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We prove that the complete elementary symmetric function cr = cr(x) = C[r]
n (x) =

∑
i1+···+in=r x

i1
1 ···xinn and the function φr(x) = cr(x)/cr−1(x) are Schur-convex functions

in Rn
+ = {(x1,x2, . . . ,xn) | xi > 0}, where i1, i2, . . . , in are nonnegative integers, r ∈ N = {1,

2, . . .}, i = 1,2, . . . ,n. For which, some inequalities are established by use of the theory of
majorization. A problem given by K. V. Menon (Duke Mathematical Journal 35 (1968),
37–45) is also solved.

Copyright © 2006 Kaizhong Guan. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the complete elementary symmetric function

cr = cr(x)= C[r]
n (x)=

∑

i1+···+in=r
xi11 ···xinn , (1.1)

where i1, i2, . . . , in are nonnegative integers, r ∈N . Define c0(x)= 1. Correspondingly, the
generalized r-order symmetric mean is

Dr(x)=D[r]
n (x)=

(
r +n− 1
n− 1

)−1
C[r]
n (x), (1.2)

where
(
r+n−1
n−1

)
= (n+ r− 1)!/(n− 1)!r!.

For (1.1) and (1.2), Menon [7] mainly obtained the following results

(
C[r]
n (a+ b)

)1/r ≤ (C[r]
n (a)

)1/r
+
(
C[r]
n (b)

)1/r
; (1.3)

cr(a)cs−1(a)≥ cr−1(a)cs(a), 0 < r < s; (1.4)
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2 The complete elementary symmetric function

(
cr(a)

)1/r ≥ (cs(a)
)1/s

, 0 < r < s; (1.5)

Dr−2(a)Dr+2(a)−Dr−1(a)Dr+1(a)≥ 0, n= 2. (1.6)

When n > 2, is inequality (1.6) true? This problem was given out by Menon in [7].
Detemple and Robertson [2] derived

Dr−1(a)Dr+1(a)−D2
r (a)≥ 0, r = 1,2,3. (1.7)

Whether inequality (1.7) is still valid for r ≥ 4 was given in [5], and this problem was
solved in [3].

The Schur-convex functions were introduced by I. Schur in 1923 [6], and has many
important applications in analytic inequalities. Hardy et al. were also interested in some
inequalities that are related to Schur-convex functions [4], the following definitions can
be found in many references such as [5, 6, 8, 9].

Definition 1.1. Suppose that xi, yi ∈ R, i = 1,2, . . . ,n, x = (x1, . . . ,xn) and y = (y1, . . . , yn).
Rearrange the components of x and y such that x[1] ≥ x[2] ≥ ··· ≥ x[n], y[1] ≥ y[2] ≥
··· ≥ y[n]. If

∑k
i=1 x[i] ≤

∑k
i=1 y[i] (1 ≤ k ≤ n− 1), and

∑n
i=1 x[i] =

∑n
i=1 y[i], then x is said

to be majorized by y, denote it by x ≺ y.

Definition 1.2. A⊆ Rn is called symmetric set, if x ∈ A implies Px ∈ A for n×n permu-
tation matrix P.

Definition 1.3. f : A→ R(A⊂ Rn) is called Schur-convex if x ≺ y, then

f (x)≤ f (y). (1.8)

It is called strictly Schur-convex if the inequality is strict; f (x) is called Schur-concave
(resp., strictly Schur-concave) if the inequality (1.8) is reversed.

Definition 1.4. f : A→ R is called symmetric if for every permutation matrix P,

f (Px)= f (x) (1.9)

for all x ∈ A.

Let the mark “x ≤ y” stand for xi ≤ yi, i= 1,2, . . . ,n.

Definition 1.5. f : A(⊆ Rn)→ R is called monotonic increasing function if x ≤ y, then
f (x)≤ f (y).

In this paper, we prove the functions cr(x) and cr(x)/cr−1(x) to be Schur-convex func-
tions in Rn

+ = {(x1,x2, . . . ,xn) | xi > 0, i= 1,2, . . . ,n}. Some inequalities for them are estab-
lished by using of the theory of majorization. “Ky Fan” inequality is generalized. We show
that inequality (1.6) is true for n > 2, and thus the problem in [7] is solved.

2. Lemma

In this section, We give the following lemmas for the proofs of our main results. Every
Schur-convex function is a symmetric function [11]. It is not hard to see that not every
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symmetric function can be a Schur-convex function [9, page 258]. However, we have the
following so-called Schur’s condition.

