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We show that if T ∈�(�) is a (p,k)-quasihyponormal operator and S∗ ∈�(�) is a p-
hyponormal operator, and if TX = XS, where X : �→� is a quasiaffinity (i.e., a one-one
map having dense range), then T is a normal and moreover T is unitarily equivalent to S.
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Let � be a separable complex Hilbert space with inner product 〈·,·〉 and let �(�) denote
the C∗-algebra of all bounded linear operators on �. The spectrum of an operator T ,
denoted by σ(T), is the set of all complex numbers λ for which T − λI is not invertible.
The numerical range of an operator T , denoted byW(T), is the set defined by

W(T)= {〈Tx,x〉 : ‖x‖ = 1
}
. (1)

The norm closure of a subspace � of � is denoted by �. We denote the kernel and the
range of an operator T by ker(T) and ran(T), respectively.

For p such as 0 < p ≤ 1 and positive integer k, an operator T ∈�(�) is called (p,k)-
quasihyponormal if T∗k(|T|2p−|T∗|2p)Tk ≥ 0. A (p,k)-quasihyponormal operator is an
extension of p-hyponormal operator (i.e., (T∗T)p−(TT∗)p ≥ 0), k-quasihyponormal
operator (i.e., T∗k(|T|2−|T∗|2)Tk ≥ 0) and p-quasihyponormal operator (i.e., T∗(|T|2p
−|T∗|2p)T ≥ 0). Aluthge [1], Campbell and Gupta [3], Arora and Arora [5], and the au-
thor [8] introduced p-hyponormal, k-quasihyponormal, p-quasihyponormal, and (p,k)-
quasihyponormal operators, respectively. It was known that these operators share many
interesting properties with hyponormal operators (see [1–8, 11, 12]). In this paper, we
consider the extension of results of Sheth [9] and Gupta and Ramanujan [6]. The main
result is as follows.

If T ∈�(�) is a (p,k)-quasihyponormal operator and S∗ ∈�(�) is a p-hyponormal
operator, and if TX = XS, where X : �→� is an injective bounded linear operator with
dense range, then T is a normal operator unitarily equivalent to S.

In general, the conditions S−1TS= T∗ and 0 /∈W(S) do not imply that T is normal.
For example, (see [13]), if T = SB, where S is positive and invertible, B is self-adjoint, and
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2 The Fuglede-Putnam theorem

S and B do not commute, then S−1TS= T∗ and 0 /∈W(S), but T is not normal. Therefore
the following question arises naturally.

Question 1. Which operator T satisfying the condition S−1TS= T∗ and 0 /∈W(S) is nor-
mal?

In 1966, Sheth [9] showed that if T is a hyponormal operator and S−1TS= T∗ for any
operator S, where 0 /∈W(S), then T is self-adjoint. We extend the result of Sheth to the
class of p-hyponormal operators as follows.

Theorem 2. If T or T∗ is p-hyponormal operator and S is an operator for which 0 /∈W(S)
and ST = T∗S, then T is self-adjoint.

To prove Theorem 2 we need the following lemma.

Lemma 3 [13, Theorem 1]. If T ∈�(�) is any operator such that S−1TS = T∗, where
0 /∈W(S), then σ(T)⊆R.

Proof of Theorem 2. Suppose that T or T∗ is p-hyponormal operator. Since σ(S)⊆W(S),
S is invertible and hence ST = T∗S becomes S−1T∗S= T = (T∗)∗. Apply Lemma 3 to T∗

to get σ(T∗) ⊂ R. Then σ(T) = σ(T∗) = σ(T∗) ⊂ R. Thus m2(σ(T)) =m2(σ(T∗)) = 0
for the planer Lebesgue measure m2. Now apply Putnam’s inequality for p-hyponormal
operators to T or to T∗ (depending upon which is p-hyponormal) to get

∥
∥(T∗T

)p− (TT∗)p∥∥≤ p

π

∫∫

σ(T)
r2p−1dr dθ = 0 (2)

or

∥
∥(TT∗

)p− (T∗T)p∥∥≤ p

π

∫∫

σ(T∗)
r2p−1dr dθ = 0. (3)

It follows that T or T∗ is normal. Since σ(T) = σ(T∗) ⊂ R here, T must be selfadjoint.
�

We can extend the result of Theorem 2 to the class of p-quasihyponormal operators.
We use the following lemma.

Lemma 4 [8, Lemma 1]. If T is (p,k)-quasihyponormal operator, then T has the following
matrix representation:

T =
(
T1 T2

0 T3

)

, (4)

where T1 is p-hyponormal on ran(Tk) and T3
k = 0. Furthermore, σ(T)= σ(T1)∪{0}.

