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The Cesaro summability of trigonometric Fourier series is investigated in the weighted
Lebesgue spaces in a two-weight case, for one and two dimensions. These results are ap-
plied to the prove of two-weighted Bernstein’s inequalities for trigonometric polynomials
of one and two variables.
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1. Introduction

It is well known that (see [9]) Cesaro means of 27-periodic functions f € LP(T) (1 <
p < o) converges by norms. Hereby T is denoted the interval (—m, 7). The problem of
the mean summability in weighted Lebesgue spaces has been investigated in [6].

A 2m-periodic nonnegative integrable function w: T — R' is called a weight func-
tion. In the sequel by L} (T), we denote the Banach function space of all measurable
2m-periodic functions f, for which

/p
T (L |70 Pw(x)dx) <. (L1)

In the paper [6] it has been done the complete characterization of that weights w,
for which Cesaro means converges to the initial function by the norm of L5(T). Later
on Muckenhoupt (see [3]) showed that the condition referred in [6] is equivalent to the
condition A, that is,

sup % L w(x)dx(ﬁ L w! =P (x)dx) - < o, (1.2)

where p" = p/(p — 1) and the supremum is taken over all one-dimensional intervals
whose lengths are not greater than 2.
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2 Mean summability of Fourier trigonometric series

The problem of mean summability by linear methods of multiple Fourier trigonomet-
ric series in L (T) in the frame of A, classes has been studied in [5].

In the present paper we investigate the situation when the weight w can be outside
of A, class. Precisely, we prove the necessary and sufficient condition for the pair of
weights (v,w) which governs the (C,«a) summability in LY(T) for arbitrary function f
from L}, (T). This result is applied to the prove of two-weighted Bernstein’s inequality for
trigonometric polynomials. It should be noted that for monotonic pairs of weights for
(C,1) summability was studied in [7].

Let
flx)~ % + Z (ay cosnx+ by sinnx) (1.3)
n=1
be the Fourier series of function f € L'(T).
Let
0% (x, f) = H Fle+ DKE(DAL, >0 (1.4)
when
LAY ID(t
Ky = ks ak( ), (1.5)
i Al
with
ko
o sin(v+1/2)t
D)= 2. 5 it
(1.6)

o_ (nta)  n®
An= ( a > T T(a+1)
In the sequel we will need the following well-known estimates for Cesaro kernel (see [9,
pages 94-95]):

K&t <2n,  KO() < cqn%[t] @D (1.7)

when 0 < |t]| < 7.

2. Two-weight boundedness and mean summability (one-dimensional case)
Let us introduce the certain class of pairs of weight functions.

Definition 2.1. A pair of weights (v, w) is said to be of class 4, (T), if

sup |Tl| L v(x)dx<|T1| L wl=F (x)dx) - < o0, (2.1)

where the least upper bound is taken over all one-dimensional intervals by lengths not
more than 27.
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The following statement is true.

THEOREM 2.2. Let 1 < p < o0. Then
lim [[o7: (-, f) = f1l,,, = 0 (2.2)

for arbitrary f from Ly(T) if and only if (v,w) € Ap(T).
The proof is based on the following statement.

THEOREM 2.3. Let 1 < p < co. For the validity of the inequality
o o O, =< el fllp (2.3)

for arbitrary f € L5(T), where the constant ¢ does not depend on n and f, it is necessary
and sufficient that (v,w) € 9,(T).

Note that the condition (v,w) € A ,(T) is also necessary and sufficient for boundedness of
the Abel-Poisson means from LE(T) to LE(T) [4].

First of all let us prove two-weighted inequality for the average

ﬁ 1 x+h
£ = hl_-/foh |F@)]dt, h>0,0<B<1. (2.4)

The last functions are an extension of Steklov means.

