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1. Introduction

LetΩ⊂Rn be a Lipschitz domain inRn. Consider the Dirichlet spaceH1
0 (Ω) which is the

collection of all functions in the Sobolev space L21(Ω) such that

H1
0 (Ω)=

{
u∈ L2(Ω) : u|∂Ω = 0, ‖u‖L2 +

n∑
k=1

∥∥∥∥ ∂u

∂xk

∥∥∥∥
L2
<∞

}
. (1.1)

The famous Poincaré inequality can be stated as follows: for u∈H1
0 (Ω), then there exists

a universal constant C such that

∫
Ω
u2(x)dx ≤ C

n∑
k=1

∫
Ω

∣∣∣∣ ∂u

∂xk

∣∣∣∣
2

dx. (1.2)

One of the applications of this inequality is to solve the modified version of the Dirichlet
problem (see, John [5, page 97]): find a v ∈H1

0 (Ω) such that

(u,v)=
∫
Ω

[ n∑
k=1

∂u

∂xk

∂v

∂xk

]
dx =

∫
Ω
u(x) f (x)dx, (1.3)
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2 Poincaré inequality and Kantorovich method

where x = (x1, . . . ,xn) with a fixed f ∈ C(Ω̄). Then the function v in (1.3) satisfied the
boundary value problem

Δv =− f , in Ω

v = 0, on ∂Ω.
(1.4)

In this paper, we will use the Poincaré inequality to study the extended Kantorovich
method, see [6]. This method has been used extensively in many engineering problems,
for example, readers can consult papers [4, 7, 8, 11, 12], and the references therein. Let us
start with a model problem, see [8]. For a clamped rectangular box Ω =∏n

k=1[−ak,ak],
subjected to a lateral distributed load, �(x) =�(x1, . . . ,xn), the principle of virtual dis-
placements yields

n∏
�=1

∫ a�

−a�

[
η∇4Φ−�

]
δΦDx = 0, (1.5)

where Φ is the lateral deflection which satisfies the boundary conditions, η is the flexural
rigidity of the box, and

∇4 =
n∑

k=1

∂4

∂x4k
+
∑
j �=k

2
∂4

∂x2j ∂x
2
k

. (1.6)

Since the domainΩ is a rectangular box, it is natural to assume the deflection in the form

Φ(x)=Φk1···kn(x)=
n∏

�=1
fk�
(
x�
)
, (1.7)

it follows that when fk2 (x2)··· fkn(xn) is prescribed a priori, (1.5) can be rewritten as

∫ a1

−a1

[ n∏
�=2

∫ a�

−a�

(
η∇4Φk1···kn −�

)
fk�
(
x�
)
dx�

]
δ fk1 (x1)dx1 = 0. (1.8)

Equation (1.8) is satisfied when

n∏
�=2

∫ a�

−a�

(
η∇4Φk1···kn −�

)
fk�
(
x�
)
dx� = 0. (1.9)

Similarly, when
∏n

�=1,� �=m fk� (x�) is prescribed a priori, (1.5) can be rewritten as

∫ am

−am

[ n∏
�=1,� �=m

∫ a�

−a�

(
η∇4Φk1···kn −�

)
fk�
(
x�
)
dx�

]
δ fkm(xm)dxm = 0. (1.10)

It is satisfied when

n∏
�=1,� �=m

∫ a�

−a�

(
η∇4Φk1···kn −�

)
fk�
(
x�
)
dx� = 0. (1.11)
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It is known that (1.9) and (1.11) are called the Galerkin equations of the extended Kan-
torovich method. Now we may first choose

f20(x2)··· fn0(xn)=
n∏

�=2
c�

(
x2�
a2�
− 1

)2

. (1.12)

Then Φ10···0(x)= f11(x1) f20(x2)··· fn0(xn) satisfies the boundary conditions

Φ10···0 = 0,
∂Φ10···0
∂x�

= 0 at x� =±a� , x1 ∈
[− a1,a1

]
, (1.13)

for � = 2, . . . ,n. Now (1.9) becomes

n∏
�=2

c�

∫ a�

−a�

(
∇4Φ10···0− �

η

)(
x2�
a2�
− 1

)2

dx� = 0, (1.14)

which yields

C4
d4 f11
dx4

+C2
d2 f11
dx2

+C0 f11 = B. (1.15)

After solving the above ODE, we can use f11(x1)
∏n

�=3 f�0(x�) as a priori data and plug it
into (1.10) to find f21(x2). Then we obtain the function