Theorem 5. If T is (p,k)-quasihyponormal operator and S is an arbitrary operator for
which 0 /∈W(S) and ST = T∗S, then T is direct sum of a self-adjoint and nilpotent operator.
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Proof. Since T is (p,k)-quasihyponormal operator, we have the following matrix repre-
sentation:

T =
(
T1 T2

0 T3

)

on ran
(
Tk
)⊕ ker

(
T∗k

)
, (5)

where T1 is p-hyponormal and Tk
3 = 0. Since S−1TS= T∗ and 0 /∈W(S), we have σ(T)⊆

R by Lemma 3. Therefore σ(T1) ⊆ R because σ(T) = σ(T1)∪ {0} and hence T1 is self-
adjoint by Theorem 2 because T1 is p-hyponormal operator. Now let P is the orthogonal
projection of � onto ran(Tk). Since T is (p,k)-quasihyponormal operator we have

((
T1T

∗
1

)p
0

0 0

)

= (TPT∗)p ≤ P
(
TT∗

)p
P ≤ P

(
T∗T

)p
P ≤ (PT∗TP)p

=
((

T∗1 T1
)p

0
0 0

)

,

(6)

by Löwner-Heinz’s inequality and Hansen’s inequality. By Löwner’s inequality, for 0 <
q ≤ p ≤ 1, we have

((
T1T

∗
1

)q
0

0 0

)

≤ P
(
TT∗

)q
P ≤ P

(
T∗T

)q
P ≤

((
T∗1 T1

)q
0

0 0

)

. (7)

Since T1 is normal, (TT∗)q has the following matrix representation:

(
TT∗

)q =
((

T1T
∗
1

)q
A

A∗ B

)

on ran
(
Tk
)⊕ ker

(
T∗k

)
. (8)

Put q = p/2. Then by straightforward calculation we have

((
T1T

∗
1

)p
0

0 0

)

= P
(
TT∗

)p
P = P

(
TT∗

)q(
TT∗

)q
P =

((
T1T

∗
1

)p
+AA∗ 0

0 0

)

, (9)

which implies A= 0. Thus we have

TT∗ =
((

T1T
∗
1

)q
0

0 B

)1/q

=
(
T1T

∗
1 0

0 B1/q

)

, (10)

and by matrix representation of T we also have

TT∗ =
(
T1T

∗
1 +T2T

∗
2 T2T

∗
3

T3T
∗
2 T3T

∗
3

)

. (11)

Therefore T1T
∗
1 +T2T

∗
2 = T1T

∗
1 and hence T2 = 0, which implies the proof. �

The following corollary is an extension of the result of Theorem 2 to the class of p-
quasihyponormal operators.
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Corollary 6. If T or T∗ is p-quasihyponormal operator and S is an arbitrary operator for
which 0 /∈W(S) and ST = T∗S, then T is self-adjoint.

Proof. If T is p-quasihyponormal operator, T has the following matrix representation by
Lemma 4:

T =
(
T1 T2

0 0

)

, (12)

where T1 is p-hyponormal on ran(Tk) and σ(T) = σ(T1)∪{0}. Since T1 is self-adjoint
and T2 = 0 by Theorem 5, T = (T1 0

0 0

)
is also self-adjoint. On the other hand, if T∗ is

(p,k)-quasihyponormal operator, then using the arguments of the proof of Theorem 2
we can conclude that T is self-adjoint. �

In 1977, Stampli and Wadhwa [10] showed that if A∗ ∈�(�) is hyponormal, B ∈
�(�) is dominant, C ∈�(�,�) is injective and has dense range, and if CA= BC, then
A and B are normal. On the other hand, in 1981, Gupta and Ramanujan [6] showed
that if T ∈�(�) is k-quasihyponormal operator and S∈�(�) is a normal operator for
which TX = XS where X ∈�(�,�) is one to one operator with dense range, then T is
normal operator unitarily equivalent to S. In the following theorem, we extend the result
of Gupta and Ramanujan to the class of (p,k)-quasihyponormal operators. We need the
following lemma due to Jeon and Duggal [7].

Lemma 7 [7, Corollary 7]. Let T ∈�(�) be a p-hyponormal operator and let S∗ ∈�(�)
be a p-hyponormal operator. If TX = XS, where X : �→� is an injective bounded linear
operator with dense range then T is a normal operator unitarily equivalent to S.

Theorem 8. Let T ∈�(�) is a (p,k)-quasihyponormal operator and let S∗ ∈�(�) is a p-
hyponormal operator. If TX = XS, where X : �→� is an injective bounded linear operator
with dense range then T is a normal operator unitarily equivalent to S.