Lemma 2.1 [9, page 259]. Let f (x) = f (x1,x2, . . . ,xn) be symmetric and have continuous
partial derivative on In = I × I × ···× I (n copies), where I is an open interval. Then f :
In→ R is Schur-convex if and only if

(
xi− xj

)
(
∂ f

∂xi
− ∂ f

∂xj

)

≥ 0 (2.1)

on In. It is strictly Schur-convex if (2.1) is a strict inequality for xi 	= xj , 1≤ i, j ≤ n.
In Schur’s condition, the domain of f (x) does not have to be a Cartesian product In.

Lemma 2.1 remains true if we replace In by a set A ⊆ Rn with the following properties ([6,
page 57]):

(i) A is convex and has a nonempty interior,
(ii) A is symmetric.

Lemma 2.2 [10]. Suppose that xi > 0, i= 1,2, . . . ,n,
∑n

i=1 xi = s, c ≥ s, then

c− x

nc/s− 1
=
(

c− x1
nc/s− 1

, . . . ,
c− xn
nc/s− 1

)

≺ (x1,x2, . . . ,xn
)= x. (2.2)

Lemma 2.3 [10]. Suppose that xi > 0, i= 1,2, . . . ,n,
∑n

i=1 xi = s, c ≥ s, then

c+ x

s+nc
=
(
c+ x1
s+nc

,
c+ x2
s+nc

, . . . ,
c+ xn
s+nc

)

≺
(
x1
s
,
x2
s
, . . . ,

xn
s

)

= x

s
. (2.3)

Lemma 2.4 [6]. Suppose that xi > 0, i= 1,2, . . . ,n,
∑n

i=1 xi = s, then

s

n
=
(
s

n
,
s

n
, . . . ,

s

n

)

≺ (x1,x2, . . . ,xn
)= x. (2.4)

Lemma 2.5. Suppose that xi > 0, i= 1,2, . . . ,n. Let

xi =
(
x1, . . . ,xi−1,xi+1, . . . ,xn

)
. (2.5)

Then we have

cr(x)= xicr−1(x) + cr
(
xi
)
. (2.6)

Proof. It is easy to see that

cr(x)=
∑

i1+i2+···+in=r
xi1i ···xinn = xri + xr−1i c1

(
xi
)
+ ···+ cr

(
xi
)
,

cr−1(x)= xr−1i + xr−2i c1
(
xi
)
+ ···+ cr−1

(
xi
)
.

(2.7)

Hence

cr(x)= xicr−1(x) + cr
(
xi
)
. (2.8)

�
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Lemma 2.6 [3]. Suppose that a= (a1,a2, . . . ,an), ai ≥ 0, i= 1,2, . . . ,n, and that r ≥ 1 is an
integer, then

D2
r (a)≤Dr−1(a)Dr+1(a). (2.9)

3. Main results

In this section we give our main results. Some Schur-convex functions of the complete
elementary symmetric function are given here. Some analytic inequalities are established.

Theorem 3.1. The complete elementary symmetric function

cr = cr(x)= C[r]
n (x)=

∑

i1+···+in=r
xi11 ···xinn (3.1)

is a Schur-convex function in Rn
+, and is increasing in xi, i= 1,2, . . . ,n.

Proof. In the first, we prove that cr(x) is an increasing function with respect to xi. In fact,
by Lemma 2.5, we have

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
. (3.2)

We can inductively conclude that

∂cr(x)
∂xi

≥ 0, i= 1,2, . . . ,n. (3.3)

Hence, cr(x) is an increasing function in xi.
Next, we prove that cr(x) is a Schur-convex function in Rn

+. It is clear that cr(x) is
symmetric and have continuous partial derivatives in Rn

+. By Lemma 2.1, we only need
prove that

(
xi− xj

)
(
∂cr(x)
∂xi

− ∂cr(x)
∂xj

)

≥ 0, i 	= j. (3.4)

This can be obtained by induction.
(i) When r = 2, differentiating cr(x) with respect to xi, we obtain

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
=

n∑

k=1
xk + xi. (3.5)

And so

(
xi− xj

)
(
∂cr(x)
∂xi

− ∂cr(x)
∂xj

)

= (xi− xj
)2 ≥ 0. (3.6)

(ii) Assume that (3.4) is true for r− 1. Then, still by Lemma 2.5, it follows that

