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We establish a relation between the notion of an operator of an analytic semigroup and
matrix transformations mapping from a set of sequences into y, where y is either of the
sets I, o, Or c. We get extensions of some results given by Labbas and de Malafosse
concerning applications of the sum of operators in the nondifferential case.
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1. Introduction

In this paper, we are interested in the study of operators represented by infinite matrices.
Note that in [1], Altay and Bagar gave some results on the fine spectrum of the difference
operator A acting on the sequence spaces ¢y and c. Then they dealt with the fine spectrum
of the operator B(r,s) defined by a matrix band over the sequence spaces ¢y and c. In
de Malafosse [3, 5], there are results on the spectrum of the Cesaro matrix C; and on
the matrix A considered as operators from s, to itself. Spectral properties of unbounded
operators are used in the theory of the sum of operators. The notion of generators of
analytic semigroup was developed in this way. Recall that this theory was studied by many
authors such as Da Prato and Grisvard [2, 12], Fuhrman [11], Labbas and Terreni [16,
17]. Some applications can also be found in Labbas and de Malafosse [15] of the sum of
operators in the theory of summability in the noncommutative case. Some results were
obtained in de Malafosse [4] on the equation

Ax+Bx—Ax=y forA=0 (1.1)

in a reflexive Banach set of sequences E, where y € E, A and B are two closed linear operators
represented by infinite matrices with domains D(A) and D(B) included in E.

Here we are interested in some extensions of results given in [15] using similar matri-
ces A and B. Recall that the choice of these matrices was motivated by the solvability of
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2 Matrix and generators of analytic semigroups

a class of infinite-tridiagonal systems. Then we study some spectral properties of A and
B considered as matrix transformations in the sets (s, /o) and (s1/s,1e ), OF (s?/a,co) and
(s(l)/ﬁ,co), or (s(lj)a,c) and (s(lj)ﬁ,c). Then we show that (—A) and (—B) are generators of ana-
Iytic semigroups, where D(A) and D(B) are of the form y(A) and x(B) with y = I, co, or c.
Here the relative boundedness with respect to A or B is not satisfied, so we are not within
the framework of the classical perturbation theory given by Kato [14] or Pazy [18].

In this paper, we establish a relation between results in summability and basic notions
used in the theory of the sum of operators. For this, we need to recall the following.

2. Preliminary results

2.1. Recall of some results in summability. Let M = (dup)nm=1 be an infinite matrix
and consider the sequence x = (x,,),>1. We will define the product Mx = (M,(x)),>, with
M, (x) = X, _| GumXm whenever the series are convergent for all n > 1. Let s denote the set
of all complex sequences. We write ¢, ¢y, ¢ and I, for the sets of finite, null, convergent,
and bounded sequences, respectively. For any given subsets X, Y of s, we will say that
the operator represented by the infinite matrix M = (aum)nm=1 maps X into Y, that is,
M € (X,Y), if the series defined by M,(x) = >, _| @umxX are convergent for all # > 1 and
for all x € X and Mx € Y for all x € X. For any subset X of s, we will write

MX = {y €s:y=Mx for some x € X}. (2.1)
If Y is a subset of s, we will denote the so-called matrix domain by
YM)={xes:y=MxeY}. (2.2)

Let X C s be a Banach space, with norm || - [|x. By B(X), we will denote the set of all
bounded linear operators, mapping X into itself. We will say that L € B(X) if and only if
L:X — X isa linear operator and

IL1IZx) = sup (ILxllx/llxllx) < oo. (2.3)
x#0

It is well known that (X)) is a Banach algebra with the norm ||LH§'7}(X)- A Banach space
X C s is a BK space if the projection P, : x — x, from X into C is continuous for all n.
A BK space X D ¢ is said to have AK if for every x € X, x = lim,_ SP_ xrex, where
ex = (0,...,1,...), 1 being in the kth position. It is well known that if X has AK, then
B(X) = (X,X), see [9, 13, 19].

