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We study a class of vector minimization problems on a complete metric space such that
all its bounded closed subsets are compact. We show that for most (in the sense of Baire
category) problems in the class the sets of minimal values are infinite.
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1. Introduction

The study of vector optimization problems has recently been a rapidly growing area of
research. See, for example, [1–5] and the references mentioned therein. In this paper, we
study a class of vector minimization problems on a complete metric space such that all its
bounded closed subsets are compact. This class of problems is associated with a complete
metric space of continuous vector functions � defined below. For each F from �, we
denote by v(F) the set of all minimal elements of the image F(X)= {F(x) : x ∈ X}. In this
paper, we will study the sets v(F) with F ∈�. It is clear that for a minimization problem
with only one criterion the set of minimal values is a singleton. In the present paper, we
will show that for most F ∈� (in the sense of Baire category) the sets v(F) are infinite.
Such approach is often used in many situations when a certain property is studied for
the whole space rather than for a single element of the space. See, for example, [7, 8] and
the references mentioned there. Our results show that in general the sets v(F), F ∈�,
are rather complicated. Note that in our paper as in many other works on optimization
theory [1–6] inequalities are of great use.

In this paper, we use the convention that ∞/∞= 1 and denote by Card(E) the cardi-
nality of the set E.

Let R be the set of real numbers and let n be a natural number. Consider the finite-
dimensional space Rn with the Chebyshev norm

‖x‖ = ∥∥(x1, . . . ,xn
)∥
∥=max

{∣
∣xi
∣
∣ : i= 1, . . . ,n

}

, x = (x1, . . . ,xn
)∈ Rn. (1.1)
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Let {e1, . . . ,en} be the standard basis in Rn:

e1 = (1,0, . . . ,0), . . . ,en = (0, . . . ,0,1). (1.2)

Let x = (x1, . . . ,xn), y = (y1, . . . , yn)∈ Rn. We equip the space Rn with the natural order
and say that

x ≥ y if xi ≥ yi ∀i∈ {1, . . . ,n},
x > y if x ≥ y, x �= y,

x� y if xi > yi ∀i∈ {1, . . . ,n}.
(1.3)

We say that x	 y (resp., x < y, x ≤ y) if y� x (resp., y > x, y ≥ x).
Let (X ,ρ) be a complete metric space such that each of its bounded closed subsets is

compact. Fix θ ∈ X .
Denote by � the set of all continuous mappings F = ( f1, . . . , fn) : X → Rn such that for

all i∈ {1, . . . ,n},
lim

ρ(x,θ)→∞
fi(x)=∞. (1.4)

For each F = ( f1, . . . , fn), G= (g1, . . . ,gn)∈�, set

d̃(F,G)= sup
{∣
∣ fi(x)− gi(x)

∣
∣ : x ∈ X , i= 1, . . . ,n

}

,

d(F,G)= d̃(F,G)
(

1+ d̃(F,G)
)−1

.
(1.5)

Clearly, the metric space (�,d) is complete.

Note that d̃(F,G)= sup{‖F(x)−G(x)‖ : x ∈ X} for all F, G∈�.
Let A ⊂ Rn be a nonempty set. An element x ∈ A is called a minimal element of A if

there is no y ∈ A for which y < x.
Let F ∈ �. A point x ∈ X is called a point of minimum of F if F(x) is a minimal

element of F(X). If x ∈ X is a point of minimum of F, then F(x) is called a minimal value
of F. Denote byM(F) the set of all points of minimum of F and put v(F)= F(M(F)).

The following proposition will be proved in Section 2.

Proposition 1.1. Let F = ( f1, . . . , fn) ∈�. Then M(F) is a nonempty bounded subset of
(X ,ρ) and for each z ∈ F(X) there is y ∈ v(F) such that y ≤ z.

In the sequel we assume that n≥ 2 and that the space (X ,ρ) has no isolated points.
The following theorem is our main result. It will be proved in Section 4.

Theorem 1.2. There exists a set �⊂� which is a countable intersection of open everywhere
dense subsets of � such that for each F ∈� the set v(F) is infinite.