THEOREM 2.4. Let 1 < p< g < o0 andlet 1/q = 1/p — B. If the condition

sup (% Lv(x)dx) . (% LWI_P' (x)dx) l/p, <o (2.5)

I

is satisfied for all intervals I, |I| < 27, then there exists a positive constant ¢ such that for
arbitrary f € Li(T) and h > 0 the following inequality holds:

([ 1 1mveoas) " <e( [ 1reo wios) 26)

-7

Proof. Let h < mand N be the least natural number for which Nh > 7. Then we have

[ Ut entvax

< NEI J(k+1)hh—q(l—ﬁ)[J:+Z |f(t)|dt]qv(x)dx

- J(kﬂ)hhqum[ﬂk”)h F0)| dt]qv(x)dx
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<

N-1 (k+1)h (k+2)h q/p (k+2)h
5[ e [ o]
k=—N 7 Kkh ( (

, a/p’
WP (t)dt] v(x)dx
k—1)h k—1)h

(k+1)h (k+2)h ) a’p
2. (J V(X)dx> (J wi™P (t)dt) pa-p)
N Kk (

N-1
‘ k=D)h

k

(k+2)h q/p
P
X (Lk o [ f()] w(t)dt)

=z

-1

1 (k+1)h 1 (k+2)h L q/p’ (k+2)h
= vxdx)( J w!™P tdt) (J
k;JhL ) (7 (1) (

» a’p
O Pwodt)
k=D)h k=D)h
(2.7)
Arguing to the condition (2.5) we conclude that
e . N-1 (k+2)h p q/p
J e v@de<c S (J o) w(t)dt) . (2.8)
-7 k=N (k—=1)h
Using [2, Proposition 5.1.3] we obtain that
[ 1@ <l £l 29)
Theorem is proved. O
Note that Theorem 2.4 is proved in [4] in the case = 0.
Proof of Theorem 2.3. Let us show that
2 1
l0%(x, )] < COJ H G, (2.10)
1/n

where the constant ¢y does not depend on f and h. By reversing the order of integration
in the right side integral of (2.10), we get that it is more than or equal to

=TI et e
o X yqia (2.11)
ZCJH |f(t)|E[max<|x—t|,Z>] dt

since |x — t| < 7.

Indeed, let us show that for |x — ¢| < 7, the inequality

2
J h_z_"‘dh>c(max{|x—t|,l/n})7a71, (2.12)
max{|x—t|,1/n}

where ¢ does not depend on x, t, and n.
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It is obvious that

2
11=J hragy = ) ( ! ! ) (2.13)

max{|x—t[,1/n} 1+« (max {|x — t|,1/n})l+u ~ (2m)tte

To prove the latter inequality we consider two cases.
(a) Let |x — t| < 1/n. Then

1 1+a 1 ) 1 —l-a),,1+a
= — - —(1-(2 . 2.14
h 1+a<” Qo) > Tag L~ @m0 (2.14)

(b) Let now |x — t| > 1/n. Then for the sake of the fact |x — t| < 7, we conclude that

I_1<171)_1<1+172>
"Tlta\x =t 2ot ) T 2(1+a) \x—t|ite | |x—t[ite (27)lta

1 1 1 2 1 1 1 1
> + - > + -
2(1+(X) |x_t|l+(x glta (27‘[)1+a 2(1+0() |x_t|l+a mlta Qaglta
1 1
>
2(1+«) |x — t]1+e

(2.15)

which implies the desired result.
Using the estimates (1.7) we obtain that

I> CJM | F(0) | KE(x— dt > ¢

X

J:Tf(t)K,‘j‘(x— t)dt‘ —clot(x ). (216)

Thus we obtain (2.10). Passing to the norms in (2.10), then applying Theorem 2.4 by
Minkowski’s integral inequality we obtain that

« » P 1
L|a,,(x, Il V(x)deCJT~ | w(x)(

n% Jim

4
h’““dh) dx
(2.17)
<a L | £ () | Pw(x)dx.

