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plied to the prove of two-weighted Bernstein’s inequalities for trigonometric polynomials
of one and two variables.
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1. Introduction

It is well known that (see [9]) Cesaro means of 2π-periodic functions f ∈ Lp(T) (1 ≤
p ≤∞) converges by norms. Hereby T is denoted the interval (−π,π). The problem of
the mean summability in weighted Lebesgue spaces has been investigated in [6].

A 2π-periodic nonnegative integrable function w : T→R1 is called a weight func-
tion. In the sequel by L

p
w(T), we denote the Banach function space of all measurable

2π-periodic functions f , for which

‖ f ‖p,w =
(∫

T

∣∣ f (x)∣∣pw(x)dx
)1/p

<∞. (1.1)

In the paper [6] it has been done the complete characterization of that weights w,
for which Cesaro means converges to the initial function by the norm of L

p
w(T). Later

on Muckenhoupt (see [3]) showed that the condition referred in [6] is equivalent to the
condition Ap, that is,

sup
1
|I|
∫
I
w(x)dx

(
1
|I|
∫
I
w1−p′(x)dx

)p−1
<∞, (1.2)

where p′ = p/(p − 1) and the supremum is taken over all one-dimensional intervals
whose lengths are not greater than 2π.
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2 Mean summability of Fourier trigonometric series

The problem of mean summability by linear methods of multiple Fourier trigonomet-
ric series in L

p
w(T) in the frame of Ap classes has been studied in [5].

In the present paper we investigate the situation when the weight w can be outside
of Ap class. Precisely, we prove the necessary and sufficient condition for the pair of
weights (v,w) which governs the (C,α) summability in L

p
v (T) for arbitrary function f

from L
p
w(T). This result is applied to the prove of two-weighted Bernstein’s inequality for

trigonometric polynomials. It should be noted that for monotonic pairs of weights for
(C,1) summability was studied in [7].

Let

f (x)∼ a0
2
+

∞∑
n=1

(
an cosnx+ bn sinnx

)
(1.3)

be the Fourier series of function f ∈ L1(T).
Let

σαn (x, f )=
1
π

∫ π

−π
f (x+ t)Kα

n (t)dt, α > 0 (1.4)

when

Kα
n =

n∑
k=0

Aα−1
n−kDk(t)

Aα
n

, (1.5)

with

Dk(t)=
k∑

ν=0

sin(ν+1/2)t
2sin(1/2)t

,

Aα
n =

(
n+α

α

)
≈ nα

Γ(α+1)
.

(1.6)

In the sequel we will need the following well-known estimates for Cesaro kernel (see [9,
pages 94–95]):

Kα
n (t)≤ 2n, Kα

n (t)≤ cαn
−α|t|−(α+1) (1.7)

when 0 < |t| < π.

2. Two-weight boundedness andmean summability (one-dimensional case)

Let us introduce the certain class of pairs of weight functions.

Definition 2.1. A pair of weights (v,w) is said to be of class �p(T), if

sup
1
|I|
∫
I
v(x)dx

(
1
|I|
∫
I
w1−p′(x)dx

)p−1
<∞, (2.1)

where the least upper bound is taken over all one-dimensional intervals by lengths not
more than 2π.
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The following statement is true.

Theorem 2.2. Let 1 < p <∞. Then

lim
n→∞

∥∥σαn (·, f )− f
∥∥
p,v = 0 (2.2)

for arbitrary f from L
p
w(T) if and only if (v,w)∈�p(T).

The proof is based on the following statement.

Theorem 2.3. Let 1 < p <∞. For the validity of the inequality

∥∥σαn (·, f )
∥∥
p,v ≤ c‖ f ‖p,w (2.3)

for arbitrary f ∈ L
p
w(T), where the constant c does not depend on n and f , it is necessary

and sufficient that (v,w)∈�p(T).
Note that the condition (v,w)∈�p(T) is also necessary and sufficient for boundedness of

the Abel-Poisson means from L
p
w(T) to L

p
v (T) [4].

First of all let us prove two-weighted inequality for the average

f
β
h (x)=

1
h1−β

∫ x+h

x−h

∣∣ f (t)∣∣dt, h > 0, 0≤ β < 1. (2.4)

The last functions are an extension of Steklov means.

