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Let I = R be an interval and let k : I> — C be a reproducing kernel on I. We show that
if k(x, y) is in the appropriate differentiability class, it satisfies a 2-parameter family of
inequalities of which the diagonal dominance inequality for reproducing kernels is the
Oth order case. We provide an application to integral operators: if k is a positive definite
kernel on I (possibly unbounded) with differentiability class &, (I?) and satisfies an extra
integrability condition, we show that eigenfunctions are C"(I) and provide a bound for
its Sobolev H"” norm. This bound is shown to be optimal.

Copyright © 2006 J. Buescu and A. C. Paixdo. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Given a set E, a positive definite matrix in the sense of Moore (see, e.g., Moore [5, 6] and
Aronszajn [1]) is a function k : E X E — C such that

n

Z k(xi)xj)gfj >0 (1.1)

ij=1

foralln e N, (x1,...,x,) € E" and (&,...,&,) € C" that is, all finite square matrices M of
elements m;; = k(xi,x;), i,j = 1,...,n, are positive semidefinite.

From (1.1) it follows that a positive definite matrix in the sense of Moore has the
following basic properties: (1) it is conjugate symmetric, that is, k(x, y) = k(y,x) for all
x,y € E, (2) it satisfies k(x,x) > 0 for all x € E, and (3) |k(x,y)|? < k(x,x)k(y, y) for all
X,y € E. We sometimes refer to this last basic inequality as the “diagonal dominance”
inequality.

The theorem of Moore-Aronszajn [1, 5, 6] provides an equivalent characterization of
positive definite matrices as reproducing kernels: k : E X E — C is a positive definite matrix
in the sense of Moore if and only if there exists a (uniquely determined) Hilbert space Hy
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2 Differential inequalities and integral operators

composed of functions on E such that

Vy€E, k(x,y)e€ Hgasa function of x,
Vx€Eandany f € Hi, f(x) = (f(y),k(y,X))p,.

Properties (1.2) are jointly called the reproducing property of k in Hi. The function k itself
is called a reproducing kernel on E and the associated (and unique) Hilbert space Hy a
reproducing kernel Hilbert space; see, for example, Saitoh [8].

Throughout this paper we deal exclusively with the case where E =1 < R is a real
interval, nontrivial but otherwise arbitrary; in particular I may be unbounded. Only in
Section 3 we will need the further assumption that I is closed; this extra condition will at
that point be explicitly required. If x € I is a boundary point of I, a limit at x will mean
the one-sided limit as y — x with y € I.

(1.2)

Definition 1.1. Let I C R be an interval. A function k : I> — C is said to be of class &,,(I1?)
if, for every m; =0,1,...,n and m, = 0, 1,...,n, the partial derivatives 0" *"2/9y"™ dx™ k(x,
y) are continuous in I°.

Remark 1.2. Clearly from the definition C**(I?) C &, (I?) C C*(I?). It is also clear that
a function of class &, (I?) will not in general be in C""!(I?). Note however that in class
(1) equality of all intervening mixed partial derivatives holds.

In [4, Theorem 2.7], the following result is shown to hold for differentiable repro-
ducing kernels as a nontrivial consequence of positive semidefiniteness of the matrices
k(xi,x;) in (1.1).

TaeoreM 1.3. Let I C R be an interval and let k(x, y) be a reproducing kernel on I of class
Fu(I?). Then forallx,y € I and all 0 < m < n,

LN
ox™

x%Y)

< W(X’x)k(y’y)' (1.3)

Remark 1.4. An immediate consequence of conjugate symmetry of k is that inequality
(1.3) is equivalent to
2 2mk

<
oymox™

"k

ay—m(x,)/)

(9, y) k(x,x). (1.4)

Remark 1.5. Observe that the 1-parameter family of inequalities (1.3) coupled with the
condition k(y, y) = 0 for all y € I implies that
>k
oymox™

(x,x) =0 (1.5)
forallxeIandall0 <m < n.

