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We study the existence andmultiplicity of solutions for the three-point nonlinear bound-
ary value problem u′′(t) + λa(t) f (u) = 0, 0 < t < 1; u(0) = 0 = u(1)− γu(η), where η ∈
(0,1), γ ∈ [0,1), a(t) and f (u) are assumed to be positive and have some singularities, and
λ is a positive parameter. Under certain conditions, we prove that there exists λ∗ > 0 such
that the three-point nonlinear boundary value problem has at least two positive solutions
for 0 < λ < λ∗, at least one solution for λ= λ∗, and no solution for λ > λ∗.
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1. Introduction

In this paper, we consider the following second-order three-point boundary value prob-
lem (BVP)

u′′(t) + λa(t) f (u)= 0, 0 < t < 1,

u(0)= 0= u(1)− γu(η),
(1.1λ)

where η ∈ (0,1),γ ∈ [0,1), a∈ C((0,1),(0,+∞)), and f ∈ C(R+\{0},R+), here λ is a pos-
itive parameter and R+ = [0,+∞).

Now a(t) may have a singularity at t = 0 and t = 1, f (u) may have a singularity at
u= 0, so the BVP (1.1λ) is a singular problem. The BVP (1.1λ) in the case when γ = 0 can
be reduced to the Dirichlet BVP

u′′(t) + λa(t) f (u)= 0, 0 < t < 1,

u(0)= 0= u(1).
(1.2λ)

The BVP (1.2λ) has been studied extensively in the literature, see [1, 2, 5, 9, 12] and the
references therein. Choi [1] studied the particular case where f (u) = eu, a ∈ C1(0,1],
a > 0 in (0,1), and a can be singular at t = 0, but is at most O(1/t2−δ) as t→ 0+ for some
δ. Using the shooting method, he established the following result.
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2 Solutions of three-point nonlinear BVPs

Theorem 1.1 (see [1]). There exists λ0 > 0 such that the BVP (1.2λ) has a solution in
C2(0,1]∩C[0,1] for 0 < λ < λ0, while there is no solution for λ > λ0.

Wong [9] studied the more general BVP (1.2λ). Using also the shooting method,Wong
proved some existence results for positive solutions of the BVP (1.2λ). Recently, Dalmasso
[2] improved Theorem 1.1 and the main results in [9]. Using the upper and lower solu-
tions technique and the fixed point index method, Dalmasso [2] proved the following
result.

Theorem 1.2 (see [2]). Let a and f satisfy the following assumptions:
(A1) a∈ C((0,1),[0,∞)), a �≡ 0 in (0,1), and there exists α,β ∈ [0,1) such that

∫ 1

0
sα(1− s)βa(s)ds <∞; (1.1)

(A2) f ∈ C([0,∞),(0,∞)) is nondecreasing.
Then,
(i) there exists λ0 > 0 such that the BVP (1.2λ) has at least one positive solution in

C2(0,1)∩C[0,1] for 0 < λ < λ0,
(ii) if in addition f satisfies the condition that
(A3) there exists d > 0 such that f (u)≥ du for u≥ 0.

Then there exists λ∗ > 0 such that the BVP (1.2λ) has at least one positive solution in C2(0,
1)∩C[0,1] for 0 < λ < λ∗ while there is no such solution for λ > λ∗.

Ha and Lee [5] also considered the BVP (1.2λ) in the case when f (u)≥ eu. They proved
Theorems 1.3 and 1.4.

Theorem 1.3 (see [5]). Assume the following conditions hold
(B1) a > 0 on (0,1);
(B2) a(t) is singular at t = 0 satisfying

∫ 1
0 sa(s)ds <∞;

(B3) f (u)≥ eu for all u∈R.
Then there exists λ0 such that the BVP (1.2λ) has no solution for λ > λ0 and at least one
solution for 0 < λ < λ0.

Theorem 1.4 (see [5]). Consider (1.2λ), where a and f are continuous and satisfy (B1)–
(B3). Also assume that
(B4) f is nondecreasing.

Then the number λ0 given by Theorem 1.3 is such that
(i) (1.2λ) has no solution for λ > λ0;
(ii) (1.2λ) has at least one solution for λ= λ0;
(iii) (1.2λ) has at least two solutions for 0 < λ < λ0.

Xu and Ma [12] generalized the main results of [1, 2, 5, 9] to an operator equation in
a real Banach space E. In recent years, the multipoint BVP has been extensively studied
(see [3, 4, 6–8, 10, 11, 13] and the references therein). For example, Ma and Castaneda
[7] using the well-known fixed point theorem in cones established some results on the
existence of at least one positive solution for some m-point boundary value problems
if the nonlinearity f is either superlinear or sublinear. The purpose of this paper is to
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extend the main results of [1, 2, 5, 9] to the nonlinear three-point BVP (1.1λ). We will
consider the existence and multiplicity of positive solution for the nonlinear three-point
BVP (1.1λ). The results of this paper are improvements of the main results in [1, 2, 5, 9].

2. Several lemmas

Let us list some conditions to be used in this paper.
(H1) γ ∈ [0,1),a∈ C((0,1),(0,∞)), and

∫ 1

0
s(1− s)a(s)ds <∞. (2.1)

(H2) f (u) = g(u) + h(u), where g : (0,∞) �→ (0,∞) is continuous and nonincreasing,
h :R+ �→R+ is continuous, and

h(u)≥ b0u
w, u∈R+, (2.2)

for some b0 > 0 and w ≥ 1.
(H3) There existsM > 0 such that

h
(
u2
)−h

(
u1
)≥−M(u2−u1

)
(2.3)

for all u1,u2 ∈R+ with u2 ≥ u1
The main results of this paper are the following theorems.