Theorem 2.4. Let 1 < p < q <∞ and let 1/q = 1/p−β. If the condition

sup
I

(
1
|I|
∫
I
v(x)dx

)1/q( 1
|I|
∫
I
w1−p′(x)dx

)1/p′
<∞ (2.5)

is satisfied for all intervals I , |I| ≤ 2π, then there exists a positive constant c such that for
arbitrary f ∈ L

p
w(T) and h > 0 the following inequality holds:

(∫ π

−π

∣∣ f βh (x)
∣∣qv(x)dx

)1/q
≤ c
(∫ π

−π

∣∣ f (x)∣∣pw(x)dx
)1/p

. (2.6)

Proof. Let h≤ π and N be the least natural number for which Nh≥ π. Then we have

∫
T

[
f
β
h (x)

]q
v(x)dx

≤
N−1∑
k=−N

∫ (k+1)h

kh
h−q(1−β)

[∫ x+h

x−h

∣∣ f (t)∣∣dt
]q
v(x)dx

≤
N−1∑
k=−N

∫ (k+1)h

kh
h−q(1−β)

[∫ (k+2)h

(k−1)h

∣∣ f (t)∣∣dt
]q
v(x)dx
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≤
N−1∑
k=−N

∫ (k+1)h

kh
h−q(1−β)

[∫ (k+2)h

(k−1)h

∣∣ f (t)∣∣pw(t)dt
]q/p[∫ (k+2)h

(k−1)h
w1−p′(t)dt

]q/p′
v(x)dx

=
N−1∑
k=−N

(∫ (k+1)h

kh
v(x)dx

)(∫ (k+2)h

(k−1)h
w1−p′(t)dt

)q/p′
h−q(1−β)

×
(∫ (k+2)h

(k−1)h

∣∣ f (t)∣∣pw(t)dt
)q/p

=
N−1∑
k=−N

(
1
h

∫ (k+1)h

kh
v(x)dx

)(
1
h

∫ (k+2)h

(k−1)h
w1−p′(t)dt

)q/p′(∫ (k+2)h

(k−1)h

∣∣ f (t)∣∣pw(t)dt
)q/p

.

(2.7)

Arguing to the condition (2.5) we conclude that

∫ π

−π

[
f
β
h (x)

]q
v(x)dx ≤ c

N−1∑
k=−N

(∫ (k+2)h

(k−1)h

∣∣ f (t)∣∣pw(t)dt
)q/p

. (2.8)

Using [2, Proposition 5.1.3] we obtain that

∫ π

−π

∣∣ f βh (x)
∣∣qv(x)dx ≤ c1‖ f ‖qp,w. (2.9)

Theorem is proved. �

Note that Theorem 2.4 is proved in [4] in the case β = 0.

Proof of Theorem 2.3. Let us show that

∣∣σαn (x, f )
∣∣≤ c0

∫ 2π

1/n

1
nα

h−1−α fh(x)dh, (2.10)

where the constant c0 does not depend on f and h. By reversing the order of integration
in the right side integral of (2.10), we get that it is more than or equal to

I =
∫ x+π

x−π

∣∣ f (t)∣∣
[∫ 2π

max(|x−t|,1/n)
1
nα

h−2−αdh
]
dt

≥ c
∫ x+π

x−π

∣∣ f (t)∣∣ 1
nα

[
max

(
|x− t|, 1

n

)]−1−α
dt

(2.11)

since |x− t| ≤ π.
Indeed, let us show that for |x− t| ≤ π, the inequality

∫ 2π

max{|x−t|,1/n}
h−2−αdh > c

(
max

{|x− t|,1/n})−α−1, (2.12)

where c does not depend on x, t, and n.
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It is obvious that

I1 =
∫ 2π

max{|x−t|,1/n}
h−2−αdh= 1

1+α

(
1(

max
{|x− t|,1/n})1+α −

1
(2π)1+α

)
. (2.13)

To prove the latter inequality we consider two cases.
(a) Let |x− t| < 1/n. Then

I1 = 1
1+α

(
n1+α− 1

(2π)1+α

)
>

1
1+α

(
1− (2π)−1−α

)
n1+α. (2.14)

(b) Let now |x− t| ≥ 1/n. Then for the sake of the fact |x− t| ≤ π, we conclude that

I1 = 1
1+α

(
1

|x− t|1+α −
1

(2π)1+α

)
= 1

2(1+α)

(
1

|x− t|1+α +
1

|x− t|1+α −
2

(2π)1+α

)

>
1

2(1+α)