2. Differentiable reproducing kernel inequalities

Let I < R be an interval and k : I X I — C. Denote by I the set of all x € I such that x +h
isin I for || < R. For sufficiently small R, Iy is a nonempty open interval. For |h| < R we
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define 8y, : I; — C by
On(x,y) =k(x+h,y+h)—k(x+h,y) —k(x,y+h)+k(x,y). (2.1)
We then have the following lemma.
LemMma 2.1. Ifk(x, y) is a reproducing kernel on I* and |h| < R, then 8,(x, y) is a reproduc-
ing kernel in I3.
Proof. Let I € N, (x1,...,x1) € I;ll and (&,...,&) € C.. We are required to show that

Zﬁ)jzl On(xisx;) &g > 0. Define x;1; = x; + h and &,; = —¢&; for i = 1,...,1. Since k is a re-

roducing kernel on I2, we have Z?l-z k(xi,x;) flf_ > (. Rewriting the left-hand side, we
p 8 i,j=1 ] ] e
obtain

Z k X;,XJ Elf] Z k xzax] ngj

i,j=1 i,j=1

12l

21
+Z Z k( xnx} Ezf] Z Zk Xi, Xj Ezf] Z k(xi)xj)fi?j

i=1 j=I+1 i=l+1 j=1 i,j=I+1

I I
= Z k(xiaxj)fi?j‘*' Z k(xi, xj +h)&( —s?j) + Z k(xi'f'haxj)(_fi)?j
ij=1

ij=1 ij=1

I

+ > k(xi+hxj+h) (- &) (-&)

ij=1

1
= Z [k(xi—i—h,xj-{-h) —k(xi+h,xj) —k(xi,xj+h) +k(Xi,Xj)]fi?j
ij=1

I
= > Sn(xix;)&E =0,
i,j=1
' (2.2)

Thus 8, (x, y) is a reproducing kernel on I 2 as stated. O
We will frequently denote, for ease of notation, ky,(x, y) = (9*"k/dy™9x™)(x, y).

ProrosrITION 2.2. Let I C R be an interval and let k(x, y) be a reproducing kernel of class
Fu(I?). Then, for all 0 < m < n, ky(x,y) = (0*™/dy™dx™)k(x, y) is a reproducing kernel of
class Py (I2).

Proof. Since in the case n = 0 the statement is empty, we begin by concentrating on the
case m = n = 1. Suppose k is of class ¥1(I?). Then, by [4, Lemma 2.5], if |h| < R, we have

ki(x,y) =lim — - O, )

h—o h2 (2.3)

for every (x, y) € I3. By Lemma 2.1, 8, (x, y) is a reproducing kernel on I3. Hence the last
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inequality in (2.2) implies that

I

> ki (xix) &&= 0 (2.4)

ij=1

for any natural [, (x1,...,x1) € I}lz and (&,...,&) € C. Therefore, ki(x, y) is a reproducing
kernel on I3. By continuity of k; inequality (2.4) holds for boundary points in I, (if they
exist) with the interpretation of partial derivatives as appropriate one-sided limits. Thus
(2.4) holds for all (x1,...,x;) € I' and every choice of ] € N and (&,...,£) € C.. Therefore
ky is a reproducing kernel on I2.

To conclude the proof, we now fix n € N, suppose that k is a reproducing kernel of class
¥, (I?) and that k,, is a reproducing kernel for some m < n. It is immediate to see that k,,
is of class &y,_,(I?). Repeating the argument used in the proof of the case m = n =1, we
conclude that k., is a reproducing kernel. Therefore k, is a reproducing kernel for all
0 < m < n. This finishes the proof. O

THEOREM 2.3. Let I = R be an interval and k(x, y) be a reproducing kernel of class &, (I?).
Then, for every my, my = 0,1,...,nand all x,y € I,

am1+mz 2 21, aZmz

aymaxm FY) K02 5 g

< 3y k(y,y). (2.5)
Proof. Since k is a reproducing kernel of class ¥,(I?), by Proposition 2.2 k,, is a re-
producing kernel of class &,,_,,(I?) for every 0 < m < n. Let 0 < m; < mp < n. Then
ki, (x,y) = (0*™/dy™ dx™ )k(x, y) is a reproducing kernel of class F,,_,, (I?). We may
write

ormitima oM —rm aZml

Wk(xa}/) = aymz—ml Bymlax”’l k(X>y)