Theorem 2.1. Assume that (H1) and (H2) hold. Then there exists λ∗ > 0 such that the BVP
(1.1λ) has at least one positive solution for 0 < λ < λ∗ and no solution for λ > λ∗.

Moreover, the BVP (1.1λ) has at least one positive solution if ω > 1.

Theorem 2.2. Assume that (H1), (H2), and (H3) hold, ω > 1, and there exists constant
c ≥ 0 such that g(u) = c for all u ∈ (0,+∞). Then there exists λ∗ > 0 such that the BVP
(1.1λ) has at least two positive solutions for 0 < λ < λ∗, at least one solution for λ= λ∗, and
no solution for λ > λ∗.

Remark 2.3. Our theorems generalize Theorems 1.1–1.4 and the main results in [9]. In
fact, Theorems 1.1–1.4 are corollaries of our theorems. Moreover, the nonlinear term
f (u) may have singularity at u= 0, therefore, even in the case when γ = 0, Theorem 2.1
cannot be obtained by Theorems 1.1–1.4 and the abstract results in [12].

Remark 2.4. The nonlinear term f was assumed to be nondecreasing in Theorems 1.2
and 1.4, but in Theorem 2.2 in this paper, we do not assume that the nonlinear term f is
nondecreasing. Thus, even in the case when γ = 0, Theorem 2.2 cannot be obtained from
Theorem 1.4.

Let n ∈N and let N be the natural numbers set. First, let us consider the BVP of the
form

u′′(t) + λa(t)
(
g
(
u+

1
n

)
+h(u)

)
= 0, 0 < t < 1,

u(0)= 0= u(1)− γu(η).
(2.1λn)



4 Solutions of three-point nonlinear BVPs

Definition 2.5. α∈ C([0,1],R)∩C2((0,1),R) is called a lower solution of (2.1λn) if

α′′(t) + λa(t)

(
g

(
α(t) +

1
n

)
+h
(
α(t)

))≥ 0, t ∈ (0,1),

α(0)≤ 0, α(1)− γα(η)≤ 0.

(2.4)

β ∈ C([0,1],R)∩C2((0,1),R) is called an upper solution of (2.1λn) if

β′′(t) + λa(t)

(
g

(
β(t) +

1
n

)
+h
(
β(t)

))≤ 0, t ∈ (0,1),

β(0)≥ 0, β(1)− γβ(η)≥ 0.

(2.5)

According to [13, Lemma 4], we have the following lemma.

Lemma 2.6. Assume that (H1) holds and τ ≥ 0. Then the initial value problems

u′′(t)= τa(t)u(t), 0≤ α < t < 1,

u(α)= 0, u′(α)= 1,

u′′(t)= τa(t)u(t), 0 < t < β ≤ 1,

u(β)= 0, u′(β)=−1

(2.6)

have unique positive solutions pα,τ(t) ∈ AC[α,1) ∩ C1[α,1) and qβ,τ(t) ∈ AC(0,β] ∩
C1(0,β], respectively. Moreover, pα,τ and qβ,τ are strictly convex. As a result,

t−α≤ pα,τ(t)≤ pα,τ(a)
(t−α)
(a−α)

, α≤ t ≤ a≤ 1,

β− t ≤ qβ,τ(t)≤ qβ,τ(b)
(β− t)
(β− b)

, 0≤ b ≤ t ≤ β

(2.7)

for any a∈ [α,1) and b ∈ [0,β).
When 0≤ α < β ≤ 1, for t ∈ [α,β],

W (τ)
[α,β](t)=

∣∣∣∣∣
qβ,τ(t), pα,τ(t)

q′β,τ(t), p′α,τ(t)

∣∣∣∣∣= qβ,τ(α)= pα,τ(β). (2.8)

It is well known that C[0,1] is a Banach space with maximum norm ‖ · ‖. For τ ≥ 0,
denote θτ by

θτ = γ(1−η)
p0,τ(η) + q1,τ(η)

min

{
p0,τ(η)

p0,τ(1)+ p0,τ(η)
,

q1,τ(η)
q1,τ(0)+ q1,τ(η)

}
. (2.9)
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Let P = {x ∈ C[0,1]|x(t)≥ 0 for t ∈ [0,1]} and Qτ = {x ∈ P|x(t)≥ θτ‖x‖t for t ∈ [0,1]}.
It is easy to see that P andQτ are cones in C[0,1]. For τ ≥ 0 and each n∈N, define operators
Lτ and Fn : C[0,1] �→ C[0,1] by

(
Lτx
)
(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0,τ(1)
p0,τ(1)− γp0,τ(η)

∫ 1

0
G(τ)
[0,1](η,s)a(s)x(s)ds, t = η,

∫ η

0
G(τ)
[0,η](t,s)a(s)x(s)ds+ (Lτx)(η)

p0,τ(t)
p0,τ(η)

, t ∈ [0,η],

∫ 1

η
G(τ)
[η,1](t,s)a(s)x(s)ds+ (Lτx)(η)

q1,τ(t) + γpη,τ(t)

q1,τ(η)
, t ∈ [η,1],

(2.10)

and (Fnx)(t)= g(x(t) + 1/n) +h(x(t)) for t ∈ [0,1], where

G(τ)
[α,β](t,s) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qβ,τ(t)
pα,τ(s)
pα,τ(β)

, α≤ s≤ t ≤ β,

pα,τ(t)
qβ,τ(s)

qβ,τ(α)
, α≤ t ≤ s≤ β.