(
1

|x− t|1+α +
1

π1+α
− 2
(2π)1+α

)
≥ 1

2(1+α)

(
1

|x− t|1+α +
1

π1+α
− 1
2απ1+α

)

>
1

2(1+α)
1

|x− t|1+α
(2.15)

which implies the desired result.
Using the estimates (1.7) we obtain that

I ≥ c
∫ x+π

x−π

∣∣ f (t)∣∣Kα
n (x− t)dt ≥ c

∣∣∣∣
∫ π

−π
f (t)Kα

n (x− t)dt
∣∣∣∣= c

∣∣σαn (x, f )
∣∣. (2.16)

Thus we obtain (2.10). Passing to the norms in (2.10), then applying Theorem 2.4 by
Minkowski’s integral inequality we obtain that

∫
T

∣∣σαn (x, f )
∣∣pv(x)dx ≤ c

∫
T

∣∣ f (x)∣∣pw(x)
(
1
nα

∫
1/n

h−1−αdh
)p

dx

≤ c1

∫
T

∣∣ f (x)∣∣pw(x)dx.
(2.17)

Now we will prove that from (2.3) it follows that (v,w) ∈ �p(T). If the length of the
interval I is more than π/4, the validness of the condition (2.1) is clear.

Let now |I| ≤ π/4. Letm be the greatest integer for which

m≤ π

2|I| − 1. (2.18)

Then we have

∣∣∣∣
(
k+

1
2

)
(x− t)

∣∣∣∣≤ (m+1)|x− t| ≤ π

2
. (2.19)
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Then applying Abel’s transform we get that for x and t from I , the following estimates are
true:

Kα
m(x− t)≥

m∑
k=0

Aα
m−k
Aα
m

(2k+1)≥ c(m+2)
1

(m+1)Aα
m

m∑
k=0

Aα−1
m−k(k+1)

≥ c

|I|
1

(m+1)Aα
m

m∑
k=0

Aα
m−k =

c

|I|
Aα+1
m

(m+1)Aα
m
≥ c

|I| .
(2.20)

Let us put in (2.3) the function

f0(x)=w1−p′(x)χI(x) (2.21)

form which was indicated above. Then we obtain
∫
I

(∫
I
w1−p′(t)Kα

m(x− t)dt
)p

v(x)dx ≤ c
∫
I
w1−p′(x)dx. (2.22)

From the last inequality by (2.20) we conclude that

∫
I

(
1
|I|
∫
I
w1−p′(t)dt

)p

v(x)dx ≤ c
∫
I
w1−p′(x)dx. (2.23)

Thus from (2.3) it follows that (v,w)∈�p(T). �

Proof of Theorem 2.2. Let us show that if (v,w)∈�p(T), then

lim
n→∞

∥∥σαn (·, f )− f
∥∥
p,v = 0 (2.24)

for arbitrary f ∈ L
p
w(T).

Consider the sequence of linear operators:

Un : f −→ σαn
(·, f ). (2.25)

It is easy to see that Un is bounded from L
p
w(T) to L

p
v (T). Indeed applying Hölder’s in-

equality we get

∫
T

∣∣σαn (x, f )
∣∣pv(x)dx ≤ 2n

∫
T

(∫
T

∣∣ f (t)∣∣dt
)p

v(x)dx

≤ 2n
∫
T

∣∣ f (t)∣∣pw(t)dt
∫
T
v(x)dx

(∫
T
w1−p′(x)dx

)p−1
.

(2.26)

By our assumptions all these integrals are finite, the constant

c = 2n
∫
T
v(x)dx

(∫
T
w1−p′(x)dx

)p−1
(2.27)

does not depend on f .
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Then since (v,w) ∈�p(T) by Theorem 2.3, we have that the sequence of operators
norms is bounded. On the other hand, the set of all 2π-periodic continuous on the line
functions is dense in L

p
w(T). It is known (see [9]) that the Cesaro means of continuous

function uniformly converges to the initial function and since v ∈ L1(T) they converge
in L

p
v (T) as well. Applying the Banach-Steinhaus theorem (see, [1]) we conclude that the

convergence holds for arbitrary f ∈ L
p
w(T).

Now we prove the necessity part. From the convergence in L
p
v (T) of the Cesaro means

by Banach-Steinhaus theorem we conclude that

{∥∥Un

∥∥
L
p
w(T)→L

p
v (T)

}∞
n=1 (2.28)

is bounded. It means that (2.3) holds. Then by Theorem 2.3 we conclude that (v,w) ∈
�p(T).

