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Letm(y) = > ;1:1 yj/nands(y) = /m(y?) — m?(y) be the mean and the standard deviation
of the components of the vector y = (y1, ¥2,..., ¥n_1, ¥u)> where y4 = (y1,y3,.. ..yl 1,y
with g a positive integer. Here, we prove that if y > 0, then m(y*’) + (1/v/n— 1)s(y*) <
\/m(yz””)+ (1/v/n—=1)s(y?""") for p =0,1,2,.... The equality holds if and only if
the (n — 1) largest components of y are equal. It follows that (l» (Y));O:o’ Le(y) =

(m(y*)+ (1/vn=1Ds(y*))* ", is a strictly increasing sequence converging to yi, the
largest component of y, except if the (n — 1) largest components of y are equal. In this
case, L (y) = y; forall p.

Copyright © 2006 Oscar Rojo. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction
Let

m(x) = #, s(x) = m(x2) — m?(x) (1.1)

be the mean and the standard deviation of the components of x = (x1,X2,...,Xn-1,Xn),
where x4 = (x1,x3,...,x1_,,x1) for a positive integer g.
The following theorem is due to Wolkowicz and Styan [3, Theorem 2.1.].

TaeOREM 1.1. Let

X1 =Xp >0 > Xyl = X (1.2)
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2 Inequalities on the mean and standard deviation

Then
() + ———s(x) < (13)
m ms <x, .
x1 < m(x)+vVn— 1s(x). (1.4)
Equality holds in (1.3) if and only if x; = x, = - - - = x,—1. Equality holds in (1.4) if and only
ifx, =x3="+=xp,

Let x1,%2,...,%-1,%, be complex numbers such that x; is a positive real number and
x1= x| == x| = | xa]. (1.5)

Then,
D L P L P (1.6)

for any positive integer p. We apply Theorem 1.1 to (1.6) to obtain

1

P p p
m(|x| )+ms(|x| ) < x5 1
X} <m(|x|?) +Vn—1s(|x/|?),
where x| = (Ix1], lx2 ..., [xn-1], [xn]).
Then,
) 1/p
1) = (m(1x1?) + —==s(1xI")) (1.8)
is a sequence of lower bounds for x; and
up(x) = (m(|x|?) +v/n - ls(\xlp))w (1.9)

is a sequence of upper bounds for x;.
We recall that the p-norm and the infinity-norm of a vector x = (x1,x2,...,%,) are

n 1/p
wu=(2u#ﬁ , l<p<oo,
i=1

1%l o0 =miaXIxi|.

(1.10)

It is well known that lim .o, [|x[[p = [1X]|co.
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Then,
o\ VP
O - SR S P 1 i
P n Jnn=1) 2p n ’
_ (1.11)
Ixllp  [n=1] 2 lxly
Up(x) = ( » + " ||X||2p_ ”
In [2, Theorem 11], we proved thatif y; = y, 2 y3 = --- = y, 2 0, then
m(y? )+ —TIs(y”) = m(y?") +/n— Ls(y*") (1.12)
for p =0,1,2,.... The equality holds ifand only if y, = y3 = - - - = y,. Using this inequal-
ity, we proved in [2, Theorems 14 and 15] that if y, = y5 = - - - = y,, then u,(y) = »1

for all p, and if y; < y; for some 2 < j <i < n, then (ux(y));-, is a strictly decreasing
sequence converging to y;.
The main purpose of this paper is to prove thatif y; = y, = y3= -+ = y, > 0, then

1 1
20 2P 2p+l 2p+1
")+ sy?) = )+ st (113)
for p=0,1,2,.... The equality holds if and only if y; = y, = - - - = y,_;. Using this in-
equality, we prove that if yy = y, = - - - = y,,-1, then u,(y) = y; forall p, and if y; < y; for

some 1 < j <i<n—1,then (L»(y)),- is a strictly increasing sequence converging to y.