(2.11)

From [13, Theorem 5], we have Lemmas 2.7 and 2.9.

Lemma 2.7. Assume that (H1) holds, τ ≥ 0, and h∈ C([0,1],R). Then w(t) is the solution
of the three-point BVP

−w′′(t) + τa(t)w(t)= a(t)h(t), 0≤ α < t ≤ 1,

w(α)= 0=w(1)− γw(η)
(2.12)

if and only if w ∈ C[0,1] is the solution of the integral equation

w(t)= (Lτh)(t), t ∈ [0,1]. (2.13)

Remark 2.8. To ensure that pα,τ(1)− γpα,τ(η) > 0, the following condition is assumed in
[13, Theorem 5]:

τa(t) >
3γ

(1−η)2
. (2.14)

If 0≤ γ < 1, we have

pα,τ(1)− γpα,τ(η) > pα,τ(η)
(
1+
∫ 1

η
τa(s)q1,τ(s)ds− γ

)
> 0. (2.15)

Thus, if 0≤ γ < 1, condition (2.14) can be removed.
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Lemma 2.9. Assume that (H1) holds, τ,α,ξ∗,η∗ ≥ 0, h ∈ C([0,1],R+). Also suppose that
w ∈ C[α,1] satisfies

−w′′(t) + τa(t)w(t)= a(t)h(t), α < t < 1,

w(α)= ξ∗, w(1)− γw(η)= η∗.
(2.16)

Then w(t)≥ 0 for t ∈ [α,1].

Lemma 2.10. Assume that (H1) holds and τ ≥ 0. Then Lτ : P �→Qτ is a completely continu-
ous and increasing operator.

Proof. From Lemma 2.6, we have for any x ∈ P and t ∈ [0,1],

(
Lτx
)
(t)≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Lτx
)
(η)

p0,τ(t)
p0,τ(η)

, t ∈ [0,η],

(
Lτx
)
(η)

q1,τ(t) + γpη,τ(t)

q1,τ(η)
, t ∈ [η,1],

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Lτx
)
(η)

t

p0,τ(η)
, t ∈ [0,η],

(
Lτx
)
(η)

1− t+ γ(t−η)
q1,τ(η)

, t ∈ [η,1],

≥ (Lτx)(η) γ(1−η)t
p0,τ(η) + q1,τ(η)

,

(2.17)

(
Lτx
)
(η)= p0,τ(1)

p0,τ(1)− γp0,τ(η)

(∫ η

0
q1,τ(η)

p0,τ(s)
p0,τ(1)

a(s)x(s)ds

+
∫ 1

η
p0,τ(η)

q1,τ(s)
q1,τ(0)

a(s)x(s)ds
)

≥ q1,τ(η)
p0,τ(1)− γp0,τ(η)

∫ η

0
p0,τ(s)a(s)x(s)ds,

(2.18)

(Lτx)(η)= p0,τ(1)
p0,τ(1)− γp0,τ(η)

(∫ η

0
q1,τ(η)

p0,τ(s)
p0,τ(1)

a(s)x(s)ds

+
∫ 1

η
p0,τ(η)

q1,τ(s)
q1,τ(0)

a(s)x(s)ds
)

≥ p0,τ(η)
p0,τ(1)− γp0,τ(η)

∫ 1

η
q1,τ(s)a(s)x(s)ds.

(2.19)
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By (2.18) and Lemma 2.6, we have for any t ∈ [0,η],

(
Lτx
)
(t)=

∫ t

0
qη,τ(t)

p0,τ(s)
p0,τ(η)

a(s)x(s)ds

+
∫ η

t
p0,τ(t)

qη,τ(s)

qη,τ(0)
a(s)x(s)ds+

(
Lτx
)
(η)

p0,τ(t)
p0,τ(η)

≤
∫ t

0
qη,τ(0)

p0,τ(s)
p0,τ(η)

a(s)x(s)ds+
∫ η

t
p0,τ(s)

qη,τ(0)

qη,τ(0)
a(s)x(s)ds+

(
Lτx
)
(η)

=
∫ η

0
p0,τ(s)a(s)x(s)ds+

(
Lτx
)
(η)

≤ q1,τ(0)+ q1,τ(η)
q1,τ(η)

(
Lτx
)
(η);

(2.20)

here we have used the facts that qη,τ(0) = p0,τ(η) and p0,τ(1) = q1,τ(0). From (2.19) and
Lemma 2.6, we have for any t ∈ [η,1],

(
Lτx
)
(t)

≤
∫ t

η
q1,τ(s)

pη,τ(1)

pη,τ(1)
a(s)x(s)ds

+
∫ 1

t
pη,τ(1)

q1,τ(s)
q1,τ(η)

a(s)x(s)ds+
(
Lτx
)
(η)

q1,τ(t) + γpη,τ(t)

q1,τ(η)

≤
∫ 1

η
q1,τ(s)a(s)x(s)ds+

(
Lτx

)
(η)

q1,τ(η)
(
(1− t)/(1−η)