Theorem is proved. �

3. On the mean (C, α, β) summability of the double trigonometric Fourier series

Let T2 = T×T and f (x, y) be an integrable function on T2 which is 2π-periodic with
respect to each variable.

Let

f (x, y)∼
∞∑

m,n=0
λmn

(
amn cosmxcosny + bmn sinmx sinmy

+ cmn cosmx sinny +dmn sinmx sinny
)
,

(3.1)

where

λmn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
4
, whenm= n= 0,

1
2
, form= 0, n > 0 orm> 0, n= 0,

1, whenm> 0, n > 0.

(3.2)

Let

σ
(α,β)
mn (x, y, f )=

∑m
i=0
∑n

j=0A
α−1
m−i A

β−1
n− j Si j(x, y, f )

Aα
mA

β
n

, (α,β > 0) (3.3)

be the Cesaro means for the function f , where Si j(x, y, f ) are partial sums of (3.1).
We consider the mean summability in weighted space defined by the norm

‖ f ‖p,w =
(∫

T2

∣∣ f (x, y)∣∣pw(x, y)dxdy
)1/p

, (3.4)

where w is a weight function of two variables.
In this section our goal is to prove the following result and some its converse.
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Theorem 3.1. Let 1 < p <∞. Assume that the pair of weights (v,w) satisfies the condition

sup
J

1
|J|
∫
J
v(x, y)dxdy

(
1
|J|
∫
J
w1−p′(x, y)dxdy

)p−1
<∞, (3.5)

where the least upper bound is taken over all rectangles, with the sides parallel to the coordi-
nate axes. Then for arbitrary f ∈ L

p
w(T2), we have

lim
m→∞
n→∞

∥∥∥σ (α,β)mn (·,·, f )− f
∥∥∥
p,v
−→ 0. (3.6)

In the sequel the set of all pairs with the condition (3.5) will be denoted by �p(T2,J).
Here J denotes the set of all rectangles with parallel to the coordinate axes.

The proof of this theorem is based on the following statement.

Theorem 3.2. Let 1 < p <∞ and (v,w)∈�p(T2,J), then

∥∥∥σ (α,β)mn (·,·, f )
∥∥∥
p,v
≤ c‖ f ‖p,w, (3.7)

with the constant c independent ofm, n, and f .

To prove Theorem 3.2 we need the two-dimensional version of Theorem 2.4. Let us
consider generalized multiple Steklov means

f
γ
hk(x)= sup

h>0
k>0

1
(hk)γ

∫ x+h

x−h

∫ y+k

y−k

∣∣ f (t,τ)∣∣dtdτ, 0 < γ ≤ 1. (3.8)

Theorem 3.3. Let 1 < p <∞ and 1/q = 1/p− γ. Let (v,w)∈�p(T2,J). Then there exists
a constant c > 0 such that for arbitrary f ∈ L

p
w(T2) and positive h and k, we have

∥∥ f γhk
∥∥
q,v ≤ c‖ f ‖p,w. (3.9)

Proof. Let h≤ π and k ≤ π. LetM and N be the least natural numbers for whichMh≥ π
and Nk ≥ π. Then

∫
T2

[
f
γ
hk(x, y)

]q
v(x, y)dxdy ≤

M∑
i=−M

N∑
j=−N

∫ (i+1)h

ih

∫ ( j+1)k

jk
(hk)−q(1−γ)

×
[∫ x+h

x−h

∫ y+k

y−k

∣∣ f (t,τ)∣∣dtdτ
]q
v(x, y)dxdy

≤
M−1∑
i=−M

N−1∑
j=−N

∫ (i+1)h

ih

∫ ( j+1)k

jk
(hk)−q(1−γ)

×
[∫ (i+2)h

(i−1)h

∫ ( j+1)k

( j−1)k

∣∣ f (t,τ)∣∣dtdτ
]q
v(x, y)dxdy.

(3.10)
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Using the Hölder’s inequality we get

∫
T2

[
f
γ
hk(x, y)

]q
v(x, y)dxdy

≤
M−1∑
i=−M

N−1∑
j=−N

∫ (i+1)h

ih

∫ ( j+1)k

jk
(hk)−q(1−γ)

[∫ (i+2)h

(i−1)h

∫ ( j+1)k

( j−1)k

∣∣ f (t,τ)∣∣pw(t,τ)dtdτ
]q/p

×
[∫ (i+2)h

(i−1)h

∫ ( j+2)k

( j−1)k
w1−p′(x, y)dxdy

]q/p′
v(x, y)dxdy.