2. New inequalities involving m(x) and s(x)

THEOREM 2.1. Let X = (X1,X2,...,Xn—1,Xn) be a vector of complex numbers such that x, is a
positive real number and

x12 x| == x| = | xa (2.1)
The sequence (lp(x));":l converges 1o X.
Proof. From (1.11),

lIxIl,
n

lp(x) = vp. (2.2)

S

Then, 0 < |I,(x) — x| = x1 — [,(x) < x; — [[x[[,/n for all p. Since lim,_ || x l, =x1
and lim, ., &/n =1, it follows that the sequence (I,(x)) converges and lim, . [,(x) = x;.
a

We introduce the following notations:
(i) e=(1,1,...,1),
(if) 9 = R" — {de:A € R},
(iil) 6 ={x=(x1,%2,...,%,) : 0 < xx < 1,k =1,2,...,n},
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(1iv) € ={x=(1,%2,...,%,) 10 < x, < X1 <+ -+ <X < 1},
(v) (x,y) = Dp_; xkyk for x,y € R,

(vi) Vg(x) = (d1g(x),0,€(x),...,0,g(x)) denotes the gradient of a differentiable func-
tion g at the point x, where drg(x) is the partial derivative of g with respect to xi,
evaluated at x.

Clearly, if x € €, then x7 € € with g a positive integer.
Let vi,Vv2,...,V, be the points

v = (1)0)---)0))
vy = (1)1)0)---)0))
V3 = (1)1)1)07---)0))
(2.3)

Vin-2 = (1)1)”-)17030))
vy = (1, 1,...,1,1,0),
v, =(1,1,...,1,1) =e.

Observe that vi,v,,...,v, lie in €. For any x =(1,%2,X3,...,X,-1,%X,) € €, we have

x=(1-x)vi+ (% —x3)V2+ (x5 —x4) V3

(2.4)
+eeet (xnfz _xnfl)vn—Z + (xn—l - xn)Vn—l + X V.
Therefore, € is a convex set. We define the function
(%) = m(x) + ———s(x) (2.5)
f(x)=m(x N s .
where x = (x1,%2,...,X,) € R". We observe that
(%)
n t X n
ns*(x) = xz—#: x—mx2
( ) zgl k n k:1( k ( )) (2.6)
= |lx-m(x)el[5-
Then,
) = m(x) + ————|[x-m(x)e]|
B Jn(n—1) 2
(2.7)

2
- 1% P ixz_ (Zlexj>
n Vn(n—1)\ 5 k n '

Next, we give properties of f. Some of the proofs are similar to those in [2].
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LemMa 2.2. The function f has continuous first partial derivatives on %, and for x =
(X1,%25...5X,) EDand 1 <k < n,

1 X — m(x)

W= - fx) - mx)’ (2:8)
Z hf(x)=1, (2.9)
k=1

(Vf(x),x) = f(x). (2.10)

Proof. From (2.7), it is clear that f is differentiable at every point x # m(x)e, and for
l<k=<n,

X — z _1xj/n

2
\/Z, 1 X = Z}lef) /n (2.11)

1 1 xp — m(x)
n(nfl)f(x) m(x)’

Af(x) =+

which is a continuous function on %. Then, > ;_, ok f (x) = 1. Finally,

(VIx)x) = ixkakf(x)

k=1

_ Sk, 1 SR -me) Sk x (2.12)
on n(n—1) fx) —m(x)

m(x) + x —a(x)e
sl et -
This completes the proof. O

LemMa 2.3. The function f is convex on €. More precisely, for x,y € 6 and t € [0,1],
F(A=t)x+ty) <(1-t)f(x)+1tf(y) (2.13)
with equality if and only if
x —m(x)e = a(y —m(y)e) (2.14)

for some o = 0.

Proof. Clearly € is a convex set. Let x,y € € and t € [0, 1]. Then,

f((L=tx+ty) = «L4k+w)\r———H Hx+ty —m((1-t)x+ty)ell,

=(1-t)m(x)+tm(y)+ \/7”(1 (x—m(x)e) +t(ym(y)e()2||2l.5)
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Moreover,

11 = 6)(x = m(x)e) +t(y — m(y)e) I
= (1-1)?||x = m(x)e|[; + 2(1 = Dt (x — m(x)e,y — m(y)e) + ||y — m(y)e||>.

(2.16)
We recall the Cauchy-Schwarz inequality to obtain
(x —m(x)e,y —m(y)e) < ||x —m(x)el|,|ly — m(y)e||, (2.17)
with equality if and only if (2.14) holds. Thus,
11 =) (x=m(x)e) +t(y - m(y)e) |, < (1 = t)[[x = m(x)el|, +tlly = m(y)el|, (2.18)

with equality if and only if (2.14) holds. Finally, from (2.15) and (2.18), the lemma fol-
lows. a

LEmMMA 2.4. Forx,y € € — {e},

fx) = (V£(y),x) (2.19)

with equality if and only if (2.14) holds for some a > 0.

