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The continuity of some multilinear operators related to certain convolution operators on
the Triebel-Lizorkin space is obtained. The operators include Littlewood-Paley operator
and Marcinkiewicz operator.
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1. Introduction

Let T be the Calder6n-Zygmund singular integral operator, a well-known result of Coif-
man et al. (see [6]) states that the commutator [b,T](f) = T(bf) — bT(f) (where b €
BMO) is bounded on L (R") (1 < p < o0); Chanillo (see [1]) proves a similar result when
T is replaced by the fractional integral operator; in [8, 9], these results on the Triebel-
Lizorkin spaces and the case b € Lip 8 (where Lip 8 is the homogeneous Lipschitz space)
are obtained. The main purpose of this paper is to study the continuity of some multi-
linear operators related to certain convolution operators on the Triebel-Lizorkin spaces.
In fact, we will obtain the continuity on the Triebel-Lizorkin spaces for the multilinear
operators only under certain conditions on the size of the operators. As the applications,
the continuity of the multilinear operators related to the Littlewood-Paley operator and
Marcinkiewicz operator on the Triebel-Lizorkin spaces are obtained.

2. Notations and results

Throughout this paper, Q will denote a cube of R" with side parallel to the axes, and
for a cube Q, let fo = 1QI™" [ f(x)dx and f*(x) = sup, ., |QI™" o1 f(y) — foldy. For

l1<r<oand0<§<mn,let

1 . 1/r
Ma(P)0) =59 ((orimg [ |70 d) (21)
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2 Continuity of multilinear operators

we denote M, (f) = M,(f) if 6 = 0, which is the Hardy-Littlewood maximal function

when r = 1 (see [10]). For f >0and p > 1, let Fﬁ’m be the homogeneous Triebel-Lizorkin
space, and let the Lipschitz space Ag be the space of functions f such that

[Bl+1

A, f(x)]
lflli=  sup —7%5——) (2.2)
Tiw= o P <

where A’,; denotes the kth difference operator (see [9]).
We are going to study the multilinear operator as follows.
Let m be a positive integer and let A be a function on R". We denote

Rt (A y) = A@) — S %D“A@)(x— 7" (2.3)

la|<m "

Definition 2.1. Let F(x,t) define on R" X [0,+00), denote

F(A@ = | Fe= 70y,

FA () = [ RatAiey)

no x—ylm

(2.4)
F(x—y,t)f(y)dy.

Let H be the Hilbert space H = {h: ||h|| < oo} such that, for each fixed x € R", F;(f)(x)
and F{(f)(x) may be viewed as a mapping from [0,+) to H. Then, the multilinear
operators related to F; is defined by

TA(f) ) = [[FAH s (2.5)

and also define T'(f)(x) = [[F:(f)(x)Il.

In particular, consider the following two sublinear operators.

Definition 2.2. Fix e >0, n>§ > 0. Let y be a fixed function which satisfies the following
properties:

(1) [y(x)dx = 0;

(2) 1y (x)] < C(1+ |x[)~(m+1-0)

(3) ly(x+y) —y(x)| < Clyl(1+|x])~ 1470 when 2| y| < |x|.
The multilinear Littlewood-Paley operator is defined by

00 1/2
gnw= ([ 1w re) .6)
where
Rm+ A) >
FA(f)(x) = anwt(x—y)f(y)dy (2.7)
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and y;(x) = t "y (x/t) for t > 0. Denote that F;(f) = y; * f, and also define that

12
2dt> ’ (2.8)

t

s = (| 1FG@)]

which is the Littlewood-Paley g function when § = 0 (see [11]).

Let H be the space H = {h: ||kl = (J, |h(t)|?dt/t)"/> < oo}, then, for each fixed x € R",
F£(f)(x) may be viewed as a mapping from [0,+c0) to H, and it is clear that

(N =[F(NHOI, g () = [FAH ). (2.9)

Definition 2.3. Let 0 <§ <n, 0<y <1 and Q be homogeneous of degree zero on R"
such that [ Q(x")do(x") = 0. Assume that Q € Lipy(S"‘l), that is, there exists a con-
stant M > 0 such that for any x,y € S 1Q(x) — Q(y)| = M|x — y|”. The multilinear
Marcinkiewicz operator is defined by

0 1/2
@ = ([ IEp@IS) (2.10)
where
" B Qx—y) Run(Asx,y) )
Fi (f)(")*ﬁx%t iyl x-S 21
denote
RO - [ e oy (2.12)
and also define that
0 1/2
w0 = ([ IEO@IS) (.13)

which is the Marcinkiewicz operator when § = 0 (see [12]).