)
+γpη,τ(1)

(
(t−η)/(1−η))

q1,τ(η)

≤
∫ 1

η
q1,τ(s)a(s)x(s)ds+

(
Lτx
)
(η)

≤ p0,τ(1)+ p0,τ(η)
p0,τ(η)

(
Lτx

)
(η);

(2.21)

here we have used the fact pη,τ(1)= q1,τ(η). By (2.20) and (2.21), we have

(
Lτ
)
(η)≥min

{
q1,τ(η)

q1,τ(0)+ q1,τ(η)
,

p0,τ(η)
p0,τ(1)+ p0,τ(η)

}
‖Lτx‖. (2.22)

By (2.17) and (2.22), we have

(Lτx)(t)≥ θτ‖Lτx‖t. (2.23)

This implies that Lτ : P �→Qτ.
Now we will show that Lτ : P �→ Qτ is completely continuous. It is easy to show that

Lτ : P �→Qτ is continuous and bounded. Let B ⊂ P be a bounded set such that ‖x‖ ≤ R0
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and ‖Lτx‖ ≤ R0 for some R0 > 0. For any ε > 0, by (H1) there exists δ1 > 0 such that

2R0

∫ δ1

0
G(τ)
[0,η](s,s)a(s)ds+2R0

∫ η

η−δ1
G(τ)
[0,η](s,s)a(s)ds

≤ 2R0qη,τ(0)
∫ δ1

0

(η− s)s
η2

a(s)ds+2R0p0,τ(η)
∫ η

η−δ1

(η− s)s
η2

a(s)ds <
ε

3
.

(2.24)

It is easy to see that there exists δ > 0 such that for any t1, t2 ∈ [0,η], |t1− t2| < δ,

R0

∫ η−δ1

δ1

∣∣∣G(τ)
[0,η]

(
t1,s
)−G(τ)

[0,η]

(
t2,s
)∣∣∣a(s)ds < ε

3
,

R0

∣∣p0,τ(t2)− p0,τ
(
t1
)∣∣

p0,τ(η)
<
ε

3
.

(2.25)

By (2.24)–(2.25), we have for any x ∈ B and t1, t2 ∈ [0,η], |t1− t2| < δ,

∣∣(Lτx)(t2)− (Lτx)(t1)∣∣≤
∫ η

0

∣∣∣G(τ)
[0,η]

(
t2,s
)−G(τ)

[0,η]

(
t1,s
)∣∣∣a(s)x(s)ds

+
(
Lτx
)
(η)

∣∣p0,τ(t2)− p0,τ
(
t1
)∣∣

p0,τ(η)

≤ 2R0

∫ δ1

0
G(τ)
[0,η](s,s)a(s)ds

+2R0

∫ η

η−δ1
G(τ)
[0,η](s,s)a(s)ds

+R0

∫ η−δ1

δ1

∣∣∣G(τ)
[0,η]

(
t1,s
)−G(τ)

[0,η]

(
t2,s
)∣∣∣a(s)ds

+R0

∣∣p0,τ(t2)− p0,τ
(
t1
)∣∣

p0,τ(η)
< ε.

(2.26)

Thus, Lτ(B) is equicontinuous on [0,η]. Similarly, Lτ(B) is also equicontinuous on [η,1].
By the Arzela-Ascoli theorem, Lτ(B)⊂ C[0,1] is a relatively compact set. Therefore, Lτ :
P �→Qτ is a completely continuous operator.

Finally, we show that Lτ : P �→ Qτ is increasing. For any x1,x2 ∈ P, x1 ≤ x2 ∈ P, let
y1 = Lτx1 and y2 = Lτx2, u= y2− y1. Then, by Lemma 2.7, we have

−u′′(t) + τa(t)u(t)= a(t)
(
x2(t)− x1(t)

)≥ 0, t ∈ (0,1),

u(0)= 0= u(1)− γu(η).
(2.27)

Then Lemma 2.9 implies that u(t) ≥ 0 for t ∈ [0,1], and so, y2 ≥ y1. The proof is com-
plete. �

Lemma 2.11. Assume (H1) and (H2) hold. Let λ > 0 be fixed. If there exists Rλ > 0 such that
(2.1λn) has at least one positive solution xn with ‖xn‖ ≤ Rλ for each positive integer n, then
there exist x̄ ∈ C[0,1] and a subsequence {xnk}+∞k=1 of {xn}+∞n=1 such that xnk → x̄ as k→ +∞.
Moreover, x̄ is a positive solution of the BVP (1.1λ)
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Proof. Let z0(t)= 1 for t ∈ [0,1], and zλ(t)= λg(Rλ +1)(Lτz0)(t) for t ∈ [0,1]. Since L0 is
increasing and g is nonincreasing, then we have for any n∈N,

xn(t)= λ
(
L0Fnxn

)
(t)≥ λg

(
Rλ +1

)(
L0z0

)
(t)= zλ(t), t ∈ [0,1]. (2.28)

Let us define the function F by

F(t)=
∫ 1

t
(1− s)a(s)ds, t ∈ (0,1]. (2.29)

Obviously, F ∈ C(0,1], F(1)= 0, and F is nonincreasing on (0,1]. For each n∈N, xn is a
concave function on [0,1]. Then there exists tn ∈ (0,1) such that x′n(tn)= 0. By (H2), we
have