Now we will prove that from (2.3) it follows that (v,w) € s4,(T). If the length of the
interval I is more than 77/4, the validness of the condition (2.1) is clear.
Let now |I| < 7/4. Let m be the greatest integer for which

m<———1. (2.18)

Then we have

T

‘(k+%)(x—t)‘s(m+1)\x—t|52. (2.19)
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Then applying Abel’s transform we get that for x and  from I, the following estimates are
true:

o m A;xn m
Km(x—t)zgo s kQk+1) = c(m+2)——— mi DA g L(k+1)
(2.20)
c 1 - c A% c
> AS = m >
1] (m+1)Ag, go mok I (m+ 1)Ag, T
Let us put in (2.3) the function
Jo(x) = w7 (x)x(x) (2.21)
for m which was indicated above. Then we obtain
’ p ’
J (J WP (1)K (x — t)dt) y(x)dx < cj WP (x)dx. (2.22)
1 \Jr I
From the last inequality by (2.20) we conclude that
1 1-p’ ? 1-p’
(— wi=p (t)dt) y(x)dx < ¢ | WP (x)dx. (2.23)
r\|I1J1 I
Thus from (2.3) it follows that (v,w) € s,(T). O
Proof of Theorem 2.2. Let us show that if (v,w) € 5{,(T), then
lim [|o5 (. f) = fll,, =0 (2.24)
for arbitrary f € Li(T).
Consider the sequence of linear operators:
Up: f— 05(-, f). (2.25)

It is easy to see that U, is bounded from L5(T) to LE(T). Indeed applying Holder’s in-
equality we get

[ ooy irveods < on [ ([ 1rwldr) viods

o (226)
< sz | £(t) |Pw(t)dtf v(x)dx(J wip (x)dx) .
T T T
By our assumptions all these integrals are finite, the constant
’ p_l
c= ZHJ v(x)dx(J wi=p (x)dx) (2.27)
T T

does not depend on f.
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Then since (v,w) € 9,(T) by Theorem 2.3, we have that the sequence of operators
norms is bounded. On the other hand, the set of all 27-periodic continuous on the line
functions is dense in L5 (T). It is known (see [9]) that the Cesaro means of continuous
function uniformly converges to the initial function and since v € L(T) they converge
in L7 (T) as well. Applying the Banach-Steinhaus theorem (see, [1]) we conclude that the
convergence holds for arbitrary f € L} (T).

Now we prove the necessity part. From the convergence in L} (T) of the Cesaro means
by Banach-Steinhaus theorem we conclude that

{”Uﬂ“Lf,(TI)ﬂLf(F)}n:l (2.28)
is bounded. It means that (2.3) holds. Then by Theorem 2.3 we conclude that (v,w) €
A, (T).

Theorem is proved. O

3. On the mean (C, «, ) summability of the double trigonometric Fourier series

Let T2 =T x T and f(x,y) be an integrable function on T? which is 27-periodic with
respect to each variable.

Let
flx,y) ~ Z A (Gmp COSMX COSNY + by SINMx SIN MY
m,n=0 (3.1)
+ Cun COSMX SINNY + dpyy Sin mx sinny),
where
1 whenm=n=0
4) - - >
1
Amn = > form=0,n>00rm>0, n=0, (3.2)
1, whenm>0,n>0.
Let

S S AL AR S,y f)
Ax AP

ol (x,y, f) =

, (a,B>0) (3.3)

be the Cesaro means for the function f, where S;;(x, y, f) are partial sums of (3.1).
We consider the mean summability in weighted space defined by the norm

1/p
1w = ([, £GP ypdxdy) (3.4

where w is a weight function of two variables.
In this section our goal is to prove the following result and some its converse.
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THEOREM 3.1. Let 1 < p < co. Assume that the pair of weights (v, w) satisfies the condition

p-1

1 1 1-p' 00
s?p 7l Lv(x,y)dxdy( 7 Lw (x,y)dxdy) < 0o, (3.5)

where the least upper bound is taken over all rectangles, with the sides parallel to the coordi-
nate axes. Then for arbitrary f € L5,(T2), we have

(3.6)

,L%HO.'(:#;)(.’.’