Proof. Let T1 := T|ran(Tk) and S1 := S|ran(Sk). Then we have the following matrix represen-
tations:

T =
(
T1 T2

0 T3

)

, S=
(
S1 0
0 0

)

, (13)

where T1 is p-hyponormal, T3
k = 0 and S∗1 is p-hyponormal. Notice that TkX = XSk

for all positive integer k. Thus X(ran(Sk)) = ran(Tk). If we denote the restriction of X
to ran(Sk) by X1 then X1 : ran(Sk)→ ran(Tk) is one to one and has dense range. Since
X1S1x = XSx = TXx = T1X1x for every x ∈ ran(Sk), it follows that X1S1 = T1X1. On the
other hand, since T1 and S∗1 are p-hyponormal operators, it follows from Lemma 7 that
T1 is a normal operator unitarily equivalent to S1. Now let P be the orthogonal projection
of � onto ran(Tk). Since T is (p,k)-quasihyponormal operator and T1 is normal opera-
tor, from the arguments of the proof of the Theorem 5 we have T2 = 0 and hence ran(Tk)
reduces T . SinceX∗(ker(T∗k))⊆ ker(S∗k)= ker(S∗), we have that for each x ∈ ker(T∗k),

X∗T∗3 x = X∗T∗x = S∗X∗x = 0. (14)
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But since X has dense range, X∗ is one to one and hence T∗3 x = 0 for every x ∈ ker(T∗k).
Thus T3 = 0, so that T = T1⊕ 0. This completes the proof. �

Lemma 9 [11, Lemma 5]. The restriction T|� of the (p,k)-quasihyponormal operator T on
� to an invariant subspace � of T is also (p,k)-quasihyponormal operator.

Lemma 10. Let T ∈�(�) be a (p,k)-quasihyponormal operator and � be an invariant
subspace of T for which T|� is an injective normal operator. Then � reduces T .

Proof. Suppose that P is a orthogonal projection of � onto ran(Tk). Then since T is
(p,k)-quasihyponormal operator, we have P{(T∗T)p− (TT∗)p}P ≥ 0. PutT1 = T|� and

T =
(
T1 T2

0 T3

)

on �=�⊕�⊥. (15)

Since by assumption T1 is injective normal operator, we have E ≤ P for the orthogo-

nal projection E of � onto � and ran(Tk
1 ) =� because T1 has dense range. Therefore

� ⊆ ran(Tk) and hence E{(T∗T)p − (TT∗)p}E ≥ 0. Since T is (p,k)-quasihyponormal
operator, using the Löwner-Heinz inequality and Hansen’s inequality we have

((
T1T

∗
1

)p
0

0 0

)

= E
(
TET∗

)p
E ≤ E

(
TT∗

)p
E ≤ E

(
T∗T

)p
E ≤ (ET∗TE)p

=
((

T∗1 T1
)p

0
0 0

)

.

(16)

Since T1 is normal, we have, by Löwner’s inequality,

(
TT∗

)p/2 =
((

T1T
∗
1

)p/2
A

A∗ B

)

. (17)

So

((
T1T

∗
1

)p
0

0 0

)

= E
(
TT∗

)p
E =

((
T1T

∗
1

)p
+AA∗ 0

0 0

)

, (18)

and hence A= 0 and TT∗ = (T1T
∗
1 0

0 B2/p

)
. Since

TT∗ =
(
T1T

∗
1 +T2T

∗
2 T2T

∗
3

T3T
∗
2 T3T

∗
3

)

, (19)

it follows that T2 = 0 and hence T is reduced by �. �

Theorem 11. If T∗ ∈�(�) is p-hyponormal, S∈�(�) is injective (p,k)-quasihyponor-
mal, and if XT = SX for X ∈�(�,�), then XT∗ = S∗X .
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Proof. Since by assumption XT = SX , we can see that (kerX)⊥ and ranX are invariant
subspaces of T∗ and S, respectively. Therefore by Lemma 9 we have that T∗|(kerX)⊥ is
p-hyponormal and S|ranX is also (p,k)-quasihyponormal. Now consider the decomposi-
tions �= (kerX)⊥ ⊕ kerX and �= ranX ⊕ (ranX)⊥. Then we have the following matrix
representations:

T =
(
T1 0
T2 T3

)

, S=
(
S1 S2
0 S3

)

, X =
(
X1 0
0 0

)

, (20)

where T∗1 is p-hyponormal, S1 is injective (p,k)-quasihyponormal and X1 is injective
with dense range. Therefore we have

X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥. (21)

That is, X1T1 = S1X1 and hence T1 and S1 are normal by Theorem 8 and X1T
∗
1 = S∗1 X1 by

the Fuglede-Putnam theorem. Therefore by Lemma 10, (kerX)⊥ and ranX reduces T∗

and S, respectively. Hence we obtain the XT∗ = S∗X . �

In Lemma 10, we can drop the injective condition if T is p-hyponormal instead of
(p,k)-quasihyponormality (see [7, Lemma 2]). Therefore we recapture a generalized
Fuglede-Putnam theorem for p-hyponormal operators.

Corollary 12. Let T∗ ∈ �(�) is a p-hyponormal operator and let S ∈ �(�) is a p-
hyponormal operator. If XT = SX for X ∈�(�,�), then XT∗ = S∗X .
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