−x′′n (t)≤ λa(t)g
(
xn(t)

)(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)
, t ∈ (0,1), (2.30)

where h̄(Rλ)=maxs∈[0,Rλ]h(s). Integrate (2.30) from tn to t (t ∈ (tn,1)) to obtain

−x′n(t)
g
(
xn(t)

) ≤ λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)∫ t

tn
a(s)ds. (2.31)

Then integrate (2.31) from tn to 1 to obtain

∫ xn(tn)

xn(1)

ds

g(s)
≤ λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)∫ 1

tn
(1− s)a(s)ds= λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)
F
(
tn
)
. (2.32)

On the other hand, by (2.28), we have

∫ xn(tn)

xn(1)

ds

g(s)
≥ xn

(
tn
)− xn(1)

g
(
xn(1)

) ≥ xn(η)(1− γ)
g
(
xn(1)

) ≥ zλ(η)(1− γ)
g
(
zλ(1)

) . (2.33)

By (2.32) and (2.33), we have

F
(
tn
)≥

[
λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)]−1

zλ(η)(1− γ)
g
(
zλ(1)

) . (2.34)

Let β0 ∈ (0,1] be such that

F
(
β0
)=

[
λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)]−1

zλ(η)(1− γ)
g
(
zλ(1)

) . (2.35)

Then (2.34) implies that tn ≤ β0. Similarly, we can show that there exists α0 > 0 such that
tn ≥ α0 for each n ∈ N. Let us define the function I : R+ �→ R+ by I(x) = ∫ x0 ds/g(s) for
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x ∈R+. For any t1, t2 ∈ [β0,1], t1 < t2, by (2.31), we have

I
(
xn
(
t1
))− I

(
xn
(
t2
))=

∫ xn(t1)

xn(t2)

ds

g(s)
=
∫ t2

t1
− x′n(s)ds
g
(
xn(s)

)

≤ λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)∫ t2

t1
dt
∫ t

0
a(s)ds

≤ λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)(∫ t2

t1

(
t2− s

)
a(s)ds+

(
t2− t1

)∫ t1

0
a(s)ds

)

≤ λ

(
1+

h̄
(
Rλ
)

g
(
Rλ +1

)
)(∫ t2

t1
(1− s)a(s)ds+

(
t2− t1

)∫ 1−(t2−t1)

0
a(s)ds

)
.

(2.36)

This and the inequalities (2.21) in [11] imply that the set I({xn}+∞n=1) is equicontinuous
on [β0,1]. It is easy to see that I−1, the inverse function of I , is uniformly continuous
on [0,I(Rλ)]. Therefore, the set {xn}+∞n=1 is equcontinuous on [β0,1]. Similarly, {xn}+∞n=1 is
equcontinuous on [0,α0].

From (2.30), we have for any t ∈ [α0,β0],

∣∣x′n(t)
∣∣≤ λ

(
g
(

min
t∈[α0,β0]

zλ(t)
)
+ h̄
(
Rλ
))∫ β0

α0
a(s)ds. (2.37)

Thus, {xn}+∞n=1 is equcontinuous on [α0,β0]. Then, by the Arzela-Ascoli theorem, we see
that {xn}+∞n=1 ⊂ C[0,1] is a relatively compact set. Thus, there exist x̄ ∈ C[0,1] and a sub-
sequence {xnk}+∞k=1 of {xn}+∞n=1 such that xnk → x̄. By a standard argument (see [11]), we
have that x̄ is a positive solution of the BVP (1.1λ). The proof is complete. �

Lemma 2.12. Assume that (H1) and (H2) hold. Then for small enough λ > 0, the BVP (1.1λ)
has at least one positive solution.

Proof. Let R0 > 0 and λ0 be such that

0 < λ0 <
1
2

∫ R0

γR0

ds

g(s)

(∫ 1

0
s(1− s)a(s)ds

)−1(
1+

h̄
(
R0
)

g
(
R0 + 1

)
)−1

. (2.38)

By Lemma 2.10, λ0L0Fn : P �→ Q0 is a completely continuous operator for each n ∈ N.
Now we will show that

μλ0L0Fnu �= u, μ∈ [0,1], u∈ ∂B
(
θ,R0

)
, n∈N, (2.39)

where B(θ,R0) = {x ∈ Q0|‖x‖ < R0}. Suppose (2.39) is not true. Then there exist μ0 ∈
[0,1], u0 ∈ ∂B(θ,R0), and n0 ∈ N such that μ0λ0L0Fn0u0 = u0. Obviously, μ0 > 0.
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By Lemma 2.7, we have

u′′0 (t) +μ0λ0a(t)
(
g
(
u0 +

1
n0

)
+h
(
u0
))= 0, 0 < t < 1,

u0(0)= 0= u0(1)− γu0(η).

(2.40)

Thus u0 is a concave function on [0,1], and there exists t0 ∈ (0,1) such that u′0(t0)= 0.
A similar argument as in the proof of (2.32) guarantees that

∫ u0
(
t0
)

u0(1)

ds

g(s)
≤ λ0μ0

(
1+

h̄
(
R0
)

g
(
R0 + 1

)
)∫ 1

t0
(1− s)a(s)ds

≤ λ0μ0
t0

(
1+

h̄
(
R0
)

g
(
R0 + 1

)
)∫ 1

0
s(1− s)a(s)ds,

∫ u0
(
t0
)

u0(0)

ds

g(s)
≤ λ0μ0

1− t0

(
1+

h̄
(
R0
)

g
(
R0 + 1

)
)∫ 1

0
s(1− s)a(s)ds.