It is clear that if X is a finite-dimensional Euclidean space, then X is a complete metric
space such that all its bounded closed subsets are compact and Theorem 1.2 holds. It is
also clear that Theorem 1.2 holds if X is a convex compact subset of a Banach space or if
X is a convex closed cone generated by a convex compact subset of a Banach space which
does not contain zero.
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2. Proof of Proposition 1.1

Let z ∈ F(X). We show that there is y ∈ v(F) such that y ≤ z. Set

Ω0 =
{

h∈ F(X) : h≤ z
}

. (2.1)

We consider the set Ω0 with the natural order and show that Ω0 has a minimal element
by using Zorn’s lemma.

Assume that D is a nonempty subset ofΩ0 such that for each h1,h2 ∈D either h1 ≥ h2
or h1 ≤ h2. Since all bounded closed subsets of X are compact, it follows from (1.4) that
the set F(X) is bounded from below. Together with (2.1) this implies that the set D is
bounded. For each integer i∈ {1, . . . ,n}, set

h̄i = inf
{

λ∈R : there is x = (x1, . . . ,xn
)∈D for which xi = λ

}

(2.2)

and set

h̄= (h̄1, . . . , h̄n
)

. (2.3)

Clearly, the vector h̄ is well defined.
Let p be a natural number. By (2.2) and (2.3) for each natural number j ∈ {1, . . . ,n}

there exists

z(p, j) =
(

z
(p, j)
1 , . . . ,z

(p, j)
n

)

∈D (2.4)

such that

h̄ j ≥ z
(p, j)
j − 1

p
. (2.5)

It is clear that there is

z(p) ∈ {z(p, j) : j = 1, . . . ,n
}

(2.6)

such that

z(p) ≤ z(p, j) ∀ j = 1, . . . ,n. (2.7)

It follows from (2.5), (2.7), (2.2), (2.6), and (2.4) that for each j = 1, . . . ,n,

h̄ j ≤ z
(p)
j ≤ h̄ j +

1
p
. (2.8)

By (2.6), (2.4), and (2.1) for each integer p ≥ 1, there is xp ∈ X such that

F
(

xp
)= z(p). (2.9)

If the sequence {xp}∞p=1 is unbounded, then in view of (2.9) and (1.4) the sequence
{z(p)}∞p=1 is also unbounded and this contradicts (2.8). Therefore the sequence {xp}∞p=1
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is bounded. Since any bounded closed set in (X ,ρ) is compact, there is a subsequence
{xpi}∞i=1 of the sequence {xp}∞p=1 which converges to some point x̄ ∈ X . In view of (2.8)
and (2.9)

F(x̄)= lim
i→∞

F
(

xpi
)= lim

i→∞
z(pi) = h̄ (2.10)

and h̄ ∈ F(X). Together with (2.1) and (2.2) this implies that h̄ ∈ Ω0. Definition (2.2)
implies that h̄ ≤ h for all h ∈ D. By Zorn’s lemma there is a minimal element y ∈ F(X)
such that y ≤ z. This completes the proof of Proposition 1.1.

3. Auxiliary results

Proposition 3.1. Let F = ( f1, . . . , fn) ∈� and let Card(v(F)) = p, where p is a natural
number. Then there is a neighborhoodW of F in (�,d) such that Card(v(G))≥ p for each
G= (g1, . . . ,gn)∈W .

Proof. Let

y1, . . . , yp ∈ v(F), (3.1)

yi �= yj for each (i, j)∈Ω := {1, . . . , p}×{1, . . . , p} \ {(i, i) : i= 1, . . . , p
}

. (3.2)

For each i∈ {1, . . . , p}, there is xi ∈ X such that

F
(

xi
)= yi. (3.3)

By (3.2) and (3.3) for each (i, j)∈Ω, there is p(i, j)∈ {1, . . . ,n} such that

fp(i, j)
(

xi
)

> fp(i, j)
(

xj
)

. (3.4)

Choose ε > 0 such that

fp(i, j)
(

xi
)

> fp(i, j)
(

xj
)

+4ε (3.5)

for all (i, j)∈Ω. Set

W = {G∈� : d̃(G,F)≤ ε}. (3.6)

Let

G= (g1, . . . ,gn
)∈W. (3.7)

For each i ∈ {1, . . . , p}, we have G(xi) ∈ G(X) and it follows from Proposition 1.1 that
there is

ȳi ∈ v(G) (3.8)

such that

ȳi ≤G
(

xi
)

. (3.9)
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Let i∈ {1, . . . , p}. By (3.8) there is x̄i ∈ X such that

