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We show that if T € B(H) is a (p, k)-quasihyponormal operator and $* € B(K) is a p-
hyponormal operator, and if TX = XS, where X : }{ — ¥ is a quasiaffinity (i.e., a one-one
map having dense range), then T is a normal and moreover T is unitarily equivalent to S.
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Let # be a separable complex Hilbert space with inner product (-, -) and let (7€) denote
the C*-algebra of all bounded linear operators on #. The spectrum of an operator T,
denoted by o(T), is the set of all complex numbers A for which T — AI is not invertible.
The numerical range of an operator T, denoted by W(T), is the set defined by

W(T) = {{Tx,x) : l|lx] = 1}. (1)

The norm closure of a subspace Il of ¥ is denoted by /(. We denote the kernel and the
range of an operator T by ker(T) and ran(T'), respectively.

For p such as 0 < p < 1 and positive integer k, an operator T' € B(¥) is called (p,k)-
quasihyponormal if T*k(ITIZP —|T*12)Tk > 0. A (p,k)-quasihyponormal operator is an
extension of p-hyponormal operator (i.e., (T*T)?P —(TT*)? = 0), k-quasihyponormal
operator (i.e., T**(|T12=|T*|>)T* > 0) and p-quasihyponormal operator (i.e., T* (| T|??
—|T*|?")T = 0). Aluthge [1], Campbell and Gupta [3], Arora and Arora [5], and the au-
thor [8] introduced p-hyponormal, k-quasihyponormal, p-quasihyponormal, and (p, k)-
quasihyponormal operators, respectively. It was known that these operators share many
interesting properties with hyponormal operators (see [1-8, 11, 12]). In this paper, we
consider the extension of results of Sheth [9] and Gupta and Ramanujan [6]. The main
result is as follows.

If T € B(HK) is a (p, k)-quasihyponormal operator and §* € RB(K) is a p-hyponormal
operator, and if TX = XS, where X : J{ — ¥ is an injective bounded linear operator with
dense range, then T is a normal operator unitarily equivalent to S.

In general, the conditions S™!TS = T* and 0 ¢ W(S) do not imply that T is normal.
For example, (see [13]), if T = SB, where S is positive and invertible, B is self-adjoint, and
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2 The Fuglede-Putnam theorem

Sand B do not commute, then S™!TS = T* and 0 € W(S), but T is not normal. Therefore
the following question arises naturally.

Question 1. Which operator T satisfying the condition ST'TS = T* and 0 ¢ W (S) is nor-
mal?

In 1966, Sheth [9] showed that if T is a hyponormal operator and S~' TS = T* for any
operator S, where 0 ¢ W(S), then T is self-adjoint. We extend the result of Sheth to the
class of p-hyponormal operators as follows.

TaeoreM 2. If T or T* is p-hyponormal operator and S is an operator for which 0 & W (S)
and ST = T*S, then T is self-adjoint.

To prove Theorem 2 we need the following lemma.

LemMA 3 [13, Theorem 1]. If T € B(#) is any operator such that ST'TS = T*, where
0¢ W(S), then o(T) < R.

Proof of Theorem 2. Suppose that T or T* is p-hyponormal operator. Since a(S) € W(S),
S is invertible and hence ST = T*S becomes S™!T*S = T = (T*)*. Apply Lemma 3 to T*
to get 0(T*) C R. Then o(T) = o(T*) = o(T*) C R. Thus m,(c(T)) = my(a(T*)) =0
for the planer Lebesgue measure m,. Now apply Putnam’s inequality for p-hyponormal
operators to T or to T* (depending upon which is p-hyponormal) to get

1(T*T)? - (TT*)?|| < IE)Ham 2 drd = 0 2)
or
1(TT*)? = (T*T)?|| < £ ﬂ P20 dr df — 0. 3)

It follows that T or T* is normal. Since o(T) = d(T*) C R here, T' must be selfadjoint.
a

We can extend the result of Theorem 2 to the class of p-quasihyponormal operators.
We use the following lemma.

LemMa 4 [8, Lemma 1]. If T is (p,k)-quasihyponormal operator, then T has the following
matrix representation:

T, T,
T:(o T3)’ (4)

where Ty is p-hyponormal on ran(T*) and Ts* = 0. Furthermore, o(T) = o(T}) U {0}.