Let H be the space H = {h: ||hll = (,” |h(t)|?dt/t?)> < oo}. Then, it is clear that

us(N@) =FHI, w5 (@) =IFAHIL (2.14)

It is clear that Definitions 2.2 and 2.3 are the particular examples of Definition 2.1.
Note that when m = 0, T4 is just the commutator of F, and A, while when m >0, it is
nontrivial generalizations of the commutators. It is well known that multilinear oper-
ators are of great interest in harmonic analysis and have been widely studied by many
authors (see [2-5, 7]). The main purpose of this paper is to study the continuity for the
multilinear operators on the Triebel-Lizorkin spaces. We will prove the following theo-
rems in Section 3.

THEOREM 2.4. Let g§' be the multilinear Littlewood-Paley operator as in Definition 2.2. If
0 < B <min(l,¢) and D*A € Ag for |a| = m, then
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(a) g§ maps LP(R") continuously into Fg’m(R”), forl<p<n/§andl/q=1/p—8/n;
(b) g§ maps LP(R") continuously into LI(R") for 1< p<n/(§+B) and 1/p — 1/q =
(6+p)/n.

THEOREM 2.5. Let y4 be the multilinear Marcinkiewiz operator as in Definition 2.3. If 0 <
B <min(1/2,y) and D*A € Ag for |a| = m, then
(a) ‘ug‘ maps LP(R™) continuously into Fg’w(R")for l<p<n/§andl/q=1/p—d/n,
(b) ‘u? maps LP(R") continuously into L1(R") for 1 < p <n/(6 + ) and 1/p —1/q =
(8 +p)/n.

3. Main theorem and proof
We first prove a general theorem.

TrEOREM 3.1 (main theorem). Let0 <8 <n, 0< B <1, and D*A € Ag for |a| = m. Sup-
pose F;, T, and T# are the same as in Definition 2.1, if T is bounded from L (R") to L1(R")
forl1< p<n/§andl/q=1/p—38/n, and T satisfies the following size condition:

IFAN@) = FA (o)l < C 3 (1D, 1QIF "M £ (x) (3.1)

lal=m

for any cube Q with supp f C (2Q)° and x € Q, then
(a) TA is bounded from LP(R") to Fg’m(R”)for l<p<n/S§and1/q=1/p—d/n,
(b) T# is bounded from LP(R") to LA(R") for 1 < p < n/(8+ ) and 1/q =1/p — (8 +
B)/n.

To prove the theorem, we need the following lemmas.

LemMa 3.2 (see [9]). For0<f<1,1<p< oo,

1
||f||Fg,w ~ SlépwJQ | f(x) = foldx o
(3.2)
. 1
~ ste,lgll’clf|Q|1—+ﬂ/n JQ |f(.X') - c|dx o
LEmMA 3.3 (see [9]). ForO0<f<1,1<p <oo,
1
£l zsgpwk | f(x) — foldx
(3.3)

i (1 [, 500 ol a)
=S T\l Jo T el
LemMa 3.4 (see [1, 2]). Suppose that 1 <r < p<n/§and 1/q=1/p—&/n. Then

[Ms,- ()| < CllfllLo. (3.4)
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LEmMMA 3.5 (see [5]). Let A be a function on R" and D*A € L1(R") for |a| = m and some
q > n. Then

1/q
|Rm(A;x,9)| < Clx—y|™ > ( I | D*A(z) |qu> , (3.5)

lal=m

| QCx, )]

where é(x,y) is the cube centered at x and has side length 5\/n|x — y|.