G
(

x̄i
)= ȳi. (3.10)

In view of (3.7) and (3.6)

∥
∥G
(

x̄i
)−F

(

x̄i
)∥
∥≤ ε. (3.11)

It follows from (3.1), (3.2), the equality Card(v(F))= p, and Proposition 1.1 that there is
k(i)∈ {1, . . . , p} such that

F
(

x̄i
)≥ yk(i). (3.12)

By (3.3), (3.12), (3.11), (3.10), and (3.9)

F
(

xk(i)
)= yk(i) ≤ F

(

x̄i
)≤G

(

x̄i
)

+ ε(1,1, . . . ,1)

≤G
(

xi
)

+ ε(1,1, . . . ,1)≤ F
(

xi
)

+2ε(1,1, . . . ,1).
(3.13)

Together with (3.5) this implies that k(i)= i. Combined with (3.13), (3.10), and (3.3) this
equality implies that

yi ≤ ȳi + ε(1,1, . . . ,1)≤ yi +2ε(1,1, . . . ,1). (3.14)

It follows from this inequality, (3.5), and (3.3) that

ȳi �= ȳ j if i, j ∈ {1, . . . , p} satisfy i �= j. (3.15)

This completes the proof of Proposition 3.1. �

Proposition 3.2. Assume that F = ( f1, . . . , fn)∈�, p is a natural number, Card(v(F))=
p and that

v(F)= {y1, . . . , yp
}

, xi ∈ X , F
(

xi
)= yi, i= 1, . . . , p,

yi �= yj ∀i, j ∈ {1, . . . , p} satisfying i �= j.
(3.16)

Then for each i= 1, . . . , p the inequality F(xi)≤ F(x) holds for all x belonging to a neighbor-
hood of xi.

Proof. It is sufficient to consider the case with i= 1. Clearly, for each j ∈ {2, . . . ,n}, there
is s( j)∈ {1, . . . ,n} such that fs( j)(x1) < fs( j)(xj). Choose ε > 0 such that

fs( j)
(

x1
)

< fs( j)
(

xj
)− 2ε ∀ j ∈ {2, . . . ,n}. (3.17)

There is δ > 0 such that for each x ∈ X satisfying ρ(x,x1)≤ δ we have

∥
∥F(x)−F

(

x1
)∥
∥≤ ε

2
. (3.18)
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Let x ∈ X satisfy ρ(x,x1)≤ δ. Then (3.18) is true. By Proposition 1.1 there exists y ∈ v(F)
such that

y ≤ F(x). (3.19)

In order to complete the proof it is sufficient to show that y = F(x1).
Let us assume the converse. Then there is j ∈ {2, . . . ,n} such that y = yj = F(xj). By

this relation, (3.18), and (3.19)

F
(

xj
)= yj = y ≤ F(x)≤ F

(

x1
)

+
(ε
2

)

(1,1, . . . ,1),

fs( j)
(

xj
)≤ fs( j)

(

x1
)

+
ε
2
.

(3.20)

This contradicts (3.17). The contradiction we have reached proves Proposition 3.2. �

Proposition 3.3. Assume that F = ( f1, . . . , fn)∈�, ε > 0, p is a natural number and that

Card
(

v(F)
)= p, x1, . . . ,xp ∈ X , yi = F

(

xi
)

, i= 1, . . . , p,

v(F)= {yi : i= 1, . . . , p
}

.
(3.21)

Then there exists G= (g1, . . . ,gn)∈� such that

fi(x)≤ gi(x), x ∈ X , i= 1, . . . ,n, gi
(

xj
)= fi

(

xj
)

, i= 1, . . . ,n, j = 1, . . . , p,
(3.22)

d̃(F,G)≤ ε, (3.23)

v(G)= {G(xj
)

: j = 1, . . . , p
}

(3.24)

and that for each x ∈ X \ {x1, . . . ,xp} there is j ∈ {1, . . . , p} for which

G(x)≥G
(

xj
)

+ εmin
{

1,ρ
(

x,xi
)

: i= 1, . . . , p
}

(1,1, . . . ,1). (3.25)

Proof. For each x ∈ X and i= 1, . . . ,n, set

gi(x)= fi(x) + εmin
{

1,ρ
(

x,xj
)