(3.11)

By the condition �p(T2,J) we derive that

∫
T2

[
f
γ
hk(x, y)

]q
v(x, y)dxdy ≤ c

M−1∑
i=−M

N−1∑
j=−N

(∫ (i+2)h

(i−1)h

∫ ( j+1)k

( j−1)k

∣∣ f (t,τ)∣∣pw(t,τ)dtdτ
)q/p

.

(3.12)

Consequently,

∫
T2

∣∣ f γhk(x, y)
∣∣qv(x, y)dxdy ≤ c‖ f ‖qp,w. (3.13)

Theorem is proved. �

Proof of Theorem 3.2. Let us prove that

∣∣∣σ (α,β)mn (x, y, f )
∣∣∣≤ c

∫ π

1/m

∫ π

1/n

1
mαnβ

h−1−αk−1−β fhk(x, y, f )dhdk, (3.14)

where the constant does not depend on f , x, y,m, and n.
If we reverse the order of integration in right side of (3.14), then by the arguments

similar to that of the one-dimensional case we obtain that

I =
∫ x+π

x−π

∫ y+π

y−π

∣∣ f (t,s)∣∣
[∫ 2π

max(|x−t|,1/m)

∫ 2π

max(|y−s|,1/n)
1

mαnβ
h−2−αk−2−βdhdk

]
dtds

≥ c
∫ x−π

x+π

∫ y+π

y−π

∣∣ f (t,s)∣∣ 1
mαnβ

[
max

(
|x− t|, 1

m

)]−1−α[
max

(
|y− s|, 1

n

)]−1−β
dtds.

(3.15)

Applying the known estimates for Cesaro kernel from the last estimate we derive that

I ≥ c
∫
T2

∣∣ f (t,s)∣∣Kα
m(x− t)K

β
n (y− s)dtds≥ c

∣∣∣σ (α,β)mn (x, y, f )
∣∣∣. (3.16)

We proved (3.14).
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Taking the norms in (3.14), by Theorem 3.3 and Minkowski’s inequality we conclude
that

∫
T2

∣∣∣σ (α,β)mn (x, y, f )
∣∣∣pv(x, y)ddxdy

≤ c
∫
T2

∣∣ f (x, y)∣∣pw(x, y)
(

1
mαnβ

∫ 2π

1/m

∫ 2π

1/n
h−1−αk−1−βdhdk

)p

dxdy

≤ c1

∫
T2

∣∣ f (x, y)∣∣pw(x, y)dxdy.

(3.17)

By this we obtain (3.7). �

Proof of Theorem 3.1. Consider the sequence of operators

Umn : f −→ σ
(α,β)
mn (·,·, f ). (3.18)

It is evident that Umn is linear bounded for each (m,n) as

∫
T2
v(x, y)dxdy <∞,

∫
T2
w1−p′(x, y)dxdy <∞. (3.19)

Then since (v,w)∈�p(T2,J) by Theorem 3.2, the sequence of operators norms

{∥∥Umn

∥∥
L
p
w→L

p
v

}∞
m,n=1 (3.20)

is bounded. On the other hand, the set of 2π-periodic functions which are continuous on
the plane is dense in L

p
w(T2). Then it is known that Cesaro means of Lipschitz functions

of two variables converges uniformly (see [8, page 181]). Since v ∈ L1(T2) the last conver-
gence we have bymeans of L

p
v norms as well. Applying the Banach-Steinhaus theorem (see

[1]) we conclude that the norm convergence (3.6) holds for arbitrary f ∈ L
p
w(T2). �

Theorem 3.4. Let 1 < p <∞. If the inequality (3.7) is satisfied, then the condition (3.5)
holds when the least upper bound is taken over all rectangles J0 = I1× I2 and |I1| < π/4 and
|I2| < π/4.