Put now Ut = {x = (x,)u>1 € s: x, >0 for all n}. For & = (§,),=1 € U*, we will define
the diagonal matrix D¢ = (&,0um)n,m=1, (where 8, = 0 for all n # m and 8, = 1 other-
wise). For a € U*, we will write s, = Dylw, (cf. [3-10, 15]. The set s, is a BK space with
the norm ||x|s, = sup,,.,(Ix,|/a,). The set of all infinite matrices M = (@um)nm>1 with

IM]ls, = sup (i > |a,,m|ocm) < o0 (2.4)

nx1 non=1
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is a Banach algebra with identity normed by || - |ls,. Recall that if M € (sq,54), then
IMxls, < lIMIls, lIx|ls, for all x € s4. Thus we obtain the following result, (cf. [7]) where
we put B(sa) = B(sa) ((SasSa)-

LemMaA 2.1. Forany given o« € U, B(sa) = Sq = (Sa>Sa)-

In the same way, we will define the sets s% = D¢y and st = Dyc, (cf. [7]). The sets 0
and sgf) are BK spaces with the norm || - |5, and s) has AK. It was shown in [9, 10] that for
any matrix M € (sq,Sq), we get

1Ml = M1y = IMI% o = ML, (2.5)

In all what follows, we will use the next lemma.

LEmMMA 2.2. Leta, f € U" and let X, Y be subsets of s. Then
M € (DoX,DgY)  iff DiyjyMD, € (X, Y). (2.6)

2.2. Operator generators of analytic semigroups. We recall here some results given in
Da Prato and Grisvard [2] and Labbas and Terreni [16, 17]. Let E be a Banach space. We
consider two closed linear operators A and B, whose domains are D(A) and D(B) in-
cluded in E. For every x € D(A)(D(B), we then define their sum Sx = Ax + Bx.
The spectral properties of A and B are the following:
(H) there are C4,Cg >0, and €4, 3 € ]0,7[ such that

p(A)D> > ={zeC:|Arg(z)| <m—ea},
A

(A —2D) Y|y < Ca Vze > —{0},
|z| n

p(B)D> > ={ze€C: |Arg(z)| <7 —es}, (2.7)
B

) C
(B =zD) Y|y < ﬁ Vze > —{0},
B

EAtER LTI
It is said that A and B are generators of analytic semigroups not strongly continuous at

t = 0 and we have 6(A) N o(—B) = @ and p(A) Up(—B) = C.
The following is well known in the commutative case:

(A=EDT'B-n)"' = (B-n)"(A-ED' =0 VEep(A), nepB), (2.8)

if D(A) and D(B) are densely defined in E, it is well known (cf. [2]) that the bounded
operator defined by

L - _Lj (B+zI)(A-M —zI)'dz VA >0, (2.9)
2im Jr
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where T is an infinite-sectorial curve lying in p(A — AI) () p(—B) coincides with (A+B —
At

In the following, we will consider matrix transformations A and B mapping in a set of
sequences and we will show that they satisfy hypothesis (H).

3. Definition of the operators A and B

We will consider two infinite matrices and deal with the case when A and B map into [
or ¢p and with the case when A and B map into c. In each case, we will study their spectral
properties.

For given sequences a = (ay)u>1, b = (bp)ns1, B = (Bu)nz=1> and y = (yn)n=1, let A and
B be the following infinite matrices:

ai b] O /31 O
A= - ., B=| . 1
0} an bn Yn ﬁn (3 )
O

3.1. The case when A and B are operators mapping from D(A) and D(B) into E, where
E =l or ¢g. The next conditions are consequences of results given in [15]. When E is
either of the sets I or ¢y, we assume that A satisfies the following properties:
ac U*, a,isstrictly increasing, lim a, = o, (3.2a)
n—oo

there is My >0 such that |b,| <M, Vn. (3.2b)

Similarly, we assume that B satisfies the next conditions:

BeU’, limpy=L+0, (3.3a)
lim P21 _ o, (3.3b)
k—oo Aok+1

(«) thereis Mg >0 such that |y | < Mg Vn, (B)yms1 =0(1) (n— o). (3.3c)

3.2. The case when A and B are operators mapping D(A) and D(B) into c. Here we need
to recall the characterization of (c,c¢).