: j = 1, . . . , p
}

(3.26)

and set G= (g1, . . . ,gn). Clearly, G∈�,

gi(x)≥ fi(x), x ∈ X , i= 1, . . . ,n,

gi
(

xj
)= fi

(

xj
)

for each i∈ {1, . . . ,n} and each j ∈ {1, . . . , p} (3.27)

and d̃(F,G)≤ ε. Therefore (3.22) and (3.23) hold.
Let j ∈ {1, . . . , p}. We will show that G(xj)∈ v(G). Assume that x ∈ X and

G(x)≤G
(

xj
)

. (3.28)
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By (3.22), (3.26), and (3.28)

F(x)≤ F(x) + εmin
{

1,ρ
(

x,xi
)

: i= 1, . . . , p
}

(1,1, . . . ,1)=G(x)≤G
(

xj
)= F

(

xj
)

.
(3.29)

Together with (3.21) this relation implies that

F(x)= F
(

xj
)

, x ∈ {xi : i= 1, . . . , p
}

, x = xj . (3.30)

Thus

{

G
(

xj
)

: j = 1, . . . , p
}⊂ v(G). (3.31)

Assume that

x ∈ X \ {x1, . . . ,xp
}

. (3.32)

By Proposition 1.1 and (3.21) there is j ∈ {1, . . . , p} such that

F
(

xj
)≤ F(x). (3.33)

Relations (3.22), (3.33), (3.26), and (3.32) imply that

G
(

xj
)= F

(

xj
)≤ F(x) < F(x) + εmin

{

1,ρ
(

x,xi
)

: i= 1, . . . , p
}

(1, . . . ,1)≤G(x). (3.34)

This relation implies that

G(x) > G
(

xj
)

+ εmin
{

1,ρ
(

x,xi
)

: i= 1, . . . , p
}

(1,1, . . . ,1) (3.35)

and G(x) �∈ v(G). Together with (3.31) this relation implies (3.24). This completes the
proof of Proposition 3.3. �

Proposition 3.4. Assume that F = ( f1, . . . , fn)∈�, p is a natural number,

Card
(

v(F)
)= p (3.36)

and that ε > 0. Then there exists G∈� such that d̃(F,G)≤ ε and Card(v(G))= p+1.

Proof. Let

v(F)= {y1, . . . , yp
}

, (3.37)

where y1, . . . , yp ∈ Rn. Clearly,

yi �= yj for each i, j ∈ {1, . . . , p} such that i �= j. (3.38)

For each i∈ {1, . . . , p}, there is xi ∈ X such that

F
(

xi
)= yi. (3.39)
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By Proposition 3.3 there exists F(1) = ( f (1)1 , . . . , f (n)1 )∈� such that

f (1)i (x)≥ fi(x) ∀x ∈ X , i= 1, . . . ,n, (3.40)

f (1)i

(

xj
)= fi

(

xj
)

, i= 1, . . . ,n, j = 1, . . . , p, (3.41)

d̃
(

F,F(1))≤ ε
4
, (3.42)

v
(

F(1))= {F(1)(xj
)

: j = 1, . . . , p
}

(3.43)

and that for each x ∈ X \ {x1, . . . ,xp} there is j ∈ {1, . . . , p} such that

F(1)(x)≥ F(1)(xj
)

+ εmin
{

1,ρ
(

x,xi
)

: i= 1, . . . , p
}

(1,1, . . . ,1). (3.44)

It is clear that there exists a positive number

ε0 <min
{1,ε}
8

(3.45)

and that for each i, j ∈ {1, . . . , p} satisfying i �= j there exists s(i, j)∈ {1, . . . ,n} such that

f (1)s(i, j)

(

xi
)

< f (1)s(i, j)

(

xj
)− 8ε0. (3.46)

Choose δ0 ∈ (0,1/8) such that

ρ
(

xi,xj
)≥ 8δ0 for each i, j ∈ {1, . . . , p} satisfying i �= j. (3.47)

There is δ1 ∈ (0,δ0/2) such that for each x ∈ X satisfying ρ(x1,x)≤ 2δ1

∥
∥F(1)(x1

)−F(1)(x)
∥
∥≤ ε0

8
. (3.48)

Put

ε1 = ε04 . (3.49)

There is x0 ∈ X such that

0 < ρ
(

x0,x1
)

< δ1. (3.50)

By (3.50) and (3.47)

x0 �∈
{

xi : i= 1, . . . , p
}

. (3.51)

Choose a positive number

ε2 <min
{ε0ρ

(

x0,x1
)

4
, ε1

}

. (3.52)
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Choose a positive number δ2 such that

4δ2 < ρ
(

x0,x1
)

, (3.53)
∣
∣
∣f (1)i

(

x0
)− f (1)i (x)

∣
∣
∣≤ ε2

4
for each i∈{1, . . . ,n} and each x∈X satisfying ρ

(

x,x0
)≤4δ2.