Proof. Letm and n be that greatest natural numbers with

π

2(m+2)
≤ ∣∣I1∣∣≤ π

2(m+1)
,

π

2(n+2)
≤ ∣∣I2∣∣≤ π

2(n+1)
. (3.21)

Then for (x, y)∈ J0 and (t,τ)∈ J0, we have

Kα
m(x− t)≥ c

|I1| , K
β
n (y− s)≥ c

|I2| (3.22)

with some constant c nondepending onm, n, (x, y) and (t,s).
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Indeed Abel’s transform for Kα
m gives

Kα
m(x− t)≥

m∑
k=0

Aα
m−k
Aα
m

(2k+1)≥ c(m+2)
1

(m+1)Aα
m

m∑
k=0

Aα−1
m−k(k+1)

≥ c

|I1|
1

(m+1)Aα
m

n∑
k=0

Aα
k =

c

|I1|
Aα+1
m

(m+1)Aα
m
≥ c

|I1| ,
(3.23)

for (x, y)∈ J0 and (t,s)∈ J0.

Analogously we can estimate K
β
n (y− s).

Now for indicatedm and n, put (3.7) in the function

f0(x, y)=w1−p′(x, y)χJ0 (x, y). (3.24)

Then we get

∫
J0

(∫
J0
w1−p′(t,s)Kα

m(x− t)K
β
n (y− s)dtds

)p

v(x, y)dxdy ≤ c
∫
J0
w1−p′(x, y)dxdy.

(3.25)

By (3.23) from the last inequality we obtain

∫
J0

(
1
|J0|

∫
J0
w1−p′(t,s)dtds

)p

v(x, y)dxdy ≤ c
∫
J0
w1−p′(x, y)dxdy, (3.26)

which is (3.5) with the least upper bound taken over all rectangles J0, such that J0 = I1× I2
and |Ii| < π/4, i= 1,2. �

Theorem 3.5. Let 1 < p <∞. If (3.7) holds, then there exist k ∈N and a positive c > 0 such
that

1
|J|
∫
J
v(x, y)dxdy

(
1
|J|
∫
J
w1−p′(x, y)dxdy

)p−1
< c (3.27)

for arbitrary J = I1× I2 with |Ii| < π/(2k+1) (i= 1,2).

Proof. Let us consider the double sequence of operators

Umn : f −→ σ
(α,β)
mn (·,·, f ). (3.28)

Since the sequence is double, following to the proof of Banach-Steinhaus theorem, we
can conclude only that there exists some natural number k such that

∥∥Umn

∥∥≤M (3.29)

whenm≥ k, n≥ k.
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Note that, in general the convergence of a double sequence does not imply the bound-
edness of this sequence. Thus we have that

∥∥∥σ (α,β)mn (·,·, f )
∥∥∥
p,v
≤ c‖ f ‖p,w (3.30)

whenm≥ k and n≥ k.
Let us consider such rectangles that J0 = I1× I2 and

∣∣I1∣∣ < π

2(k+1)
,

∣∣I2∣∣ < π

2(k+1)
. (3.31)

Then choose the greatestm and n such that

π

2(m+2)
<
∣∣I1∣∣ < π

2(m+1)
,

π

2(n+2)
<
∣∣I2∣∣ < π

2(n+1)
. (3.32)

Now it is sufficient to repeat the last part of the proof of previous theorem. �

4. Two-weighted Bernstein’s inequalities

Applying the two-norm inequalities for the Cesaro means derived in the previous sec-
tions, we are able to prove the two-weighted version of the well-known Bernstein’s in-
equality. For any trigonometric polynomial Tn(x) of order ≤ n, for every p (1≤ p ≤∞),
we have

(∫ 2π

0

∣∣T′n(x)
∣∣pdx

)1/p
≤ cn

(∫ 2π

0

∣∣Tn(x)
∣∣pdx

)1/p
. (4.1)

The last inequality is known as integral Bernstein’s inequality.
The following extension of (4.1) is true.

Theorem 4.1. Let 1 < p <∞ and assume that (v,w)∈�p(T). Then the two-weighted in-
equality

(∫ 2π

0

∣∣T′n(x)
∣∣pv(x)dx

)1/p
≤ cn

(∫ 2π

0

∣∣Tn(x)
∣∣pw(x)dx

)1/p
(4.2)

holds. Also for the conjugate trigonometric polynomial T̃n, we have

(∫ 2π

0

∣∣T̃′n(x)
∣∣pv(x)dx

)1/p
≤ cn

(∫ 2π

0

∣∣Tn(x)
∣∣pw(x)dx

)1/p
. (4.3)

Proof. It is well known that

Tn(x)= 1
π

∫ 2π

0
Tn(u)Dn(u− x)du, (4.4)

where

Dn(u)= 1
2
+

n∑
k=1

cosku (4.5)
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is the Dirichlet’s kernel of order n. By the derivation, we obtain