LemMA 3.1. A € (¢,c) if and only if
(1) A€ Sl)
(i) limy—c Xy Gum = L for some l € C,
(iii) limy—. o @pm = by for some l,, € C, m = 1,2,....
We will see that D(A) = c(A) = Sl/u and D(B) =¢(B) = 51//; Here we will show that
neither of the sets D(A) = s1 /a and D(B) = 51 /ﬁ is embedded in the other.
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ProrositionN 3.2. Leta, f € U'. Then

51/a SZ 51//5’ Sl/ﬂ SZ 51 (3.4)

if and only if B/a, a/B & c.

Proof. The inclusion 5(1% C s(lc/ﬁ means that [ € (s1 TS| /ﬁ) and by Lemma 2.2, we have
D,g/a (c ¢). From Lemma 3.1, we conclude that sl/L C 51//3 if and only if f/a € c. So
Sl/a ¢ s1 /ﬁ is equivalent to f/a & c. Similarly, we have s1 //3 ¢ sl/a if and only if a/f ¢ c.
This completes the proof. O

We assume that A and B satisty the following hypotheses. The matrix A is defined in
(3.1) with

ae U, a,isstrictly increasing, lima, = oo, (3.5a)
n— oo
beec. (3.5b)

For B given in (3.1), we do the following hypotheses:

BeU", %&n}oﬁn = oo, (3.6a)
lm/’ﬂ:m, 1im@:17éo, (3.6b)
k—oo Aok+1 k—co Aok

yEec. (3.60)

This lead to the next remark.

Remark 3.3. The choice of fin (3.6D) is justified by Proposition 3.2 and so neither of the
sets D(A) = 51 /a and D(B) = 5(12; is embedded in the other one. We will see in Proposition
5.7 and Theorem 5.8 that we need to have (3.5a) and (3.6a). Then we will see that A and
B are closed operators when b, y € c. Finally, notice that D(B) C ¢ means 1/ € ¢ which
is trivially satisfied in (3.6a) and it is the same for A.

4. First properties of the operators A and B

4.1. The case when the operators A and B are considered as matrix maps from D(A)
and D(B) into E, where E is equal to [, or ¢y. In this section, we will assume A and B
satisfy (3.2) and (3.3). For the convenience of the reader, recall the following well-known
results.

LEMMA 4.1. (i) A € (s, 1) if and only if A € S;.
(ii) A € (co>c0) if and only if A € Sy and limy,—.« apm = 0 for each m = 1,2,....

PrOPOSITION 4.2. (i) A € (s1/0,1) and A € (5%, co).
(ii) B € (si/p, 1) and B € (5(1)/[;,c0).
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Proof. (i) We have [AD1/q]un = 1 and [AD1ja]nn+1 = bu/ans for all n, and [ADy/a)um =0
otherwise. Then

||AD1/a||S1 = sup <1+|ab—zl|) =0(1) (n— o). (4.1)

So by Lemma 4.1, we have ADy/, € (Ix,l) and by Lemma 2.2, A € (s1/4,1x). The proof is
similar for A € (s,,,¢o) note that in this case, [AD1/4]um — 0 (n — o) for each m > 1.

(ii) Now [BDy/glun = 1 and [BDyglyn-1 = yn/Pu-1 for all n, and [BDy/g],m = 0 other-
wise. By (3.3a), (3.3¢)(f3), we have

yg’;l =o(1) (n— o) (4.2)
and by (3.2a), (3.3b) and (3.3¢)(a), we get
e o)
Then
I8Duslly, =sup (1+ 221 ) =00 (n— ) (.4

So BDyg € (lw,1») and B € (s1/p,1). Finally, we obtain B € (s(l)/ﬁ,co) reasoning as above.
O

We deduce that if E = [* = s;, the matrix A is defined on D(A) = sy, and B is defined
on D(B) = sy. It can be shown that [,(A) = 51/, and [ (B) = s1/5. When E = ¢, we will
see in Theorem 5.6(i), (ii) that D(A) = ¢y(A) = s},, and D(B) = ¢y(B) = s‘l)/ﬁ. We deduce
from (3.3a), (3.3b) that in each case, neither of the sets D(A) and D(B) is embedded in
the other.