Proof. € is a convex subset of 6 and f is a convex function on ‘€. Moreover, f is a differ-
entiable function on € — {e}. Let x,y € € — {e}. Forall t € [0, 1],

flx+(1—-1t)y) <tf(x)+(1-1)f(y). (2.20)
Thus, forO<t <1,

[y +ix —ty)) Y _ - f(y). (2.21)

Letting t — 07 yields

i LY HEE=Y)) = f(y)

t—0* t

=(Vf(y)x—y) = f(x) - f(y). (2.22)
Hence,
f&) = fy) 2 (Vf(y)x) = (Vf(y)y) (2.23)
Now, we use the fact that (V f(y),y) = f(y) to conclude that
fx) = (Vf(y)x). (2.24)

The equality in all the above inequalities holds if and only if x — a(x)e = a(y — m(y)e) for
some « > 0. g
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COROLLARY 2.5. Forx € € — {e},
fx)=(Vf(x)x), (2.25)

where V f (x?) is the gradient of f with respect to x evaluated at x*. The equality in (2.25)
holds if and only if x is one of the following convex combinations:

x;(t) = te+(1 —t)v;, i=1,2,...,n—1, somet € [0,1). (2.26)

Proof. Letx = (1,x2,X3,...,Xm) € € — {e}. Then, x> € € — {e}. Using Lemma 2.4, we ob-
tain

f®) = (Vf(x")x) (2.27)
with equality if and only if
x—m(x)e = a(x*> —m(x*)e) (2.28)

for some « > 0. Thus, we have proved (2.25). In order to complete the proof, we observe
that condition (2.28) is equivalent to

x—oax’ =m(x—ax?)e (2.29)

for some a > 0. Since x; = 1, (2.29) is equivalent to
2

l—a=x—ax3 =x3—ax3 =--+=x,—ax; (2.30)

for some a > 0. Hence, (2.28) is equivalent to (2.30).

Suppose that (2.30) is true. If « = 0, then 1 = x, = - - - = x,,. This is a contradiction
because x # e, thus a > 0.

Ifx, =0,thenx; =x4 = -+ - =x,, = 0, and thus x = v;. Let 0 < x; < 1. Suppose x3 < x.
From (2.30),

1—x = 0((1+X2)(1 —xz),
(2.31)
X —x3 = a(x +x3) (2 — x3).

From these equations, we obtain x3 = 1, which is a contradiction. Hence, 0 < x; < 1 im-
plies x3 = x,. Now, if x4 < x3, from x; = x3 and the equations

1-x=a(l+x)(1-x),
(2.32)
X3 — x4 = a(x3+x4) (x5 — X4),

we obtain x4 = 1, which is a contradiction. Hence, x4 = x3 if 0 < x, < 1. We continue in
this fashion to conclude that x,, = x,_; = - - - = x3 = x,. We have proved that x; = 1 and
0 < x; < 1imply thatx = (1,¢,...,t) = te+ (1 — t)v; for some t € [0,1). Let x, = 1.
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If x3 =0, then x4 =x5=---=x, =0, and thus x =v,. Let 0 < x3 < 1 and x4 < x3.
From (2.30),

1—x3=a(l+x3)(1—x3),
(2.33)
x5 —xq = a(x3 +x4) (x3 — X4).

From these equations, we obtain x4 = 1, which is a contradiction. Hence, 0 < x3 < 1 im-
plies x4 = x3. Now, if x5 < x4, from x3 = x4 and the equations

1—x;=a(l+x;3)(1-x3),
(2.34)
x4 — x5 = a(xq +x35) (x4 — x5),

we obtain x5 = 1, which is a contradiction. Therefore, x5 = x4. We continue in this fashion

togetx, = x,—1 = - - - = x3. Thus, x; = x, = 1,and 0 < x3 < L implies thatx = (1,1,¢,...,1)
= te+(1 — t)v, for some t € [0,1).
For 3 < k < n— 2, arguing as above, it can be proved that x; = x, = - - - =x; =1 and

0 < x41 < 1 implies that x = (1,...,1,¢,...,t) = te+(1 — £)vg. Finally, for x; =x, = - - - =
Xp—1=1land0<x,<1,wehavex =te+v,_;.