B— (2.6)
= kal (%, ).
Since m, — my < n — my, application of Theorem 1.3 to ky,, yields

oma—m . 2 L 92 (my—my) P

Sy Ko (oY) | = e (60) 5602 Gy o () 2.7)
Hence
Qmatim 2 92m 92m2

Wk(x,y) < Sy g k(x’x)aymzaxmzk(y’y) (2.8)

as stated. The proof of the case 0 < m, < m; < n can be obtained in a similar way using
the corresponding inequalities derived by conjugate symmetry (see Remark 1.4). O

Remark 2.4. Setting n = 0 in Theorem 2.3 yields the statement that if the reproducing
kernel k(x,y) is continuous then the diagonal dominance inequality |k(x,y)|* < k(x,
x)k(y,y) holds. Even though continuity is not necessary, this means that the diagonal
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dominance inequality for reproducing kernels may be thought of as the particular case
n =0 in Theorem 2.3.

In this precise sense, Theorem 2.3 yields a 2-parameter family of inequalities which is
the generalization of the diagonal dominance inequality for (sufficiently) differentiable
reproducing kernels.

3. Sobolev bounds for eigenfunctions of positive integral operators

Throughout this section I < R will denote a closed, but not necessarily bounded, interval.
A linear integral operator K : L*(I) — L(I)

K(9) = Lk(»c,y)sb(y)dy (3.1)

with kernel k(x, y) € L?(I?) is said to be positive if

[] ey 3CIg()dxdy = 0 (3.2)

for all ¢ € L?(I). The corresponding kernel k(x, y) is an L*(I)-positive definite kernel. A
positive definite kernel is conjugate symmetric for almost all x, y € I, so the associated

operator K is self-adjoint. All eigenvalues of K are real and nonnegative as a consequence
of (3.2).

Definition 3.1. A positive definite kernel k(x, y) in an interval I < R is said to be in class
Ao(I) if

(1) it is continuous in I?,

(2) k(x,x) € LX(D),

(3) k(x,x) is uniformly continuous in I.

Remark 3.2. If I is compact, the first condition trivially implies the other two, so sd((I) co-
incides with the continuous functions C(I?). Definition 3.1 is therefore especially mean-
ingful in the case where I is unbounded. It has recently been shown [2] that, if k is a posi-
tive definite kernel in class sdo(I), then the corresponding operator is compact, trace class
and satisfies (the analog of) Mercer’s theorem [7], irrespective of whether I is bounded or
unbounded. For this reason a positive definite kernel in class () is sometimes called a
Mercer-like kernel [4].

It may easily be shown [2] that, if I is unbounded, the simultaneous conditions of
k(x,x) € L'(I) and uniform continuity of k(x,x) in I in Definition 3.1 may be equiva-
lently replaced by k(x,x) € L'(I) and k(x,x) — 0 as |x| — +o0. This equivalent charac-
terization of oo(I) may sometimes be useful in applications (e.g., [3] or the proof of
Theorem 3.5 below).

The following summarizes the properties of positive definite kernels relevant for this
paper. If k(x, y) € L*(I) is a positive definite kernel, then K is a Hilbert-Schmidt operator;
in particular it is compact, so its eigenvalues have finite multiplicity and accumulate only



6 Differential inequalities and integral operators
at 0. The spectral expansion

k(x,y) = > higi(x)¢i(y) (3.3)

i=1

holds, where the {¢;};>; are an L?(I)-orthonormal set of eigenfunctions spanning the
range of K, the {A;};>; are the nonzero eigenvalues of K and convergence of the series
(3.3) is in L?>(I). If in addition k is in class (), then for all x € I k(x,x) = 0 and for
allx,y €1 |k(x,y)|? < k(x,x)k(y, y), eigenfunctions ¢; associated to nonzero eigenvalues
are uniformly continuous on I, convergence of the series (3.3) is absolute and uniform on
I, and the operator K is trace class and satisfies the trace formula [; k(x,x)dx = > ;21 i
In the case where I is compact, the last statements are the classical theorem of Mercer;
for proofs see, for example, [7] for compact I and [2] for noncompact I. Finally, it is not
difficult to show that continuous positive definite kernels are reproducing kernels on I
[4], so that the results of Section 2 apply.