(2.41)

Since u0(t0)= R0 and u0(1)= γu0(η)≤ γR0, by (2.41), we have

λ0 ≥ 1
2

((
1+

h̄
(
R0
)

g
(
R0 + 1

)
)∫ 1

0
s(1− s)a(s)ds

)−1∫ R0

γR0

ds

g(s)
, (2.42)

which contradicts (2.38). Therefore, (2.39) holds, and so

i
(
λ0L0Fn,B

(
θ,R0

)
,Q0

)= 1, n∈N. (2.43)

This means that for each n∈N, the operator λ0L0Fn has at least one positive fixed point
xn such that ‖xn‖ ≤ R0. By Lemma 2.7, the BVP (2.1λn) has a positive solution xn such that
‖xn‖ ≤ R0. Then by Lemma 2.11, the BVP (1.1λ) has at least one positive solution. The
proof is complete. �

Lemma 2.13. Let α(t) and β(t) be lower and upper solutions of (2.1λn) for some n∈N and
λ > 0, 0≤ α(t)≤ β(t). Then (2.1λn) has at least one positive solution un,λ such that

α(t)≤ un,λ(t)≤ β(t), t ∈ [0,1]. (2.44)

Proof. Let us define the function F∗n by

(
F∗n x

)
(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g

(
β(t) +

1
n

)
+h
(
β(t)

)
, x ≥ β(t),

g
(
x+

1
n

)
+h(x), α(t) < x < β(t),

g

(
α(t) +

1
n

)
+h
(
α(t)

)
, α(t) < x,

(2.45)
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for x ∈ P. Then there exists a constant Cn > 0 such that 0≤ (F∗n x)(t)≤ Cn for x ∈ P. Now
Lemma 2.10 and Schauder’s fixed point theorem guarantees that the operator λL0F∗n has
at least one fixed point. Then the BVP

u′′(t) + λa(t)
(
F∗n u

)
(t)= 0, t ∈ (0,1),

u(0)= 0= u(1)− γu(η)
(2.46)

has at least one solution un,λ(t). Now, we will show that α(t) ≤ un,λ(t) ≤ β(t) for t ∈
[0,1]. Suppose that ε0 =maxt∈[0,1]{un,λ(t)− β(t)} > 0. Let yn,λ(t)= un,λ(t)− β(t). Then,
yn,λ(t)≤ ε0 for t ∈ [0,1]. Let t0 ∈ [t1, t2]⊂ [0,1] be such that

(a) yn,λ(t0)= ε0,
(b) yn,λ(t) > 0 for t ∈ (t1, t2),
(c) [t1, t2] is the maximal interval which has the properties (a) and (b).

Then we have the following three cases.
(1) If t0 ∈ (0,1), then t0 ∈ (t1, t2), y′n,λ(t0)= 0. Also

−y′′n,λ(t)≤ λa(t)
[
g
(
β(t) +

1
n

)
+h
(
β(t)

)− g
(
β(t) +

1
n

)
−h
(
β(t)

)]= 0 (2.47)

for t ∈ [t1, t2]. Then y′n,λ(t) ≤ 0 for t ∈ (t1, t0), and y′n,λ(t) ≥ 0 for t ∈ (t0, t2).
Since yn,λ(t0) =maxt∈[0,1] yn,λ(t), then yn,λ(t) = ε0 for t ∈ [t1, t2], contradicting
the properties (b) and (c).

(2) If t0 = 1, then yn,λ(1)= un,λ(1)−β(1)≤ γ(un,λ(η)−β(η))= γyn,λ(η)≤ γyn,λ(1),
and so yn,λ(1)= 0, a contradiction.

(3) If t0 = 0, then yn,λ(0)= un,λ(0)−β(0) < 0, a contradiction.
Therefore, β(t) ≥ un,λ(t) for t ∈ [0,1]. Similarly, we can show that α(t) ≤ un,λ(t) for

t ∈ [0,1]. Thus, un,λ(t) is a positive solution of (2.1λn). The proof is complete. �

3. Proof of the main results

Proof of Theorem 2.1. Let

Λ= {λ∈ (0,+∞)|(1.1λ) has at least one positive solution}. (3.1)

By Lemma 2.12, Λ �= ∅. Assume that λ0 ∈Λ. Then we can show that
(1) λ′ ∈Λ for any 0 < λ′ ≤ λ0,
(2)

λ0 ≤ p0,0(1)− γp0,0(η)
q1,0(η)

(∫ η

(1/2)η
s2a(s)ds

)−1
max

{
1

b0θ
ω
0
,

1
g(2)

}
. (3.2)

Assume that (1.1λ) has a positive solution z0(t). It is easy to see that z0(t) and 0 are upper
and lower solutions of (2.1nλ′) for each n∈N, respectively. By Lemma 2.13, for each n∈N,
(2.1nλ′) has a positive solution xn,λ′ such that 0 ≤ xn,λ′ ≤ z0. Thus, by Lemma 2.11, there
exist x̄λ′ ∈ C[0,1] and a subsequence {xnk ,λ′}+∞k=1 of {xn,λ′}+∞n=1 such that xnk ,λ′ → x̄λ′ as
k→ +∞ and x̄λ′ is a positive solution of (1.1λ′). Thus, λ′ ∈Λ.
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From Lemma 2.7, we have xnk ,λ′ = λ′L0Fnkxnk ,λ′ . Then by Lemma 2.10,

xnk ,λ′(t)≥ θ0
∥∥xnk ,λ′

∥∥t, t ∈ [0,1]. (3.3)