(3.54)

Choose a positive number λ such that

λδ2 > 2ε1 + 2ε2. (3.55)

Set

g1(x)= f (1)1 (x) for each x ∈ X satisfying ρ
(

x,x0
)

> 2δ2, (3.56)

g1(x)=min
{

f (1)1 (x), f (1)1

(

x0
)− ε1 + λρ

(

x,x0
)}

for each x ∈ X satisfying ρ
(

x,x0
)≤ 2δ2.
(3.57)

For i∈ {2, . . . ,n}, set
gi(x)= f (1)i (x) for each x ∈ X satisfying ρ

(

x,x0
)

> 2δ2, (3.58)

gi(x)=min
{

f (1)i (x), f (1)i

(

x0
)− ε2 + λρ

(

x,x0
)}

for each x ∈ X satisfying ρ
(

x,x0
)≤ 2δ2.
(3.59)

Set G= (g1, . . . ,gn). By (3.54) and (3.55) for each i∈ {1, . . . ,n} and each x ∈ X satisfying
δ2 ≤ ρ(x,x0)≤ 2δ2,

f (1)i

(

x0
)− ε1 + λρ

(

x,x0
)≥ f 1i

(

x0
)− ε1 + λδ2

≥ f 1i
(

x0
)

+ ε1 + 2ε2 ≥ f (1)i (x)− ε2/4+ ε1 + 2ε2.
(3.60)

In view of (3.60), (3.57), and (3.59) for each i∈ {1, . . . ,n} and each x ∈ X satisfying δ2 ≤
ρ(x,x0)≤ 2δ2,

gi(x)= f (1)i (x). (3.61)

Together with (3.56)–(3.59) this implies thatG is continuous. By (3.56) and (3.58)G∈�.
Relations (3.61), (3.56), and (3.58) imply that for each x ∈ X satisfying ρ(x0,x) ≥ δ2 we
have

F(1)(x)=G(x). (3.62)

By (3.57) and (3.59) for each x ∈ X satisfying ρ(x0,x)≤ 2δ2, we have

G(x)≤ F1(x). (3.63)

Let x ∈ X satisfy

ρ
(

x,x0
)≤ δ2. (3.64)
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By (3.56)–(3.59), (3.52), (3.64), and (3.54) for each i∈ {1, . . . ,n},

f (1)i (x)≥ gi(x)≥min
{

f (1)i (x), f (1)i

(

x0
)− ε1

}

≥min
{

f (1)i (x), f (1)i (x)− ε2
4
− ε1

}

≥ f (1)i (x)−
(
5
4

)

ε1,

F(1)(x)≥G(x)≥ F(1)(x)−
(
ε
2

)

(1,1, . . . ,1).

(3.65)

Together with (3.62) this inequality implies that d̃(F(1),G)≤ ε/2. Combined with (3.42)
this implies that

d̃(F,G)≤ d̃
(

F,F(1))+ d̃
(

F(1),G
)

<
ε
4
+
ε
2
. (3.66)

Let x ∈ X . We show that there exists j ∈ {0, . . . , p} such that G(x)≥G(xj). There are two
cases:

ρ
(

x,x0
)≥ δ2, (3.67)

ρ
(

x,x0
)

< δ2. (3.68)

Assume that (3.67) holds. Then by (3.62) G(x)= F(1)(x). In view of Proposition 1.1 and
(3.43) there is j ∈ {1, . . . , p} such that

F(1)(xj
)≤ F(1)(x)=G(x). (3.69)

If j = 1, then (3.53) implies that

ρ
(

xj ,x0
)= ρ

(

x0,x1
)

> 4δ2. (3.70)

If j �= 1, then by (3.47) and (3.50)

ρ
(

xj ,x0
)≥ ρ

(

xj ,x1
)− ρ

(

x1,x0
)≥ 8δ0− δ1 ≥ 7δ0 > 4δ2. (3.71)

Thus in both cases ρ(xj ,x0) > 4δ2. In view of this inequality and (3.62),

F(1)(xj
)=G

(

xj
)

. (3.72)

Together with (3.69) this equality implies that G(xj) ≤ G(x). Assume that (3.68) holds.
We will show that G(x0)≤G(x). Relations (3.57) and (3.59) imply that

G
(

x0
)=

(

f (1)1

(

x0
)− ε1, f (1)2

(

x0
)− ε2, . . . , f (1)n

(

x0
)− ε2

)

= F(1)(x0
)− (ε1,ε2, . . . ,ε2

)

.