In the sequel the set of all pairs with the condition (3.5) will be denoted by &ﬁp(W,J]).
Here ] denotes the set of all rectangles with parallel to the coordinate axes.
The proof of this theorem is based on the following statement.

THEOREM 3.2. Let 1 < p < oo and (v,w) € sd,(T2,]), then

oo | =l (3.7)

with the constant c independent of m, n, and f.

To prove Theorem 3.2 we need the two-dimensional version of Theorem 2.4. Let us
consider generalized multiple Steklov means

fhyk(x) = sup
h>0
k>0

x+h ry+k
J J f(t,7)|dtdr, 0<y<l. (3.8)

THEOREM 3.3. Let 1 < p < oo and 1/q =1/p —y. Let (v,w) € sd,(T%,]). Then there exists
a constant ¢ > 0 such that for arbitrary f € Ly(T2) and positive h and k, we have

||fhk||qv—c||f||pw (3.9)

Proof. Leth < mand k < 7. Let M and N be the least natural numbers for which Mh > 7
and Nk > 7. Then

(+Dh ((+Dk
J [ e )] v(x, y)dxdy < Z Z J Lk (hk)~40-7)

i=—M j=-—

X [Jx+hf ) |f(t,‘r)|dtdr]qv(x,y)dxdy

M I N-1 . (i+1)h (j+Dk
J J q(lfy)
i=— M]* ih

(i+2)h r(j+1D)k q
[J J . |f(l‘,T)|dth] v(x,y)dxdy.
(j-1

(3.10)
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Using the Holder’s inequality we get
Lp [ 1 y)dxdy

M 1 N-1 (i+Dh (j+Dk (i+2)h ]+1)k q/p
J j (k)40 U J P, r)dtdr]
ih jk i— (j— 1)k

(z+2)h (j+2)k , q/p’
X [J J wlP (x,y)dxdy] v(x,y)dxdy.
(i=1h J(j-Dk

(3.11)

By the condition s, (T?,)J) we derive that

M-1 N-1 (i+2)h ]+1)k a’p
I L] voydedy<c S S (J J P, T)dtd‘r) .
T =M j=N (-
(3.12)
Consequently,
.er | £l o) | (e, y)dxdy < cll £l b (3.13)
Theorem is proved. O
Proof of Theorem 3.2. Let us prove that
(@p) Tl e 1B
|0 (x,3, 1) | = CL/m Ln Tk f ey, dhdk,  (314)

where the constant does not depend on f, x, y, m, and n.
If we reverse the order of integration in right side of (3.14), then by the arguments
similar to that of the one-dimensional case we obtain that

2
I- J J | £(t,9) [ J J ﬁh’z’“k’z’ﬁdhdk]dtds
max(|x—t|,1/m) Jmax(|y—sl|,1/n) men

1

x—1m ytm 1 1 —1-« 1 **ﬁdd
I P e (P | B L G

(3.15)

%

Applying the known estimates for Cesaro kernel from the last estimate we derive that
I> CJZ | (69| Ka(x = DKE(y - s)deds = c| ol (x5, f) . (3.16)
T

We proved (3.14).
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Taking the norms in (3.14), by Theorem 3.3 and Minkowski’s inequality we conclude
that

Lr )O'm(xn/;) (9, f) ‘pv(x,y)ddxdy

P
—CJZ |f(x,)/)|Pw(x,y)(manﬁ o L/nh 1-“k-1-ﬂdhdk) dxdy — (3.17)

SCIJ | f(x,y) | w(x, y)dxdy.