If ‖xnk ,λ′‖ ≤ 1, then by (H2), we have

1≥ ∥∥xnk ,λ′
∥∥≥ xnk ,λ′(η)≥

g(2)λ′p0,0(1)
p0,0− γp0,0(η)

∫ 1

0
G(0)
[0,1](η,s)a(s)ds

= g(2)λ′p0,0(1)
p0,0(1)− γp0,0(η)

[∫ η

0
q1,0(η)

p0,0(s)
p0,0(1)

a(s)ds+
∫ 1

η
p0,0(η)

q1,0(s)
q1,0(0)

a(s)ds

]

≥ g(2)λ′q1,0(η)
p0,0(1)− γp0,0(η)

∫ η

(1/2)η
sa(s)ds,

(3.4)

and so

λ′ ≤ p0,0(1)− γp0,0(η)
g(2)q1,0(η)

(∫ η

(1/2)η
sa(s)ds

)−1
. (3.5)

If ‖xnk ,λ′‖ ≥ 1, then by (H2) and (3.3), we have

∥∥xnk ,λ′
∥∥≥ xnk ,λ′(η)

≥ b0λ′p0,0(1)
p0,0(1)− γp0,0(η)

∫ 1

0
G(0)
[0,1](η,s)a(s)

[
xnk ,λ′

]w
ds

≥ b0λ′q1,0(η)θω0
p0,0(1)− γp0,0(η)

∫ η

(1/2)η
s2a(s)ds

∥∥xnk ,λ′
∥∥w

≥ b0λ′q1,0(η)θω0
p0,0(1)− γp0,0(η)

∫ η

(1/2)η
s2a(s)ds

∥∥xnk ,λ′
∥∥,

(3.6)

and so

λ′ ≤ p0,0(1)− γp0,0(η)
b0θ

ω
0 q1,0(η)

(∫ η

(1/2)η
s2a(s)ds

)−1
. (3.7)

Then, (3.2) follows from (3.5) and (3.7), and (3.2) implies that Λ is a bounded set. Let
λ∗ = supΛ. Therefore, (1.1λ) has at least one positive solution for 0 < λ < λ∗.

Finally, we will show that λ∗ ∈ Λ if ω > 1. Let {λn} ⊂ Λ be an increasing number se-
quence such that λn → λ∗ as n→ +∞, and λn ≥ λ∗/2 for n= 1,2, . . .. Assume that (1.1λn)
has positive solution zn for each n ∈N. Then zn is an upper solution of (2.1kλn) and 0 is

a lower solution of (2.1kλn) for each k ∈N. By Lemma 2.13, (2.1kλn) has a positive solution
zn,k such that 0≤ zn,k ≤ zn. Then, by Lemma 2.7,

zn,k = λnL0Fkzn,k. (3.8)
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Let k ∈ N be fixed. Now we will show that {zn,k}+∞n=1 is bounded. In fact, by (3.8) and
Lemmas 2.6 and 2.10, we have

∥∥zn,k∥∥≥ (λnL0Fkzn,k)(η)

≥ λ∗p0,0(1)
2
(
p0,0(1)− γp0,0(η)

)
∫ η

(1/2)η
q1,0(η)

p0,0(s)
p0,0(1)

a(s)h
(
zn,k(s)

)
ds

≥ λ∗b0q1,0(η)
2
(
p0,0(1)− γp0,0(η)

)
∫ η

(1/2)η
p0,0(s)a(s)

[
zn,k(s)

]w
ds

≥ λ∗b0θw0 q1,0(η)
2
(
p0,0(1)− γp0,0(η)

)
∫ η

(1/2)η
s2a(s)

∥∥zn,k(s)∥∥wds,

(3.9)

and so

∥∥zn,k∥∥≤
[
2
(
p0,0(1)− γp0,0(η)

)
λ∗q1,0(η)b0θw0

(∫ η

(1/2)η
s2a(s)ds

)−1]1/(w−1)
. (3.10)

This means that {zn,k}+∞n=1 is a bounded set. Using the fact that L0 : P �→ Q0 is a com-
pletely continuous operator and {λn}+∞n=1 is a bounded set, we see that {zn,k} is a rela-
tively compact set. Without loss of generality, we assume that zn,k → z0,k as n→ +∞. Now
the Lebesgue dominant convergence theorem guarantees that z0,k = λ∗L0Fkz0,k. Then, by
Lemma 2.7, z0,k is a positive solution of (1.1kλ∗). By Lemma 2.11, (1.1λ∗) has a positive
solution u∗. The proof is complete. �

Proof of Theorem 2.2. Let λ∗ be defined as in Theorem 2.1 and let λ∈ (0, λ∗) be fixed. Let
us define the nonlinear operators F and Tλ by

(Fx)(t)= f
(
x(t)

)
+Mx(t), t ∈ [0,1], x ∈ P, (3.11)

and (Tλx)(t)= (λLλMFx)(t) for all x ∈ P and t ∈ [0,1]. It follows from Lemma 2.7 that to
show that (1.1λ) has at least two positive solutions, we only need to show that the operator
Tλ has at least two fixed points.