(3.73)

By (3.68)

F(1)(x)≥ F(1)(x0
)−

(ε2
4

)

(1,1, . . . ,1). (3.74)
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By (3.68), (3.57), (3.59), (3.74), and (3.52)

g1(x)≥min
{

f (1)1

(

x0
)− ε2

4
, f (1)1

(

x0
)− ε1

}

= f (1)1

(

x0
)− ε1 (3.75)

and for i∈ {1, . . . , p} \ {1},

gi(x)≥min
{

f (1)i

(

x0
)− ε2

4
, f (1)i

(

x0
)− ε2

}

= f (1)i

(

x0
)− ε2. (3.76)

Together with (3.73) these inequalities imply thatG(x)≥G(x0). Thus we have shown that
for each x ∈ X there is j ∈ {0, . . . , p} such that G(x)≥G(xj).

Now assume that j1, j2 ∈ {0, . . . , p} satisfy
G
(

xj1
)≤G

(

xj2
)

. (3.77)

We will show that j1 = j2. In view of (3.47) and (3.50) for each i∈ {2, . . . , p},
ρ
(

xi,x0
)≥ ρ

(

xi,x1
)− ρ

(

x0,x1
)≥ 8δ0− δ1 > 7δ0 > 4δ2. (3.78)

By (3.53) ρ(x0,x1) > 4δ2. Therefore, for each i∈ {1, . . . , p},
ρ
(

xi,x0
)

> 4δ2. (3.79)

Together with (3.56) and (3.58)

G
(

xi
)= F(1)(xi

)

, i= 1, . . . , p. (3.80)

If j1, j2 ∈ {1, . . . , p}, then in view of (3.77), (3.80), and (3.46) F(1)(xj1 ) = F(1)(xj2 ) and
j1 = j2. Therefore we may consider only the case with 0∈ { j1, j2}. Let i∈ {1, . . . , p} \ {1}.
By (3.80)

G
(

xi
)= F(1)(xi

)

. (3.81)

By (3.46)

f (1)s(i,1)(xi) < f (1)s(i,1)

(

x1
)− 8ε0, f (1)s(i,1)

(

x1
)

< f (1)s(1,i)

(

xi
)− 8ε0. (3.82)

It follows from (3.81), (3.82), (3.48), (3.50), (3.49), (3.57), and (3.59) that

gs(i,1)
(

xi
)= f (1)s(i,1)

(

xi
)

< f (1)s(i,1)

(

x1
)− 8ε0

≤ f (1)s(i,1)(x0) +
ε0
4
− 8ε0 < f (1)s(i,1)

(

x0
)− 2ε1 ≤ gs(i,1)

(

x0
)− ε1,

gs(i,1)
(

xi
)= f (1)s(i,1)

(

xi
)

> f (1)s(1,i)

(

x1
)

+8ε0 ≥ f (1)s(i,1)

(

x0
)− ε0

4
+ 8ε0 > gs(1,i)

(

x0
)

+7ε0.

(3.83)

These inequalities imply that the inequality G(xi) ≤ G(x0) does not hold and that the
inequality G(x0) ≤ G(xi) does not hold too. Together with (3.77) and the inclusion 0 ∈
{ j1, j2} this implies that

{

j1, j2
}⊂ {0,1}. (3.84)



12 A generic result

By (3.80)

G
(

x1
)= F(1)(x1

)

, gs
(

x1
)= f 1s

(

x1
)

, s= 1, . . . ,n. (3.85)

Relations (3.79) and (3.44) imply that there is q ∈ {1, . . . , p} such that

F(1)(x0
)≥ F(1)(xq

)

+ εmin
{

1,ρ
(

x0,xi
)