By this we obtain (3.7). ]

Proof of Theorem 3.1. Consider the sequence of operators

Ui s f — ool (-, ). (3.18)

It is evident that U,,, is linear bounded for each (m,n) as
J v(x,y)dxdy < o, J w! =P (x, y)dxdy < co. (3.19)
T2 T2

Then since (v,w) € sﬁp(TTz,J]) by Theorem 3.2, the sequence of operators norms

{||Umﬂ||L€,aL€}:,n=1 (3.20)

is bounded. On the other hand, the set of 277-periodic functions which are continuous on
the plane is dense in L5(T?). Then it is known that Cesaro means of Lipschitz functions
of two variables converges uniformly (see [8, page 181]). Since v € L' (T?) the last conver-
gence we have by means of L) norms as well. Applying the Banach-Steinhaus theorem (see
[1]) we conclude that the norm convergence (3.6) holds for arbitrary f € Lh(T2). O

THEOREM 3.4. Let 1 < p < oo. If the inequality (3.7) is satisfied, then the condition (3.5)
holds when the least upper bound is taken over all rectangles Jo = I X I, and |I,| < n/4 and
|| < /4.

Proof. Let m and n be that greatest natural numbers with

T T T v
2(m+2)_| hl= 2m+1) 2(+2) | 2|S2(n+1)' (3:21)
Then for (x,y) € Jy and (t,7) € ], we have
Kix-t)= —, Kh(y-s)= — (3.22)
[ ||

with some constant ¢ nondepending on m, 1, (x, y) and (t,s).
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Indeed Abel’s transform for K¢, gives

a “ A;xn—k 1 & a—1
K&(x—t) > EO n (2k+1) = c(m+2) (v DA kZOAm_k(k+ 1)
- 1 i e (3.23)
L] (m+1)Ag, =0 [Ii| (m+1)As — |L|
for (x,y) € Jo and (t,s) € Jo.
Analogously we can estimate Kh (y—s).
Now for indicated m and n, put (3.7) in the function
Jox,y) = w' P (x, ¥, (x, ). (3.24)

Then we get
’ ‘B p ’
J <J wl P (t,5)K% (x — )K» (y—s)dtds) v(x, y)dxdy < CJ wl P (x,y)dxdy.
Jo Jo Jo
(3.25)

By (3.23) from the last inequality we obtain

P
J (ﬁj’ Wlp’(t,s)dtds) v(x,y)dxdyscj Wl (x,y)dxdy, (3.26)
]0 0 ]0 ]0

which is (3.5) with the least upper bound taken over all rectangles Jy, such that Jo = I X I,
and |I;| < n/4,i=1,2. O

THEOREM 3.5. Let 1 < p < c0. If (3.7) holds, then there exist k € N and a positive ¢ > 0 such
that

1 1 , Pl
il Lv(x,y)dxdy(m L w!=P (x,y)dxdy) <c (3.27)

forarbitrary ] = I, X I with |I;| < n/(2k+1) (i = 1,2).

Proof. Let us consider the double sequence of operators

Upn s f — ool (-, ). (3.28)

Since the sequence is double, following to the proof of Banach-Steinhaus theorem, we
can conclude only that there exists some natural number k such that

[[Upnl| =< M (3.29)

whenm >k, n > k.
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Note that, in general the convergence of a double sequence does not imply the bound-
edness of this sequence. Thus we have that

oo ], = ell Fllpn (3.30)

whenm > kand n > k.
Let us consider such rectangles that Jo = I; X I, and

T T

1l <sirn 12l <3 (3.31)
Then choose the greatest m and n such that
T 7 7 7
I , I e 32
2(m+2)<| 1|<2(m+1) 2(n+2)<| 2|<2(n+1) (3.32)
Now it is sufficient to repeat the last part of the proof of previous theorem. O

4. Two-weighted Bernstein’s inequalities

Applying the two-norm inequalities for the Cesaro means derived in the previous sec-
tions, we are able to prove the two-weighted version of the well-known Bernstein’s in-
equality. For any trigonometric polynomial T}, (x) of order < n, for every p (1 < p < ),
we have

(Jjﬂ | T, (x) |pdx> v < cn(J:ﬂ | T(x) |de> UP. (4.1)

The last inequality is known as integral Bernstein’s inequality.
The following extension of (4.1) is true.