Let z0(t)=1 for t∈[0,1] andΩλ={x ∈QλM | ∃τ >0 such that Tλx≤u∗−τ(LλMz0)(t)}.
Since u∗ is a positive solution of (1.1λ∗), then

−(u∗)′′(t) + λMa(t)u∗(t)= λa(t)
(
Fu∗

)
(t) +

(
λ∗ − λ

)
a(t) f

(
u∗(t)

)
, 0 < t < 1,

u∗(0)= 0, u∗(1)= γu∗(η).
(3.12)

By Lemma 2.7, we have u∗ = Tλu∗ + (λ∗ − λ)LλM f (u∗). Since LλM is increasing and
f (u∗)≥ c, then we have

Tλu
∗ ≤ u∗ − c

(
λ∗ − λ

)(
LλMz0

)
(t). (3.13)

This means that u∗ ∈Ωλ, and so Ωλ �= ∅.
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For any x0 ∈Ωλ, by Lemma 2.10, we have

∥∥u∗∥∥≥ (Tλx
)
(η)≥ λp0,λM(1)

p0,λM(1)− γp0,λM(η)

∫ η

(1/2)η
q1,λM(η)

p0,λM(s)
p0,λM(1)

a(s)h
(
x(s)

)
ds

≥ λq1,λM(η)
p0,λM(1)− γp0,λM(η)

∫ η

(1/2)η
sa(s)b0

[
x0(s)

]w
ds

≥ b0λθ
ω
λMq1,λM(η)

p0,λM(1)− γp0,λM(η)

∫ η

(1/2)η
s2a(s)

∥∥x0(s)∥∥w ds,

(3.14)

and so

∥∥x0∥∥≤
[
p0,λM(1)− γp0,λM(η)
b0λθ

ω
λMq1,λM(η)

(∫ η

(1/2)η
s2a(s)ds

)−1∥∥u∗∥∥
]1/w

=: R0. (3.15)

This means that Ωλ is a bounded set.
For any x0 ∈Ωλ, there exists τ0 > 0 such that Tλx0 ≤ u∗ − τ0(LλMz0)(t). For any x ∈

QλM , by Lemma 2.10, we have for t ∈ [0,1],

(
Tλx

)
(t)− (Tλx0

)
(t)= (λLλM(Fx−Fx0

))
(t)≤ λ

∥∥Fx−Fx0
∥∥(LλMz0)(t), (3.16)

and since F is continuous on QλM , then there exists δ > 0 such that

λ‖Fx−Fx0‖ ≤ τ0
2

(3.17)

for any x ∈QλM with ‖x− x0‖ < δ.
By (3.16) and (3.17), we have

(
Tλx

)
(t)≤ Tλx0(t) +

τ0
2

(
LλMz0

)
(t)≤ u∗(t)− τ0

2

(
LλMz0

)
(t), t ∈ [0,1], (3.18)

for any x ∈QλM with ‖x− x0‖ < δ. This implies that x ∈Ωλ, and so Ωλ is an open set.
Now we will show that

μTλx �= x, x ∈ ∂Ωλ, μ∈ [0,1]. (3.19)

Suppose (3.19) is not true. Then there exist x0 ∈ ∂Ωλ, μ0 ∈ [0,1] such that μ0Tλx0 = x0.
Obviously, Tλx0 ≤ u∗, and so x0 = μ0Tλx0 ≤ u∗. Since Tλ is increasing, we have

Tλx0 ≤ Tλu
∗ ≤ u∗ − c

(
λ∗ − λ

)(
LλMz0

)
(t). (3.20)

This implies that x0 ∈Ωλ, a contradiction. Thus, (3.19) holds, and so

i
(
Tλ,Ωλ,QλM

)= i
(
θ,Ωλ,QλM

)= 1. (3.21)

Let

R′0 =
[
p0,λM(1)− γp0,λM(η)

b0θ
w
Mλq1,λM(η)

(∫ η

(1/2)η
s2a(s)ds

)−1]1/(w−1)
, (3.22)
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and R1 >max{R0,R′0}. For any x ∈ ∂(B(θ,R1)∩QλM), we have

∥∥Tλx
∥∥≥ (λTx)(η)≥ λp0,λM(1)

p0,λM(1)− γp0,λM(η)

∫ η

η/2
q1,λM(η)

p0,λM(s)
p0,λM(1)

a(s)h
(
x(s)

)
ds

≥ λb0q1,λM(η)
p0,λM(1)− γp0,λM(η)

∫ η

η/2
sa(s)

[
x(s)

]w
ds

≥ θwMλb0q1,λM(η)
p0,λM(1)− γp0,λM(η)

∫ η

η/2
s2a(s)

∥∥x(s)∥∥w ds > R1.

(3.23)

Then, we have

i
(
Tλ,B

(
θ,R1

)∩QλM ,QλM)= 0. (3.24)

By (3.21) and (3.24), we have

i
(
λ,
(
B
(
θ,R1

)∩QλM
)\Ω̄λ,QλM

)= 0− 1=−1. (3.25)

It follows from (3.21) and (3.25) that Tλ has at least two fixed points in (B(θ,R1)∩
QλM)\Ω̄λ and Ωλ, respectively. Thus (1.1λ) has at least two positive solutions for 0 < λ <
λ∗. �
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