4.2. The case when the operators A and B are considered as matrix maps from D(A)
and D(B) into c. We assume that A and B satisfy (3.5) and (3.6). From the preceding, we
immediately get the following.

ProrosITioN 4.3. A € (sY/)a,c) and B € (sgc/};,c).

Proof. Itis enough to notice that by (3.5) we have (1+b,/a,+1)u>1 € ¢. Then from Lemma
3.1, we conclude that A € (s(ljfl,c). We also have by (3.6),

Yoo o
L0 () (4.5)

so BDysg € (¢,c) and B € (s(lc/;;,c). O

We will see in Theorem 5.8(i), (ii) that D(A) = ¢(A) = 5(1531 and D(B) = ¢(B) = 5(12;
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5. The matrices A and B as operator generators of an analytic semigroup

In this section, we will show that A and B are generators of analytic semigroup in each
case E=lo, E=cy,or E=c.

5.1. The case when A and B are considered as matrix maps from D(A) and D(B) into E,
where E = [, or ¢p. In this section, A and B satisfy (3.2) and (3.3). The next result was
shown in [15] in the case when A € (s1/4,1) and B € (13,1 ) With a, = a”", a > 1, and
was defined by 2, = 1 and B,,4+1 = (2n+1)! for all n, so we omit the proof.

ProposITION 5.1. In the space l, the two linear operators A and B are closed and satisfy
the following:

(1) D(A) = s1/as

(ii) D(B) = s1/ps

(iii) D(A) # l, D(B) # s,
(iv) there are €4, €g >0 (with ea+ e < 1) such that

M
[l(A —M)AH;;(IN) =

VA+#0, |Arg(l)| = eqa,
(5.1)
M
H(B+#I)_1||;S(lm) = ﬂ Vu#0, |[Arg(p)| <m—ep.

This result shows that —A and —B satisfy hypothesis (H) and o¢(—A)(\o(B) = &. So
—A and - B are generators of the analytic semigroups (=" and e(~5* not strongly con-
tinuous at f = 0. We have similar results when A and B are matrix maps into ¢y. We require
some elementary lemmas whose proofs are left to the reader.

LemMma 5.2. Lete € 10,71/2[ and let xy > 0 be a real. Then
|xo—A| = xosine VA€ C with | Arg(A)| > . (5.2)
LEMMA 5.3. Let xo >0 be a real. Then

|xo—A| = [Alsin® VA=|Ale? ¢ R,
(5.3)
|xo—Al =Ml VAER".

We can state the following result where we will use the fact that for any o € U, since
sU is a BK space with AK, we have B(s9) = (s%,5%). As we have seen in (2.5), for any matrix
Ce (52,52), we have HC”%}(Sg) = ||CHE';3)52) = ||C||Sa-

ProrosiTioN 5.4. (i) Let €4 € ]0,7/2[. For every A € C with | Arg(A)| = €4, the infinite
matrix A — M considered as an operator in s3,, is invertible and

(A=AD)7' € (co,8Ys0)- (5.4)



8 Matrix and generators of analytic semigroups

(ii) Let e € ]10,71/2[. For every u € C with | Arg(u)| < 7 — ep, the infinite matrix B + ul
considered as an operator in s?/ﬁ is invertible and

(B+ul) ' e (co,s?/ﬁ). (5.5)
Proof. (i) Fix e4 € ]0,7/2[ and consider the infinite-sectorial set