Definition 3.3. Let n > 1 be an integer and I < R. A positive definite kernel k : I* — C is
said to belong to class s, (I) if k € ¥,,(I) and

0%k 0%k
k(x,y),m(x,y),...,w(x,y) (3.4)

are in class Ao (I).

Remark 3.4. Trivially od,(I) € s, (I) C - - - C A (I) € Ao(I). More significantly, ob-
serve that a positive definite kernel in class 9, (I) possesses a delicate but precise mix of
local (differentiability class &,,(I)) and global (integrability and uniform continuity of
each k,,, m = 0,...,n, along the diagonal y = x) properties.

For k in class A, (I), we set for each m =0,...,n
%, = f o (3, ) dx. (3.5)
I

From Theorem 2.3 it follows that 0 < |k, (x, ¥)|? < ki (x,x)km(y, y) for all x, y € I. Thus
for each m = 0,...,n, I, > 0 unless k,,(x, y) is identically zero. In the result below H"(I)
denotes, as usual, the Sobolev Hilbert space W™2(I) normed by ||¢||1211n(1) =
=0 101172 ;. For 0 < I < n, we define

n 1/2
Cuy =K ( > 3{m> . (3.6)
m=I

THEOREM 3.5. Suppose k(x, y) is a positive definite kernel in class ,(I). Let 0 < | < n and
let gb,m be a normalized eigenfunction of ki(x, y) associated with a nonzero eigenvalue )tl[”.
Then ¢,U] is in C"~!(I) n H"~I(I) and

C
< (3.7)
Hn—I(I) Ai ]

o)
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Proof. Let k be in #,(I). Then k; is in sd,,_;(I). For fixed | = 0,...,n, suppose (/51[” is a
normalized eigenfunction of k; associated to )L,[” # 0, that is

() = ﬁ L ki, )8" (y)dy (3.8)

with H¢,m 2y = 1. In the case where I is compact, differentiation of (3.8) n — I times
under the integral sign holds automatically, and so eigenfunctions are C"~/(I). For un-
bounded I this is no longer automatic. We will show, however, that in this case it is also
true, but as specific consequence of k being a positive definite kernel in class 54, (I). Thus
for the rest of the proof of the first statement I will, without loss of generality, be taken to
be R.

By hypothesis, for 0 < < m < n the integrand function (am—’kl(x,y))/(axm—l)cp}” (»)
corresponding to the (m — [)th differentiation under the integral sign exists and is con-
tinuous. We have

m—1 om-!
k0| = |k | |6 )|
mh " ¢ 3.9
< k (X x)l/zkl()/ )’)1/2 [l](y) ,
where we have used Theorem 2.3 with m; = m — [, m, = 0, and k replaced with k;. The
fact that ki(y, y)2¢!" ()| is in L!(I) follows from the Cauchy-Schwartz inequality since

Jkl(}’ y 1/z‘¢l] ‘dy< (J ki(y, y)dy) Hﬁb[”

12(D)
(3.10)

12
(I ki(y, y)dy) =9)? < +oo.

Thus differentiation under the integral sign holds, the integral (3.8) is n — I times dif-
ferentiable, and so are the eigenfunctions ¢1U]. An analogous argument shows that the
integral corresponding to the (n — I)th derivative under the integral sign is continuous in
1. Thus eigenfunctions corresponding to nonzero eigenvalues are C"~/(I).

The norm estimates work identically for bounded or unbounded I, so from now on we
need not make any assumption about it. By the Cauchy-Schwartz inequality and Theorem

2.3 we have

|

¢[ll(m )

1

[m=1) 2
12(I) J ’¢ ‘ dx
1 om!
=), i ), (Gt )0y

() 7]}

2

amfl
oxm-!

(x, )]dy

[l](y)’ dy]dx
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2
1 2m=D,(x, x)
= (M”) L[ | aymiggn1 KAy
] 2
(/\U ) Jk (x,x dxj ki(y,y)dy = (W) %,

forall0 <! <m < nwith [+m < n. Thus

lo

or, recalling definition (3.6), ||¢ g1y < Cn,l//lt[l] as asserted. O

@

(3.11)

n

HI(I

)<< m) Zf}{ %, (3.12)

m=Il

Since the operators with kernels k; are compact and positive, for each I the eigenvalue
sequence {/\,m }ien may be assumed to be decreasing to 0. We denote by EI[\I,] = o) Eyu
the direct sum of the eigenspaces associated with the first N eigenvalues of k;.