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
,

∂cr(x)
∂xj

= cr−1(x) + xj
∂cr−1(x)
∂xj

. (3.7)
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Noticing

∂cr(x)
∂xi

− ∂cr(x)
∂xj

= xi
∂cr−1(x)

∂xi
− xj

∂cr−1(x)
∂xj

= xi
∂cr−1(x)

∂xi
− xj

∂cr−1(x)
∂xi

+ xj
∂cr−1(x)

∂xi
− xj

∂cr−1(x)
∂xj

= (xi− xj
)∂cr−1(x)

∂xi
+ xj

(
∂cr−1(x)

∂xi
− ∂cr−1(x)

∂xj

)

,

(3.8)

we get

(
xi− xj

)
(
∂cr(x)
∂xi

− ∂cr(x)
∂xj

)

= (xi− xj
)2 ∂cr−1(x)

∂xi
+ xj(xi− xj)

(
∂cr−1(x)

∂xi
− ∂cr−1(x)

∂xj

)

≥ 0.

(3.9)

From (i) and (ii), by mathematical induction method, inequality (3.4) is true. Thus, the
proof is complete. �

Theorem 3.2. The function φr(x)= cr(x)/cr−1(x) is a Schur-convex function in Rn
+, and is

increasing in xi, i= 1,2, . . . ,n, where r ≥ 1 is a positive integer.

Proof. It is clear that φr(x) is symmetric and have continuous partial derivatives in Rn
+.

Differentiating φr(x) with respect to xi, we have

∂φr(x)
∂xi

= 1
(
cr−1(x)

)2

[

cr−1(x)
∂cr(x)
∂xi

− cr(x)
∂cr−1(x)

∂xi

]

. (3.10)

By Lemma 2.5 and computing, we derive

∂φr(x)
∂xi

− ∂φr(x)
∂xj

= 1
(
cr−1(x)

)2

[

cr
(
x j
)∂cr−1(x)

∂xj
− cr

(
xi
)∂cr−1(x)

∂xi

]

. (3.11)

Notice

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
= cr−1(x) + xi

[

cr−2(x) + xi
∂cr−2(x)

∂xi

]

= cr−1(x) + xicr−2(x) + x2i
∂cr−2(x)

∂xi
= ···

= cr−1(x) + xicr−2(x) + x2i cr−3(x) + ···+ xr−2i c1(x) + xr−1i .

(3.12)
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By Lemma 2.5 and using (3.12), we have

∂φr(x)
∂xi

= (cr−1(x)cr−1(x)− cr(x)cr−2(x)
)
+ xi

(
cr−1(x)cr−2(x)− cr(x)cr−3(x)

)

+ ···+ xr−2i

(
cr−1(x)c1(x)− cr(x)c0(x)

)
+ cr−1(x)xr−1i ,

(3.13)

∂φr(x)
∂xi

− ∂φr(x)
∂xj

= 1
(
cr−1(x)

)2

{[
cr(x)− xjcr−1(x)

]

× [cr−2(x) + xjcr−3(x) + x2j cr−4(x) + ···+ xr−3j c1(x) + xr−2i

]

− [cr(x)− xicr−1(x)
]
[cr−2(x) + xicr−3(x) + x2i cr−4(x)

+ ···+ xr−3i c1(x) + xr−2i

]}

= 1
(
cr−1(x)

)2

{[
cr−1(x)cr−2(x)− cr(x)cr−3(x)

](
xi− xj

)

+
[
cr−1(x)cr−3(x)− cr(x)cr−4(x)

](
x2i − x2j

)
+ ···

+
[
cr−1(x)c1(x)− cr(x)c0(x)

](
xr−2i − xr−2j

)

+ cr−1(x)
(
xr−1i − xr−1j

)}
.

(3.14)

From (1.4), we obtain

cr−1(x)
cr(x)

>
cr−3(x)
cr−2(x)

,
cr−1(x)
cr(x)

>
cr−4(x)
cr−3(x)

, . . . ,
cr−1(x)
cr(x)

>
c0(x)
c1(x)

. (3.15)

Therefore

∂φr(x)
∂xi

≥ 0, (3.16)

which means that φr(x) is increasing with respect to xi.
Notice

(
xi− xj

)(
xki − xkj

)≥ 0
(
1≤ k ≤ r− 1

)
. (3.17)

From (3.15) and (3.17), we get

(
xi− xj

)
(
∂φr(x)
∂φxi

− ∂φr(x)
∂φxj

)

≥ 0. (3.18)