1_[ ={leC:|Arg\\)| <eal. (5.6)
Forany A ¢ [],,, put
— bn
Xn = ay—A

and D) = D(i/(a,-1)),- Then [D}(A —AI)]u, = 1, [Dy(A — AI)]ns1 = xu for all n and
[D) (A — AI)]um = 0 otherwise. By Lemma 5.2, we have

(5.7)

My
a,sinex

Vn andall A € 1_[ (5.8)

€A

raE
Since a, tends to infinity as # tends to infinity, there is #y such that

| s% Vn=mnp andalld ¢ []. (5.9)

€A

Consider now the infinite matrix

Ty = 1 ) (5.10)

where T) is the matrix of order ng defined by [T)],, = 1 for 1 < n < ng; [Ta]pu+1 = xn for
1 <n<mng—1,and [T)]um = 0 otherwise. Elementary calculations give

I —x1 xixe —Xiex

1 —x X2X3

1 —Xn  XnXn+l
;! = : . (5.11)

1 Xno—1
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Putting s{) = D;(A — M)YN"A we easily get [y ], = 1 for all n, [y ]y 41 = xn for n = ny,
and (s3], = 0 otherwise. Then by Lemma 2.2 and since the sequence a is increasing, we
get

n 1
= sl = 1= stall,, =sup (s 2= ) <5 vaeT (512)

0 0
N S
1/a>1/a Ant1 2

Since o) = Ay —I+1 € (s,,5),,) and (5.12) holds, o4, is invertible in the Banach al-
gebra of all bounded operators %B(s},,) = (s},,,5},) mapping s}, to itself and sd;' €
(s3/2>5%/4)- Then for any given y € cy, we successively get y' = D}y = (yn/(an —A))u=1 €
Ve Ay € Ta(ALY') € 830 and (A = AI) L = Thsd; ' D} € (co,5%,). So we have
shown (i).

(ii) For eg € 10, /2, let 2 = {p € C: | Arg(y)| < m — e} and put

/: )/n
Xn Butp

(5.13)

To deal with the inverse of B + uI, we need to study the sequences |ya+11/B2k and | x3 | Bar/
Bak-1. By (3.3a), (3.3b), we have

VL g (k — oo). (5.14)
Bak
On the other hand, for every y € X, we get
M M 1
| L2 < Mo P M , (5.15)
/-))Zk—l /32k SIép ﬂqu SINéR /—’)Zk—l
1 _ 1
= k- =o(1) (k— o). (5.16)
ﬂqu ﬂzk—l A2k—1
From (5.14) and (5.16), we deduce that there is n; such that
1 1.
[yaks1| 57— < =sineg  for2k+1>n,
P~ 2
(5.17)
el B sl for2k >n Vyuye3p
Bok- 2
As in (i), define the matrices Dj, = D(1/(g,+y),) and
R 0
ﬁﬂ = 1 , (5.18)
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where R, is the matrix of order #; — 1 defined by [R, ], = 1 for all n, by [R,]n-1 = x;, for
2 <n<mn;—1,and by [R,]uu = 0 otherwise. Then elementary calculations show that the
matrix %, = R,D},(B+ul) is defined by [B,] s = 1 for all n, by [B] -1 = xj, for n = ny,
and by [B,],m = 0 otherwise. Then for any y € Zp,

* _ ’ ﬂ”l _
HI - %H”(s?/ﬁ,s?/,;) - :121}1)1 <|Xn | ﬂnfl) = maX(leT2)’ (5.19)
where
’ ﬁZk ’ ﬁ2k+l
T = sup |sz| > T, = sup |X2k+1| . (5.20)
k=n/2 ﬁZkfl k=(m-1)/2 /32k

By Lemma 5.2, we get | Bk + | = ok sineg for all y € X and 71 < 1/2. Then

1 1 1
< —singg————— == for2k=>n. 5.21
s s g ey o =5 for m (5.21)

This implies || — %M”(*SO 0= 1/2. Reasoning as in (i) with (B+ul)™! = %;‘INZHD;‘, we
1/B51/8

conclude that B + ul considered as an operator from 5(1)/[; into ¢ is invertible and (B +

ulh)~' e (co,s(l’/ﬁ) for all u € 2. This concludes the proof. O

Remark 5.5. As a direct consequence of the preceding, it is trivial that

c(A-A)=s), VAeC, |Arg))]| = ea,

(5.22)
cB+ul)=s); VueC, |Arg(p)| <m—ep

We immediately obtain the next result.