Conversely, if x is any of the convex combinations in (2.26), then (2.30) holds by
choosing a = 1/(1+1). O

Let us define the following optimization problem.

Problem 2.6. Let
F:R" — R (2.35)
be given by
Fx) = f(x*) - (fx))". (2.36)
We want to find minyeg F(x). That is, find
min F(x) (2.37)
subject to the constraints

hi(x)=x1-1=0,
hi(x) =xi—xi-1 <0, 2<i<n, (2.38)
hyi1(x) = —x, < 0.
Lemma 2.7. (1) Ifx € € — {e}, then >}_, 0xF(x) < 0 with equality if and only if x is one of
the convex combinations xi(t) in (2.26).
2) Ifx =xn(t) with1 <N <n—2, then
01F(x) =--- =0dyF(x) >0, (2.39)
On+1F(x) =+ =0,F(x)<0. (2.40)
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Proof. (1) The function F has continuous first partial derivatives on %), and for x € &
and1 <k <n,

OkF(x) = 2x10k f (x*) = 2.f (x) Ok f (X). (2.41)
By (2.9),
DLOF () =2 > xde f (%) =2 (%) X 9 f (%)
k=1 k=1 k=1
=2(Vf(x?),x) —2f(x).

(2.42)

It follows from Corollary 2.5 that >}, 0xF(x) < 0 with equality if and only if x; = te+
Q-tv,i=1,...,n—1.
(2) Let x = xy(t) with 1 < N < n — 2 fixed. Then, x = te+(1 — t)vy, some t € [0,1).

Thus, x; =x, = -+ =xy = 1, XN41 = XN42 = * - = X, = t. From Theorem 1.1, f(x) < 1.
Moreover,
2
1 N+ (n—N)t
(%) —m(x) = \JN+(n—N)t2— (N+(n =N
nn—1) n

- 1 \/nN+n(n—N)t2—N2—2N(n—N)t—(n—N)2t2
"V an-1)

1
= 1\/N(an)(1 —t).

n

(2.43)
Replacing this result in (2.8), we obtain
o1 f(x) =02 f(x)=---=0nf(x)
_ l_}_ 1 1 —m(x)
nonn-1) f(x) - m(x)
1,1 1-(N+(n-N/n (2.44)
n Vn—-1 JNmn-N)(1-t)
S "N
T n n—1n N ‘
Similarly,
f(Xz) _m(Xz) = n\/%w N(H—N)(l —tz),
Of(x*) =0 f(x*) = =onf(x*) (2.45)
1 n—N
=—+ > 0.
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Therefore,
01F(x) = 0,F(x) = - - - = ONF(x)
2.46
=20; f(x*) —2f(x)91 f(x) =2(1 — f(x))0: f(x) > 0. (2.46)
We have thus proved (2.39). We easily see that
ON+1F(X) = Oni2F(x) = - - - = 0, F(x). (2.47)
We have >} _, 9xF(x) = 0. Hence,
n N
> kF(x) = (n—N)oyF(x) = - > 9F(x) <0, (2.48)
k=N+1 k=1
Thus, (2.40) follows. O

We recall the following necessary condition for the existence of a minimum in nonlin-
ear programming.

THEOREM 2.8 (see [1, Theorem 9.2-4(1)]). Let J: Q = V — R be a function defined over
an open, convex subset Q) of a Hilbert space V and let

U={veQ:¢;i(v) <0, 1 <i<m} (2.49)

be a subset of Q, the constraints ¢; : Q — R, 1 < i < m, being assumed to be convex. Let
u € U be a point at which the functions ¢;, 1 < i < m, and ] are differentiable. If the function
J has at u a relative minimum with respect to the set U and if the constraints are qualified,
then there exist numbers A;(u), 1 < i < m, such that the Kuhn-Tucker conditions

V() + > i(w)Vei(u) =0,
i=1

" (2.50)
Li(w) =0, 1<i<m, > l(ugi(u)=0

i=1
are satisfied.

The convex constraints ¢; in the above necessary condition are said to be qualified if
either all the functions ¢; are affine and the set U is nonempty, or there exists a point
w € Q such that for each i, p;(w) < 0 with strict inequality holding if ¢; is not affine.

The solution to Problem 2.6 is given in the following theorem.