THEOREM 4.1. Let 1 < p < oo and assume that (v,w) € d,(T). Then the two-weighted in-
equality

2 1/p 2n 1/p
(J 1T ()| pv(x)dx) < cn“ T, () | pw(x)dx) (4.2)
0 0
holds. Also for the conjugate trigonometric polynomial T,, we have
2 1/p 2 1/p
(J | T (x)] Pv(x)dx) < cn(J | T, (x) | Pw(x)dx) . (4.3)
0 0
Proof. Tt is well known that
1 2w
Tu(x) = ; Tn(u)D,(u — x)du, (4.4)
0
where
D, (u) = % + Z cosku (4.5)

k=1



A. Guven and V. Kokilashvili 13

is the Dirichlet’s kernel of order n. By the derivation, we obtain

2 2
7o) = =2 [ T u=xdu= -2 [ Tu(u+x)DL (w)du
m Jo T Jo
1 2n n
== Tn(u+x){2ksinku}du
mJo k=1
1 2w n n—1
== T (u +x){ Z ksinku+ Z ksin(2n — k)u}du (4.6)
mJo k=1 k=1
2 n—1 _
= 1 T,(u+x)2nsinnu l-i— Z n=k cosku rdu
mJo 2 Q4
2w

= Zn; T (u+x)sinnuK,_(u)du,
0

where K,,_; is the Fejer’s kernel of order n — 1. By taking the absolute values, we get (see
[9, Volume I, page 85])

2
| T (x)| < Zn% L | To(u+x) | Kyoi (u)du = 2n0,-1 (x, | Tu|). (4.7)

If we use Theorem 2.3, we get that

27 1/p 2 1/p
(J | T/ (x) |Pv(x)dx> < (J [2n0,-1(x, | T, | )]Pv(x)dx>
0 0
2m 1/p
= 2n<J [0n-1(x, | Ty | )]pv(x)dx) (4.8)
0
2m 1/p
< cn(J | T, |pw(x)dx> .
0
For the conjugate of T, we have
~ 1 (& ~
Tu(x) = p T, (u)Dy(u — x)du, (4.9)
0
where
D, = Z sinku (4.10)
k=1

is the conjugate Dirichlet’s kernel. By differentiation we get

2n
T, (x) = 2;” . Ty(x+u)cosnuK, i (u)du (4.11)
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and hence
| T/ (x)| <2n0u-1(x, | Tul). (4.12)
From this we obtain
2 1/p 27 1/p
(J | T, (x)] pv(x)dx) < cn({ | T, (x)] pw(x)dx) . (4.13)
0 0
and the theorem is proved. O

The inequality derived in Theorem 4.1 also extended to the case of trigonometric poly-
nomials of several variables. Thus, if T, (x, y) is a trigonometric polynomial of order < m
with respect to x and of order < n with respect to y, we have the following.

THEOREM 4.2. Let 1 < p < co. Assume that (v,w) € &ﬁp('[rz,j]). Then the inequality

holds with a positive constant ¢ independent of Ty,

0 Trun(, y)
0x0y

H < cmn||Tpn(x, )], (4.14)
pv

Proof. It is known that (see [9, Volume II, pages 302-303])

1 2
o) = = ﬂo Flet 5,y + DEn($)Ka(£)dsdt,
(4.15)

2
Tonn(x,y) = % ﬂo Toun(8,t) Dy (s — x) Dy (t — y)dsdt.

If we take the partial derivatives of T',, with respect to x and y from the last relation, we
obtain

o’ Tmn XY 2 ’
e ﬂ Ty(s, )DL (s — )DL (£ — y)dsdt. (4.16)

By the process used in the previous theorem, this gives

2 T 2
0° Trn(x, ) _ 2m2n H Ton(x+s,y+t)sinmssinntK,,—; (s)K,—1(¢)dsdt (4.17)
axay 2 0
and hence
0 Ty (%, 4mn
' e;n;e;y 2 7 =00 (%5 [ Toun |)- (4.18)
If we take the norms and consider Theorem 3.2, we obtain the desired inequality. O
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