COROLLARY 3.6. Suppose k(x, y) is a positive definite kernel in class sd,,(I) and let 0 <1 < n.
Suppose A%] is a nonzero eigenvalue of k. Then for any ¢ € EI[\I,],

N 1 2 1/2
Il pn1r) < Chy [Z (W) ] ldllz2r)- (3.13)

i=1

Proof. Since {¢>,”} ¥, constitute an L?(I)-orthonormal basis for EN,we have ¢=3"N ¢;¢; 2

with |\¢||L2 = lel lcil®. Forl < m < n,

2 (1 ’ P N 2
o] i) < (G Er)
i=1 i=1
N 1 2
<1¢ll32p) > (W) H oK.
i=1 \A;
(3.14)
Therefore
) 1/2 n 2N 7y 2712
o= (£t <2 (£20) £ ) | o
m=I i=1 Ai
N 172 (3.15)
=Cu {Z( [,]) ] 2

i=1

as stated. 0

Remark 3.7. The norm bound obtained in (3.7) cannot, in general, be improved. To show
thisletI C R and choose ¢ € C"(I) n H" !(I) with |||l 12y = 1 and ¢(x) — O as |x| — o
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if I is unbounded. By Remark 3.2 these choices imply that k;(x, y) = ¢(x)¢(y) is a rank-
1 positive definite kernel in class s,_;(I) irrespective of whether I is bounded or not.
In particular the only nonzero eigenvalue is A"l = 1 and the corresponding normalized
eigenvector is ¢. Recalling the definition (3.5) of J{,,, we have in this case

2
o= [ Knordz = [ 90| = [ (3.16)
I I LA(I)

for 0 < I < m < n. By our choice of k; we have J{; = ||¢||%2(1) =1 and, since A\l = 1, we

may write
n R n ?I{l
2 _ (m-1) _
161120 = mzleqs o = mzzl% S Z Ko (3.17)

and so in this case equality holds in (3.11). This shows that the bound in Theorem 3.5 is
sharp and cannot be improved.

References

[1] N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society
68 (1950), no. 3, 337-404.

[2] J. Buescu, Positive integral operators in unbounded domains, Journal of Mathematical Analysis
and Applications 296 (2004), no. 1, 244-255.

[3] J. Buescu, E. Garcia, I. Lourtie, and A. C. Paixdo, Positive-definiteness, integral equations and
Fourier transforms, Journal of Integral Equations and Applications 16 (2004), no. 1, 33-52.

[4] J. Buescu and A. C. Paixao, Positive definite matrices and integral equations on unbounded do-
mains, Differential and Integral Equations 19 (2006), no. 2, 189-210.

[5] E. H. Moore, General Analysis. Pt. I, Memoirs of Amer. Philos. Soc., American Philosophical
Society, Pennsylvania, 1935.

[6] —, General Analysis. Pt. IT, Memoirs of Amer. Philos. Soc., American Philosophical Society,
Pennsylvania, 1939.

[7] E Riesz and B. Nagy, Functional Analysis, Ungar, New York, 1952.

[8] S. Saitoh, Theory of Reproducing Kernels and Its Applications, Pitman Research Notes in Mathe-
matics Series, vol. 189, Longman Scientific & Technical, Harlow, 1988.

Jorge Buescu: Departamento de Matematica, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
E-mail address: jbuescu@math.ist.utl.pt

A. C. Paixdo: Departamento de Engenharia Mecanica, ISEL, 1949-014 Lisbon, Portugal
E-mail address: apaixao@dem.isel.ipl.pt


mailto:jbuescu@math.ist.utl.pt
mailto:apaixao@dem.isel.ipl.pt

	1. Introduction
	2. Differentiable reproducing kernel inequalities
	3. Sobolev bounds for eigenfunctions of positive integral operators
	References

