’'Regan 17

[10] X. Xu, Multiplicity results for positive solutions of some semi-positone three-point boundary value
problems, Journal of Mathematical Analysis and Applications 291 (2004), no. 2, 673—689.

, Positive solutions for singular m-point boundary value problems with positive parameter,
Journal of Mathematical Analysis and Applications 291 (2004), no. 1, 352-367.

[12] X.Xu and J. Ma, A note on singular nonlinear boundary value problems, Journal of Mathematical
Analysis and Applications 293 (2004), no. 1, 108—124.

[13] Z.Zhangand]. Wang, The upper and lower solution method for a class of singular nonlinear second
order three-point boundary value problems, Journal of Computational and Applied Mathematics
147 (2002), no. 1, 41-52.

[11]

Xu Xian: Department of Mathematics, Xuzhou Normal University, Xuzhou, Jiangsu 221116, China
E-mail address: xuxian68@163.com

Donal O’Regan: Department of Mathematics, National University of Ireland, Galway,
University Road, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie


mailto:xuxian68@163.com
mailto:donal.oregan@nuigalway.ie

	1. Introduction
	2. Several lemmas
	3. Proof of the main results
	References