By Lemma 2.1, φr(x) is Schur-convex in Rn
+. �
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Theorem 3.3. Suppose that xi > 0, i= 1,2, . . . ,n,
∑n

i=1 xi = s, c ≥ s. Then the following state-
ments are valid:

(i)

x1 + x2 + ···+ xn
n

≤ (Dr(x)
)1/r

. (3.19)

(ii)

cr(c− x)
cr(x)

≤
(nc

s
− 1
) cr−1(c− x)

cr−1(x)
. (3.20)

Proof. (i) By Theorem 3.1 and Lemma 2.4, we have cr(s/n)≤ cr(x). From this, we obtain
(3.19).

(ii) By Theorem 3.2 and Lemma 2.2, we have φr((c− x)/(nc/s− 1)) ≤ φr(x), which
shows that (3.20) is true. �

Theorem 3.4. Suppose that xi > 0, i= 1,2, . . . ,n, and
∑n

i=1 xi = s, c > 0, then

cr(c+ x)
cr(x)

≤
(nc

s
+1
) cr−1(c+ x)

cr−1(x)
. (3.21)

Proof. By Theorem 3.2 and Lemma 2.3, we have φr((c + x)/(s + nc)) ≤ φr(x/s), from
which we obtain (3.21). �

Using Theorems 3.3 and 3.4, we can immediately get the following consequences.

Corollary 3.5. Suppose that xi > 0,
∑n

i=1 xi = s, c ≥ s, then

cr(c− x)
cr(x)

≤
(nc

s
− 1
) cr−1(c− x)

cr−1(x)
≤
(nc

s
− 1
)2 cr−2(c− x)

cr−2(x)

≤ ··· ≤
(nc

s
− 1
)r c0(c− x)

c0(x)
=
(nc

s
− 1
)r
.

(3.22)

Remark 3.6. Let c = 1, we can establish the converse inequality of “Ky Fan” inequality [1],
that is

∑n
i=1 xi∑n

i=1
(
1− xi

) ≤
(

cr(x)
cr(1− x)

)1/r
. (3.23)

Corollary 3.7. Suppose that xi > 0,
∑n

i=1 xi = s, c ≥ 0, then

cr(c+ x)
cr(x)

≤
(nc

s
+1
) cr−1(c+ x)

cr−1(x)
≤
(nc

s
+1
)2 cr−2(c+ x)

cr−2(x)

≤ ··· ≤
(nc

s
+1
)r c0(c− x)

c0(x)
=
(nc

s
+1
)r
.

(3.24)
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Theorem 3.8. Suppose that 0 < xi ≤ 1/2, i = 1,2, . . . ,n, let 1− x = (1− x1,1− x2, . . . ,1−
xn), then

cn(1− x)
cn(x)

≥ ··· ≥ cr(1− x)
cr(x)

≥ cr−1(1− x)
cr−1(x)

≥ ··· ≥ c1(1− x)
c1(x)

= An(1− x)
An(x)

, (3.25)

where An(x) is arithmetic mean of real numbers x1,x2, . . . ,xn.

Proof. By Theorem 3.2, φr(x)= cr(x)/cr−1(x) is an increasing function inA= {(x1,x2, . . . ,
xn) | 0 < xi < 1}, and 1− x ≥ x. Therefore

φr(1− x)≥ φr(x). (3.26)

Or

cr(1− x)
cr−1(1− x)

≥ cr(x)
cr−1(x)

. (3.27)

It means (3.25) is valid. �

Remark 3.9. The inequality (3.25) is of the type of the “Ky Fan” inequality [1]:

Gn(1− x)
Gn(x)

≥ An(1− x)
An(x)

. (3.28)

Theorem 3.10. Suppose that xi > 0, i= 1,2, . . . ,n, n≥ 2, then

Dr−2(x)Dr+2(x)−Dr−1(x)Dr+1(x)≥ 0. (3.29)

Proof. By Lemma 2.6, we can obtain that

D2
r (x)≤Dr−1(x)Dr+1(x); D2

r−1(x)≤Dr−2(x)Dr(x); D2
r+1(x)≤Dr(x)Dr+2(x).

(3.30)

From them, it follows that

Dr−2(x)Dr+2(x)−Dr−1(x)Dr+1(x)≥ 0. (3.31)

�

Remark 3.11. Theorem 3.10 shows the inequality (1.6) is true for n > 2. So, our result
solve the problem given by Menon in [7].
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