TaeoreM 5. If T is (p,k)-quasihyponormal operator and S is an arbitrary operator for
which 0 & W(S) and ST = T*S, then T is direct sum of a self-adjoint and nilpotent operator.
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Proof. Since T is (p,k)-quasihyponormal operator, we have the following matrix repre-
sentation:
T = Lo T on ran (T*) @ ker (T*"), (5)
0 T;
where T is p-hyponormal and T5 =0.Since S!TS = T* and 0 ¢ W(S), we have o(T)
R by Lemma 3. Therefore (T;) < R because ¢(T) = ¢(T1) U {0} and hence T is self-

adjoint by Theorem 2 because T} is p-hyponormal operator. Now let P is the orthogonal
projection of ¥ onto ran(T*). Since T is (p,k)-quasihyponormal operator we have

((T1 Z)"l*)p g) — (TPT*)? < P(TT*)’P < P(T*T)"P < (PT*TP)"

(6)

by Lowner-Heinz’s inequality and Hansen’s inequality. By Lowner’s inequality, for 0 <
q < p <1, wehave

<(T1£1*)q 8) < P(TT*)'P < P(T*T)"P < ((Tl*(;rl)q 8) (7)

Since T} is normal, (TT*)7 has the following matrix representation:

(TT%)" = ((Tifl‘*)q 2) on ran(T¥) o ker (1) ®

Put g = p/2. Then by straightforward calculation we have

((TITI*)P 0) =P(TT*)’P=P(TT*)(TT*)'P = ((

T\ T;)? + AA* 0
0 0 » (9)

0 0

which implies A = 0. Thus we have

1/q
(T, TH)T 0 T, T¥ 0
TT*:( 01 M= 01 ) (10)

and by matrix representation of T we also have

T, Tl* +T, Tz* T Tf;k

* _

TT* = ( TS TS ST ) (11)
Therefore T\ T} + T, T5* = T1 T} and hence T, = 0, which implies the proof. O

The following corollary is an extension of the result of Theorem 2 to the class of p-
quasihyponormal operators.
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CoROLLARY 6. If T or T* is p-quasihyponormal operator and S is an arbitrary operator for

which 0 & W(S) and ST = T*S, then T is self-adjoint.

Proof. If T is p-quasihyponormal operator, T has the following matrix representation by

Lemma 4:
(T T
T= ( 0o 0 ) , (12)

where Ty is p-hyponormal on ran(T*) and o(T) = o(T;) U {0}. Since T; is self-adjoint
and T, = 0 by Theorem 5, T = (71 J) is also self-adjoint. On the other hand, if T* is
(p,k)-quasihyponormal operator, then using the arguments of the proof of Theorem 2
we can conclude that T is self-adjoint. O

In 1977, Stampli and Wadhwa [10] showed that if A* € %B(%() is hyponormal, B €
B(K) is dominant, C € B(H,K) is injective and has dense range, and if CA = BC, then
A and B are normal. On the other hand, in 1981, Gupta and Ramanujan [6] showed
that if T € B(H) is k-quasihyponormal operator and S € B(I{) is a normal operator for
which TX = XS where X € B(J, %) is one to one operator with dense range, then T is
normal operator unitarily equivalent to S. In the following theorem, we extend the result
of Gupta and Ramanujan to the class of (p,k)-quasihyponormal operators. We need the
following lemma due to Jeon and Duggal [7].

LemMa 7 [7, Corollary 7]. Let T € B(H) be a p-hyponormal operator and let S* € B(IH)
be a p-hyponormal operator. If TX = XS, where X : J{ — ¥ is an injective bounded linear
operator with dense range then T is a normal operator unitarily equivalent to S.

TueoreM 8. Let T € B(H) is a (p,k)-quasihyponormal operator and let S* € B(K) is a p-
hyponormal operator. If TX = XS, where X : K — ¥ is an injective bounded linear operator
with dense range then T is a normal operator unitarily equivalent to S.