Proof of Theorem 3.1 (main theorem). Fix a cube Q = Q(xp,1) and X € Q. Let (5 =5/nQ
and A(x) = A(x) = 3 |g=m(1/al)(D%A) 3x%, then Ry(A;x,y) = Ru(A;x,y) and DA =
D*A — (D%A)g for |a| = m. We write, for fi = fxzand fo = fxp. 5>

FA()) = [ Rt iy)

T S

:J Rui1 (A5, y)
R x—y|m

+J Rm(A;x)y)
R lx—ylm

F(x—y,t) L(y)dy
(3.6)

F(x—y,t) fi(y)dy

oyl (x—%l‘)(x_y)aD“K(y)ﬁ(y)d)’)

al Jpn [x — y|m

then
| TAH) (%) — TA(A) (x0) | = [IFAH G - [IFE(f) (x0)]]]
Ry (Asx, -
<[ () oo]

|x —

+ —
\oc%m al

x—=)%
(A )
+]|[FA(£) (x) = FA(£) (x0) || = Ax) + B(x) + C(x),

thus,

g |, 1T - T )

J A(x)dx+ B(x)dx (3.8)

1 1
= |Q|1+[J'/n |Q|1+ﬁ/n J

+ Q|1+/3/" J Clx)dx := I +T1+I11.
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Now, let us estimate I, I, and I11, respectively. First, for x € Qand y € (NQ, using Lemmas
3.3 and 3.5, we get

|Rm(ﬁ;x,y) | <Clx—yl™ Z sup |D*A(x) — (D"‘A)(~2|
lal=m x€Q

(3.9)
< Clx—y["QIF" > |ID°Al,,
la|=m
thus, taking r, s such that 1 <r < p and 1/s = 1/r — §/n, by the (L",L*) boundedness of T
and Holder’ inequality, we obtain

1=C 3 DAl 1) ITR@dx =€ 3 I0%All IT(A) . 1Ql
lal=m |la|=m
<C > lID*All Ml 1QI™* < C X ID*All Mo (f)().
lal=m lal=m
(3.10)
Secondly, using the following inequality (see [9]):
(%A~ (D4)3) Frlly, = CIQV | [D¥All, Mas (0, (1)
and similar to the proof of I, we gain
I1<C 3 |IDAll;, Mo, ())(Z). (3.12)
la|=m
For I11, using the size condition of T, we have
HI<C 3 [[D*Al|;, Mo (f)(). (3.13)

|al=m

We now put these estimates together; and taking the supremum over all Q such that
X € Q, and using Lemmas 3.2 and 3.4, we obtain

||TA(f)||p§v°° =C Z ||D“A||M||f\|m- (3.14)

lal=m

This completes the proof of (a).
(b) By same argument as in proof of (a), we have

ﬁ JQ | TG0 = Tg(fZ) (xo) | dx

(3.15)
<C 2. [IDAll;, (Mospr (f) + Msupa (),
|a|=m
thus,
(TA(f))" = C . |ID*All5, (Morsr () + Mg (). (3.16)

laf=m
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Now, using Lemma 3.4, we gain

ITA0 < CIHTAN) e

<C 3 [ID°Alls, (Mo (Dl + IMosga (Flle) < ClLf e 317
|| =m
This completes the proof of (b) and the theorem. O

To prove Theorems 2.4 and 2.5, since gs and y;s are all bounded from L?(R") to L1(R")
for 1 < p<n/§ and 1/q = 1/p — 8/n (see [11, 12]), it suffices to verify that gf and uj
satisfy the size condition in Theorem 3.1 (main theorem).

Suppose supp f C (2Q)° and x € Q = Q(xo,]). Note that |xo — y| = |[x — y| for y €
2Q)°.

For g§', we write
FA(f)(x) = FA(f) (x0)

— vi(x—y) _ Wt(X() —y) ~
B JR”\& |: |x—y|m |X0 —y | m :|Rm (A,x,y)f(y)dy

+J N‘M’“’_—W[Rm(ﬁ;x,y)—Rm(/?;xm)/)]d)’
RMQ

%0 — |
th )’(X y)"‘ l/lt(xo—y)(xo—y)“] ~
7 D*A d
o= m“'—["\Q[ lx— ylm %0 y] D f(y)
=L+DL+1.
(3.18)
By the condition on y, we obtain
| | 0 tdt 1/2
X — X0 ~
I<CJ e R (i, ) ()(J n)d
||1| \Q| | +1 y ||fy | 0 (t+|xo—y|)2( +1-6) y
| | oo tdt 12
X — X
+CJ — | R Ax (J _ ) d
R"‘\Q |x0 y| | y ||f | 0 (t+ |x0_y|)2(rl+1+€ §) Yy
<C D*A | |,B/n J ( |x_x0| " |X_x0| ) d
2 DAl 10 Z soza\ Ty "0 Tyt ) SO
< 1
=C DAl QI 2k ke (N—J d >
lalZ:mH 11 kZ( ) PrlRG sl Ty
<C D |ID*All;, 1QIF" M, (f)(x)
|la|=m