THEOREM 5.6. In the space co, the two linear operators A and B are closed and satisfy the
following:
(i) D(A) = co(A) = s},
(ii) D(B) = co(B) = 515,
(iii) D(A) # co, D(B) # co,
(iv) there are €4, eg >0 (with ea+ eg < 7 ) such that

1A-AD e, < % VA£0, |ArgV)| > en,
(5.23)

(B +uD) ™|, < Vu#0, |Arg(p)] <m—es.

M
|ul
Proof. Show that A is a closed operator. For this, consider a sequence x, = (xp)n>1 tend-
ing to x = (x)n>1 in co, as p tends to infinity, where x;, € s}, forall p. Then Ax, = y(p—
o) in ¢, that is for any n, we have A,,(x;,) — A, (x) = y, (p — o). It remains to show that
x € s?/a. For this, note that since b € I, and x € ¢y, we conclude that a,x, = y, — bpXn1
tends to a zero as n tends to infinity. The proof for B is similar.
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(i)=(ii). First by Proposition 4.2, we have A € (s(l]/a,co). It remains to show that
co(A) = S(l)/u' Letx € 5(1)/51- Since (b,/a,+1)n=1 € ¢y, we deduce that

An0) = @iyt gty = 0(1) (n— ) (5.24)

n+1

and we have shown that 5!, C ¢y(A).

Now let x € ¢o(A). Then y = Ax € ¢y. In the proof of Proposition 5.4, we can take
A = 0. Indeed, there is ng such that y, = |b,|/a, < 1/2 for all n = ny. Then y € ¢ implies
Di/ay = (yu/ap)n=1 € 8y A 'Dyjpy € 5%, and x = A1y = TN"()&ﬁalDl/ay € sY,. This
shows that cg(A) C s?/a and since s?/a C ¢y(A), we conclude that ¢o(A) = S(l)/u' The proof is
similar for B.

(ii1) Let x = (1/a,) =1 € ¢o and assume xl’, = (Xnp)n=1 tend to x in 5(1)/{1: that is,

, 1
|Ix, — x|, = sup (a,, xnp——‘) —0 (p— ). (5.25)
n an

Since a, tends to infinity, we should have x,, — 1/a, and a,x,, — 1 (p — o) for all n.
This contradicts the fact that xj, € s}, for all p. The reasoning is the same for B. So (iii)
holds.

(iv) By Proposition 5.4(i), we have seen that for any A ¢ [[,, (A—-AI)"! e (co,s?/a),
Ty € S and using the notation of the proof of Proposition 5.4, we get

A=D1yl = 1Fst 'y Ll < 1Bl st s D3l Iyl (526)

Then by Lemma 5.3, we successively get

. |T1|sin6 ford=|Ale?? ¢ R,

(an_/\) ‘ = i
Al

(5.27)

1Dy lls, = sup
n=l forAleR™.

Now as we have seen in (5.9), we have [[I — o4, |ls, = sup,. . (Ixnl) < 172 and then in the
Banach algebra S, we easily get

sty tlls, = D NIT =)l = > 27" =2. (5.28)
m=0 m=0

Finally, by (5.9), (5.10), and (5.11), we have SUP)er,, IIYN”)LIIS1 < oo and we conclude that

(A —AD! ||§7‘3(CO) < M/IA| for all A & [],,. We get similar results for B + ul. This con-
cludes the proof of (iv). O

5.2. The case when A and B are matrix maps from D(A) and D(B) into ¢. In this section,
A and B satisty conditions given in (3.5) and (3.6). We will state results similar to those
given in Section 5.1, when ¢ is replaced by c.
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ProposiTION 5.7. (i) Let €4 €]0,7/2[. For every A with | Arg(A)| = ¢, the infinite matrix
A — A considered as an operator in 5(1% is invertible and