T′n(x)=−
1
π

∫ 2π

0
Tn(u)D′n(u− x)du=− 1

π

∫ 2π

0
Tn(u+ x)D′n(u)du

= 1
π

∫ 2π

0
Tn(u+ x)

{ n∑
k=1

k sinku

}
du

= 1
π

∫ 2π

0
Tn(u+ x)

{ n∑
k=1

k sinku+
n−1∑
k=1

k sin(2n− k)u

}
du

= 1
π

∫ 2π

0
Tn(u+ x)2nsinnu

{
1
2
+

n−1∑
k=1

n− k

n
cosku

}
du

= 2n
1
π

∫ 2π

0
Tn(u+ x)sinnuKn−1(u)du,

(4.6)

where Kn−1 is the Fejer’s kernel of order n− 1. By taking the absolute values, we get (see
[9, Volume I, page 85])

∣∣T′n(x)
∣∣≤ 2n

1
π

∫ 2π

0

∣∣Tn(u+ x)
∣∣Kn−1(u)du= 2nσn−1

(
x,
∣∣Tn

∣∣). (4.7)

If we use Theorem 2.3, we get that

(∫ 2π

0

∣∣T′n(x)
∣∣pv(x)dx

)1/p
≤
(∫ 2π

0

[
2nσn−1

(
x,
∣∣Tn

∣∣)]pv(x)dx
)1/p

= 2n
(∫ 2π

0

[
σn−1

(
x,
∣∣Tn

∣∣)]pv(x)dx
)1/p

≤ cn
(∫ 2π

0

∣∣Tn

∣∣pw(x)dx
)1/p

.

(4.8)

For the conjugate of Tn, we have

T̃n(x)= 1
π

∫ 2π

0
Tn(u)D̃n(u− x)du, (4.9)

where

D̃n =
n∑

k=1
sinku (4.10)

is the conjugate Dirichlet’s kernel. By differentiation we get

T̃′n(x)=
2n
π

∫ 2π

0
Tn(x+u)cosnuKn−1(u)du (4.11)
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and hence
∣∣T̃′n(x)

∣∣≤ 2nσn−1
(
x,
∣∣Tn

∣∣). (4.12)

From this we obtain
(∫ 2π

0

∣∣T̃′n(x)
∣∣pv(x)dx

)1/p
≤ cn

(∫ 2π

0

∣∣Tn(x)
∣∣pw(x)dx

)1/p
. (4.13)

and the theorem is proved. �

The inequality derived in Theorem 4.1 also extended to the case of trigonometric poly-
nomials of several variables. Thus, ifTmn(x, y) is a trigonometric polynomial of order≤m
with respect to x and of order ≤ n with respect to y, we have the following.

Theorem 4.2. Let 1 < p <∞. Assume that (v,w)∈�p(T2,J). Then the inequality

∥∥∥∥∂
2Tmn(x, y)
∂x∂y

∥∥∥∥
p,v
≤ cmn

∥∥Tmn(x, y)
∥∥
p,w (4.14)

holds with a positive constant c independent of Tmn.

Proof. It is known that (see [9, Volume II, pages 302–303])

σmn(x, y)= 1
π2

∫∫ 2π

0
f (x+ s, y + t)Km(s)Kn(t)dsdt,

Tmn(x, y)= 1
π2

∫∫ 2π

0
Tmn(s, t)Dm(s− x)Dn(t− y)dsdt.

(4.15)

If we take the partial derivatives of Tmn with respect to x and y from the last relation, we
obtain

∂2Tmn(x, y)
∂x∂y

= 1
π2

∫∫ 2π

0
Tmn(s, t)D′m(s− x)D′n(t− y)dsdt. (4.16)

By the process used in the previous theorem, this gives

∂2Tmn(x, y)
∂x∂y

= 2m2n
π2

∫∫ 2π

0
Tmn(x+ s, y + t)sinmssinntKm−1(s)Kn−1(t)dsdt (4.17)

and hence
∣∣∣∣∂

2Tmn(x, y)
∂x∂y

∣∣∣∣≤ 4mn

π2
σ(m−1)(n−1)

(
x, y,

∣∣Tmn

∣∣). (4.18)

If we take the norms and consider Theorem 3.2, we obtain the desired inequality. �
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