THEOREM 2.9. One has

minF(x) =0=F(1,1,1,...,1,1) (2.51)

xeé

forany t € [0,1].
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Proof. We observe that € is a compact set and F is a continuous function on €. Then,
there exists xo € € such that F(xyp) = mingeg F(x). The proof is based on the applica-
tion of the necessary condition given in the preceding theorem. In Problem 2.6, we have
Q =V = R" with the inner product (x,y) = >{_; Xk Yk, ¢i(x) = hi(x), 1 <i<n+1,U =
€ and J = F. The functions h;, 2 <i < n+ 1, are linear. Therefore, they are convex and
affine. In addition, the function h;(x) = x; — 1 is affine and convex and € is nonempty.
Consequently, the functions h;, 1 <i < n+ 1, are qualified. Moreover, these functions and
the objective function F are differentiable at any point in € — {e}. The gradients of the
constraint functions are

Vhl(x) = (1)0)0)0)~--)0) =€,
VhZ(X) = (_1y1>0)0)--->0)7
VhS(X) = (03_1’1303'”30);

: (2.52)
Vhy_1(x) = (0,0,...,0,—1,1,0),

Vh,(x) =(0,0,...,0,—1,1),

Vhpe1(x) = (0,0,...,0,—1).

Suppose that F has a relative minimum at x € €—{e} with respect to the set ‘€. Then,
there exist A;(x) > 0 (for brevity A; = A;(x)), 1 <i < n+ 1, such that the Kuhn-Tucker
conditions

n+l
VE(X)+ > AiVhi(x) =0,

i=1

il (2.53)
> Aihi(x) =0
i=1
hold. Hence,
VF(X) + (/11 - Az,/\z - /13,A3 —/14,...,An - Anﬂ) =0, (2.54)
Aa(x2 = 1) +A3(x3 = x2) + - - - + A (%0 = Xpo1) +Aps1 (= x4) = 0. (2.55)
From (2.55),as1;>0,1<i<n+1,and0<x, <x,_1 < --- <x < 1, we have
Me(xpor —xk) =0, 2<k<n, Ap1x,=0. (2.56)
Now, from (2.54),
> kF(X)+ A1 — A1 = 0. (2.57)

k=1

We will conclude that A; = 0 by showing that the cases A; >0, x, >0 and A, >0, x, =0
yield contradictions.
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Suppose A; >0 and x, > 0. In this case, A,+1x, = 0 implies A, = 0. Thus, (2.57)
becomes

> OkF(x) = —A; <0. (2.58)
k=1

We apply Lemma 2.7 to conclude that x is not one of the convex combinations in (2.26).
From (2.4),

x=(1-x)vi+ (x2 —x3) V2 + (X3 — x4) V3

(2.59)
i +(xn72 - xnfl)vn72 + (xnfl _xn)vnfl + Xy Vy.
Then, there are at least two indexes i, j such that
1=---=x,->xi+1=---=xj>xj+1. (260)
Therefore,
01F(x) = -+ = 0iF(x),
(2.61)
8,»+1F(x) == a]‘F(X).
From (2.56), we get A;;; = 0 and A4, = 0. Now, from (2.54),
0;F(x) = —1; <0,
0inF(x) = Aiy2 2 0,
(2.62)
0jF(x) = -1; <0,
0,F(x)=-1, <0.
The above equalities and inequalities together with (2.8) and (2.41) give
1 1 1-m(x?) 1 -m(x) )
SO e <f(x2) “m(d)  f@-mw) <>
2 2
1 L dem®) oy )
n(l f)+ n(n—1) (f(xz) -m(x?)  f(x)-m(x)) 0, (2.64)
1 1 x2 —m(x?) X — m(x)
L= () + o (f(x2) mnld)  Fo—mig ) <" (2.65)
Subtracting (2.64) from (2.63) and (2.65), we obtain
1- XJZ» 1- Xj
= >
f(x?) -m(x?) ~ f(x?) —m(x?)
(2.66)
X% —x} X — X;

F6) —m() = f() —m(x)’
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Dividing these inequalities by (1 —x;) and (x, — x;), respectively, we get

1+Xj 1

F6) —m@e) = ) —m(x)’

(2.67)
Xn +Xj 1

F6) —a(e) = f() —a(x)’

The last two inequalities imply x,, > x;, which is contradiction.
Suppose now that A; >0 and x,, = 0. Let [ be the largest index such that x; > 0. Thus,
x141 = 0. From (2.55),