(A-AD7" e (osi7)). (5.29)

(ii) Let eg € ]0,7/2[. For every u with |Arg(u)| < m — ep, the infinite matrix B + ul

considered as an operator in s% is invertible and

(B+ul)™" € (c,51%). (5.30)
Proof. (i) First, it can easily be seen that since

by, an
an—A ani

—1 (n—o)VAe]] (5.31)

€A

1+

and i) € Sy/4, we have s € (s\,,5\). Then using the notation of Proposition 5.4, there

is ng such that

1
I = sl ) = I - s@||sw_sup(|xn ><E vae[]. (5.32)

n=n €A

Then ;' € %(sﬁ?a) NS/, and since ;! € Sy, is an infinite matrix, we have &' €
(Sl/)a’sl/a) Then for any y € ¢, we successively get D)y = (yu/(an — ))n>1 E sl/)u,
AN (Dyy) € Sl/u’ and Tﬂsﬂl (D)l € sl/a We conclude that (A —AI)~! € (c, s1 ) for
every A with |Arg(A)| = e.

(ii) Reasoning as in Proposition 5.4, there are M, M’ > 0 such that for every y € X3,

vk | Bk M Pu

/3)2k+[/£ ﬁ2k71 B ,BZkSiIISB ﬁZk—l = 0(1) (k — oo),

(5.33)
M/
Y2k+1 ﬁzkﬂ < : /32k+1 —o(1) (k— o).
Pok+1+p | Pok Pak+1sineg Pk
We deduce that there is ] with

Y2k Baxk 1 Yakr1 | Paker 1
T = su < - = sup |—— |5 —<-. (5.34)

koniyo | Bakt ! Pok-1 2 ks(n-1y2 | Bakrr t | Por 2
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Now by (5.33), we have

ﬁn 1
and B, € (sl/ﬁ,sl/ﬁ) for all y € Xp. Thus

ﬁnw

=Bl = =Bl = sup (| 522

n=mn ﬂ”—i—‘“

“ip) ﬁljnl )

(5.36)

1
= max (Tl,Tz) < E

and %, ' € (slc/)ﬁ,sl/ﬁ) for all y € Xp. Reasoning as in (i) with (B+ul)™! %IIIINZ,,D;, we

conclude that B + uI considered as operator from sg /i; to ¢ is invertible and (B+ul)"! €

(c,s(lc/;;) for all y € Zp. This completes the proof. O
We can state the following.

THEOREM 5.8. In the space c, the two linear operators A and B are closed and satisfy the
following:
(i) D(A) = c(4) =i,
(ii) D(B) = c(B) = 5%,
(iii) D(A) # ¢, D(B) # ¢,

(iv) there are €4, eg >0 (with ea+ eg < 7 ) such that

A=A ﬁf—| VA£0, | Argh)] = e,

(5.37)

1B +uD |5 < Yu#0, [Arg(p)| =m—ep.

B |[4|
Proof. Show that A is a closed operator. For this, c0n31der a sequence x = (Xnp)n=1 tend-
ing to x = (xs)n=11in ¢, as p tends to infinity, where x), € Sl/a forall p. Then Ax; —»y(p—» )

in ¢, that is, A, (x P) — Au(x) = yu (p — c0) for all n. It remains to show that x € Sl/a' For
this, note that since b € ¢ and x € ¢, we conclude that a,x, = y, — byx,11 tends to a limit
as n tends to infinity. The proof for B is similar. The proof of statements (i) and (ii) comes
from Proposition 4.3 and follows the same lines as that for Theorem 5.6(i), (ii).

(iii) Follows exactly the same lines as that in the proof given in the case when E = I,
in [15, Proposition 3, page 196].

The proof of (iv) is a consequence of Proposition 5.7(i) and follows exactly the same
lines as that in the proof of Theorem 5.6. g
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