Proof. Let T, := T|m and S;:= S |W' Then we have the following matrix represen-

tations:
_ T1 T2 _ Sl 0
S I 13)

where T is p-hyponormal, T5* = 0 and S} is p-hyponormal. Notice that T*X = XS

for all positive integer k. Thus X (ran(S¥)) = ran(T*). If we denote the restriction of X
to ran(Sk) by X; then X; : ran(Sk) — ran(T*) is one to one and has dense range. Since
X181x = XSx = TXx = T1 X, x for every x € ran(Sk), it follows that X;S; = T1 X;. On the
other hand, since T} and S} are p-hyponormal operators, it follows from Lemma 7 that
T is a normal operator unitarily equivalent to S;. Now let P be the orthogonal projection
of ¥ onto ran(T*). Since T is (p,k)-quasihyponormal operator and T} is normal opera-
tor, from the arguments of the proof of the Theorem 5 we have T, = 0 and hence ran(T*)

reduces T. Since X * (ker(T*k)) c ker(S*k) = ker(S*), we have that for each x € ker(T*k),

X*Tfx=X*"T*x=S*X*x=0. (14)
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But since X has dense range, X* is one to one and hence T x = 0 for every x € ker(T*).
Thus T5 = 0, so that T = T} @ 0. This completes the proof. O

Lemma 9 [11, Lemma 5]. The restriction Ty of the (p,k)-quasihyponormal operator T on
9 to an invariant subspace M of T is also (p,k)-quasihyponormal operator.

Lemma 10. Let T € B(H) be a (p,k)-quasihyponormal operator and M be an invariant
subspace of T for which T'| y is an injective normal operator. Then JM reduces T.

Proof. Suppose that P is a orthogonal projection of # onto ran(T*). Then since T is
(p,k)-quasihyponormal operator, we have P{(T*T)? — (TT*)P}P = 0.Put T} = Ty and

_ I Th _ L
T—(O T3> on # = A & M*. (15)

Since by assumption T is injective normal operator, we have E < P for the orthogo-

nal projection E of % onto Jl and ran(T¥) = J because T} has dense range. Therefore
M = ran(T*) and hence E{(T*T)? — (TT*)?P}E = 0. Since T is (p,k)-quasihyponormal
operator, using the Lowner-Heinz inequality and Hansen’s inequality we have

((Tlek)P 0) = E(TET*)’E < E(TT*)?E < E(T*T)?E < (ET*TE)"

0 0 (16)
_((rym)” o
0 0
Since T) is normal, we have, by Lowner’s inequality,
/2
ez _ (TP A
(TT*)"" = ( R B/ (17)
So
(TT7)? 0\ _ wrp_ [((MTHP+AA* 0
( 0 0 =E(TT*)"E = 0 NE (18)
and hence A=0and TT* = (TIOT‘* Bg}, ). Since
T: Tl* + T, TZ* T, Tgk
* _
T ‘( ST TyTF) (19)
it follows that T, = 0 and hence T is reduced by JL. O

TaeoreM 11. If T* € B(HK) is p-hyponormal, S € B(K) is injective (p, k)-quasihyponor-
mal, and if XT = SX for X € B(HK, K), then XT* = S*X.
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Proof. Since by assumption XT = SX, we can see that (kerX)* and ranX are invariant
subspaces of T* and S, respectively. Therefore by Lemma 9 we have that T™*|erx)- is
p-hyponormal and S|z is also (p, k)-quasihyponormal. Now consider the decomposi-
tions ¥ = (kerX)* @ ker X and ¥ = ranX @ (ranX)*. Then we have the following matrix
representations:

(T 0 (S S (X1 0
T_(Tz T3)’ S_<0 Sg)’ X_(O 0)’ (20)
where T is p-hyponormal, S; is injective (p,k)-quasihyponormal and X, is injective
with dense range. Therefore we have

XiTix=XTx=S8Xx=85Xx forxe (kerX)". (21)

That is, X; T} = $1X; and hence T} and S; are normal by Theorem 8 and X, T}* = ST X; by
the Fuglede-Putnam theorem. Therefore by Lemma 10, (kerX)* and ranX reduces T*
and §, respectively. Hence we obtain the X T* = §*X. g

In Lemma 10, we can drop the injective condition if T is p-hyponormal instead of
(p,k)-quasihyponormality (see [7, Lemma 2]). Therefore we recapture a generalized
Fuglede-Putnam theorem for p-hyponormal operators.

CorOLLARY 12. Let T* € B(HK) is a p-hyponormal operator and let S € B(IH) is a p-
hyponormal operator. If XT = SX for X € B(H,H), then XT* = $*X.
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