(= 1) +A3(x3 —x2) + - - - + A (o — x1-1) + A (—x1) = 0. (2.68)
Then,
Ml —xx) =0, 2<k<], Apix; = 0. (2.69)

Hence,Ajy1 =0.1fl=n—-1,thenA, =0and 0,F(x) = A,,41 = 0. If] < n — 2, then 0;F(x) =
—A; < 0. In both situations, we conclude that x is not one of the convex combinations in
(2.26). Therefore, there are at least two indexes i, j such that

1:---:x,v>x,-+1:---:xj>xj+1. (2.70)

Now, we repeat the argument used above to get that x; > x;, which is a contradiction.
Consequently, A, = 0. From (2.57),

> OkF(x) = Ayt = 0. (2.71)
k=1

We apply now Lemma 2.7 to conclude that x is one of the convex combinations in (2.26).

Letx =xn(t) = te+(1 —t)vy, 1 <N <n—2,andt € [0,1). Then,x; =x, = - - - =xy = 1,

XN+l = XNg2 = -+ =X, = t, and hy;1(x) =t — 1< 0. From (2.56), we obtain Ay;; = 0.

Thus, from (2.54), dnx+1F(x) = An42 = 0. This contradicts (2.40). Thus, x # xy(t) for N =

1,2,...,n—2and t € [0,1). Consequently, x = x,_1(¢) = (1, 1,...,1,t) for some t € [0,1).
Finally,

F(L,L,..,,0) = f(1L, 1., 1,22) = (f(1,1,...,1,0)) =1-1=0 (2.72)

for any t € [0,1]. Hence, minye¢ F(x) = 0 = F(1,1,...,1,¢) for any ¢t € [0,1]. Thus, the
theorem has been proved. O

THEOREM 2.10. Ify1 2y, 2 y32 -+ - = y, 20, then

m(y*”) + ﬁs(}’zp) < \/m(YZP“) + ﬁs()’wl ), (2.73)
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that is,
n 2P n n 20 2
2k=10k 41 S - <zk:1yk )
n nn—1) kzlyk n
12 (2.74)
+ n +1
< ZZ:l)’/%P 1 + 1 Z 202 (ZZ:ly’%P )
B n Jn(n—1) k:lyk n
for p=0,1,2,.... The equality holds if and only if y1 = y, = -+ - = yu_1.
Proof. 1f y; =0, then y, = y3 = - - - = y, = 0 and the theorem is immediate. Hence, we
assume that y1 > 0. Let p be a nonnegative integer and let xx = yx/y; for k = 1,2,...,n
Clearly, 1 = ' =x3 = xgp > ... >x2" > 0. From Theorem 2.9, we have
(f(1,x3 "2 ,xf,f))z sf(l,x§P+1,x§p+l,...,x%m), (2.75)
that is,
7\ 2
1+ 370, x . 1 . i - (1 +Z;l:2x]2»P>
P S
n Jnn—1) pa k n
(2.76)
2
n +1 21’+1
<1+Zk:2X£p + 1+Z 2p+2_<1+21 2 ] )
N n NG (n -1) n
with equality if and only if x; = x, = - - - = x,_;. Multiplying by y}"", the inequality in
(2.74) is obtained with equality if and only if y; = y, = - - - = y,_;. This completes the
proof. O

CoROLLARY 2.11. Let y1 = y2 2 y3 > -+ 2 y, 2 0. Then (L (y)) ;-0

2-P
Iy 113 1 J o ly 1137

l = +1

2P(Y) ( " + n(n_ 1) | y”zp 1 "

(2.77)
1 2!
P P
= (m(Y2 )+ﬁ5(y2 )) >
is an strictly increasing sequence converging to yy exceptif yy = y, = - - - = y,_1. In this case,

L (y) = y1 for all p.
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Proof. We know that (L»(y)) - is a sequence of lower bounds for y;. From Theorem 2.1,
this sequence converges to y;. Applying inequality (2.74), we obtain

2

2
Z;'Zzl)’/fp " 1 i“ 20+ (zj:lsz'P>

n n(n—1) k:1yk - n
(2.78)
2
n +1 n n 2p+1
- Sk vk " 1 Z 2w (2;’:1)/]' )
- n n(n—1) k:ly k n '
Therefore, 3" (y) < By (y), that is, L (y) < L (y). The equality in all the above inequal-
ities takes place if and only if Ay = y, = - - - = y,,_;. In this case, Ly (y) =, for all p. O
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