(3.19)
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For I, by the formula (see [5]):

~ ~ 1 ~
R (A5%,y) — Ru(Asx0, ) = > — Ry iy (D" Asx,%0) (x — )" (3.20)

[gl<m "

and Lemma 3.5, we get

m—1

| R (A5%, ) — R (Asx0,y) | <C > ||D“A||A/3|Q|ﬁ/”|x—xo| |x0— ]| (3.21)

|a|=m

thus, similar to the proof of I,

Ax ) Ax, )|
yy|m+n5° | fO)ldy

nlscf -

| x0 —

=C X IID"‘AIIMIQI“/”XJ X N%mywy (3.22)

lal=m 2k+100\2kQ |X0 _

<C D, [ID*All, 1QIF" My, (f)(x),

la|=m

For I5, similar to the proof of I, we obtain

=e 3 [ (S o Ly

lal=m | x0 — |x0_)’

[

<C 3 |[DAl|,,1QIF™ 3 (25FD 4 2KE-9) My, (f) (x) (3.23)

|| =m k=1

<C Y [IDAll, 1QIF" My 1 (F)()

lal=m

so that

1A = FA ) (o)l = C 3. [IDYAl], 1QIF" M (£)(x). (3.24)

|a|=m
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For /,tg‘, we write

IFACF)(x) = FACF) (x0) |

( [Lx — [Q(x—y)] |Rm_(%;xy )| F(y) |dy] dt>1/2

J |x_y|m+n 1-6
+(J [J |Q(x0_)’)||Rm(g;xo, ||f( dy] 2dt>1/2
0 lx—y|>t, lxo—yl<t |x0_y|m+n—1—8

Q(x — y)Ru(A;x, y)
|X _ y|m+n—1—5

+

(o)
JO [x—yl<t,Ixo—yl<t

_Q(xo—y)R Axo, ‘|f( |dy] >1/2

|x0_ |m+n 1-6
N (TN G e =
aimm N0 D my<e U [x = ymen o-yl<t  |xp—y]
2 12
X D*A(y) f(y)dy t_3> =ht+h+]+]s
(3.25)
Then
| fD) ] [Ru(Asx,9) | ({ dt)“2
<C - d
4 RN\Q |x—)’|m+n7176 lx—yl<t<lxo-y| 1 4
_of  FOIR(Exy)| [x0-x]"
- R"\é |x_ |m+n—l—8 |X— |3/2
y 4 (3.26)
ad 1
<C 3 (IDall, Q" 32— | f()]d
“x%m Ap k;] |2kQ|l &/n %3 fy Y
<C X |ID*All;,1QIF" My, (f)(x)
la|=m
similarly, we have J, < CX |4 _ [IDAll 4, |QIP"Ms,1 (f)(x)
For J3, by the following inequality (see [12]):
Qx-y) Qo -y) <C< |x —xo] . |x—x|” )
|x_y|m+n7176 |x0_y|m+n—1—8 |x0_y|m+n—6 |x0_y|m+n—1—5+y >

(3.27)
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we gain

|x—xo| |X—xo|y
I<C DYA||; 1QIF ( 4 L
1=¢ 3 ipeall, s P T

<(] M o lay

xo—yl<t, [x—yl<t £

(3.28)

[

<C > |ID*AJl;,1QIF" 3" (27* + 277 ) M, () (x)

lal=m k=1

<C > [IDAll;, 1QIF" M, (f)(x).

|la|=m
For J4, similar to the proof of Ji, J», and J5, we obtain
4= ~ n+l— n+1/2— n+y—
e RN [xo =y "7 g = " g =y M
x | D*A()|| f ()| dy

(o]

-C DRA||, QB (KB 4 2KB-12) 4 k() L [ 154
<C 3 DAl 1" 3 58] b 7014
<C X |IDAll;,1QIF" M5, (f)(x).

la|=m

(3.29)

These yield the desired results.
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