: i= 1, . . . , p
}

(1,1, . . . ,1). (3.86)

It follows from (3.50), (3.48), and (3.86) that

F(1)(xq
)≤ F(1)(x0

)≤ F(1)(x1
)

+
(

ε0/8
)

(1, . . . ,1). (3.87)

Together with (3.46) this implies that q = 1. Combined with (3.86) this equality implies
that

F(1)(x0
)≥ F(1)(x1

)

+ εmin
{

1,ρ
(

x0,xi
)

: i= 1, . . . , p
}

(1,1, . . . ,1). (3.88)

By (3.47), (3.50), (3.88), and (3.85) for i∈ {1, . . . , p} \ {1},
ρ
(

x0,xi
)≥ ρ

(

x1,xi
)− ρ

(

x1,x0
)≥ 8δ0− δ1 ≥ 7δ0,

min
{

1,ρ
(

x0,xi
)

: i= 1, . . . , p
}= ρ

(

x0,x1
)

,
(3.89)

F(1)(x0
)≥ F(1)(x1

)

+ ερ
(

x0,x1
)

(1,1, . . . ,1)=G(1)(x1
)

+ ερ
(

x0,x1
)

(1,1, . . . ,1). (3.90)

Relations (3.90), (3.59), and (3.52) imply that for i∈ {1, . . . , p} \ {1}

g(1)i

(

x1
)

+ ερ
(

x0,x1
)≤ f (1)i

(

x0
)= gi

(

x0
)

+ ε2,

g(1)i

(

x1
)≤ gi

(

x0
)

+ ε2− ερ
(

x0,x1
)≤ gi

(

x0
)− ε2.

(3.91)

Relations (3.90) and (3.57) imply that

g1
(

x1
)

+ ερ
(

x0,x1
)≤ f (1)1

(

x0
)= g1

(

x0
)

+ ε1. (3.92)

By this relation, (3.50), (3.48), (3.49), and (3.85)

g1
(

x0
)= f (1)1

(

x0
)− ε1 ≤ f (1)1

(

x1
)

+
ε0
8
− ε1 = f (1)1

(

x1
)− ε0

8
= g1

(

x1
)− ε0

8
. (3.93)

Then each of the inequalities G(x0)≤G(x1), G(x1)≤G(x0) does not hold. Together with
(3.84), the inclusion 0 ∈ { j1, j2} and (3.77) this implies that j1 = j2 = 0. Thus we have
shown that if j1, j2∈{0, . . . , p} and ifG(xj1 )≤G(xj2 ), then j1= j2. Therefore Card(v(G))=
p+1. Proposition 3.4 is proved. �

4. Proof of Theorem 1.2

Lemma 4.1. Let F ∈ �, p ≥ 1 be an integer and let ε > 0. Then there exists an open
nonempty set

�⊂ {H ∈� : d̃(F,H)≤ ε} (4.1)

such that for each G∈� the inequality Card(v(G))≥ p+1 holds.
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Proof. If for each G∈� satisfying d̃(F,G) < ε we have Card(v(G))≥ p+1, then put

�= {H ∈� : d̃(F,H) < ε
}

. (4.2)

Assume that there is G0 ∈� such that

d̃
(

F,G0
)

< ε, Card
(

v
(

G0
))≤ p. (4.3)

By Proposition 3.4 there exists G1 ∈� such that

d̃
(

F,G1
)

< ε, Card
(

v
(

G1
))= p+1. (4.4)

By Proposition 3.1 there exists an open neighborhood � of G1 in � such that

�⊂ {H ∈� : d̃(H ,G) < ε
}

(4.5)

and that for each G ∈� the inequality Card(v(G))≥ p+ 1 holds. Lemma 4.1 is proved.
�

Proof of Theorem 1.2. Let p be a natural number. By Lemma 4.1 for each F ∈� and each
integer i≥ 1 there exists an open nonempty set

�(F, i, p)⊂ {H ∈� : d̃(F,H)≤ (2i)−1
}

(4.6)

such that for each H ∈�(F, i, p) the inequality Card(v(H))≥ p holds. Define

�=∩∞p=1
⋃{

�(F, i, p) : F ∈�, i≥ 1 is an integer
}

. (4.7)

It is clear that � is a countable intersection of open everywhere dense subsets of � and
that for each G∈� the set v(G) is infinite. Theorem 1.2 is proved. �
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