Φ110···0(x)= f11
(
x1
)
f21
(
x2
)
f30
(
x3
)··· fn0(xn). (1.16)

Continue this process until we obtain Φ1···1(x) = f11(x1) f21(x2)··· fn1(xn) and there-
fore completes the first cycle. Next, we use f21(x2)··· fn1(xn) as our priori data and find
f12(x1). We continue this process and expect to find a sequence of “approximate solu-
tions.” The problem reduces to investigate the convergence of this sequence. Therefore, it
is crucial to analyze (1.15). Moreover, from numerical point of view, we know that this
sequence converges rapidly (see [1, 2]). Hence, it is necessary to give a rigorous mathe-
matical proof of this method.

2. A convex linear functional onH2
0 (Ω)

Denote

I[φ]=
∫
Ω

{|Δφ|2− 2�(x)φ(x)
}
dx (2.1)

for Ω⊂Rn a bounded Lipschitz domain. Here x = (x1, . . . ,xn). As usual, denote

D2φ =

⎡
⎢⎢⎢⎣

∂2φ

∂x2
∂2φ

∂x∂y

∂2φ

∂y∂x

∂2φ

∂y2

⎤
⎥⎥⎥⎦ . (2.2)



4 Poincaré inequality and Kantorovich method

For Ω⊂R2, we define the Lagrangian function L associated to I[φ] as follows:

L :Ω×R×R2×R4 −→R,

(x, y;z;X ,Y ;U ,V ,S,W) 
−→ (U +V)2− 2�(x, y)z,
(2.3)

where �(x, y) is a fixed function onΩ which shows up in the integrand of I[φ]. With the
above definitions, we have

L
(
x, y;φ;∇φ;D2φ

)= |Δφ|2− 2�(x, y)φ(x, y), (2.4)

where we have identified

z←→ φ(x, y), X ←→ ∂φ

∂x
, Y ←→ ∂φ

∂y
,

U ←→ ∂2φ

∂x2
, V ←→ ∂2φ

∂y2
, S←→ ∂2φ

∂y∂x
, W ←→ ∂2φ

∂x∂y
.

(2.5)

We also set H2
0 (Ω) to be the class of all square integrable functions such that

H2
0 (Ω)=

{
ψ ∈ L2(Ω) :

∑
|k|≤2

∥∥∥∥∂kψ∂xk

∥∥∥∥
L2
<∞, ψ|∂Ω = 0, ∇ψ|∂Ω = 0

}
. (2.6)

Fix (x, y)∈Ω. We know that

∇L(x, y;z;X ,Y ;U ,V ,S,W)=
[
−2�(x, y) 0 0 2(U +V) 2(U +V) 0 0

]T
.

(2.7)

Because the convexity of the function L in the remaining variables, then for all (z̃; X̃ , Ỹ ;Ũ ,
Ṽ , S̃,W̃)∈R×R2×R4, one has

L
(
x, y; z̃; X̃ , Ỹ ;Ũ ,Ṽ , S̃,W̃

)
≥ L(x, y;z;X ,Y ;U ,V ,S,W)− 2�(x, y)

(
z̃− z

)
+2(U +V)

[(
Ũ −U

)
+
(
Ṽ −V

)]
.

(2.8)

In particular, one has, with z̃ = φ̃(x, y),

L
(
x, y; φ̃;∇φ̃;D2φ̃

)
≥ L

(
x, y;φ;∇φ;D2φ

)
+2Δφ

[∇φ̃−∇φ]
− 2�(x, y)(φ̃−φ).

(2.9)

This implies that

∣∣Δφ̃∣∣2− 2�(x, y)φ̃≥ ∣∣Δφ∣∣2− 2�(x, y)φ+2Δφ
[
Δφ̃−Δφ

]− 2�(x, y)
[
φ̃−φ

]
. (2.10)

If instead we fix (x, y;z)∈Ω×R, then

L
(
x, y; z̃; X̃ , Ỹ ;Ũ ,Ṽ , S̃,W̃

)
≥ L(x, y; z̃;X ,Y ;U ,V ,S,W)

+ 2(U +V)
[(
Ũ −U

)
+
(
Ṽ −V

)]
.

(2.11)
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This implies that

L
(
x, y; φ̃;∇φ̃;D2φ̃

)≥ L(x, y; φ̃;∇φ;D2φ
)
+2Δφ[∇φ̃−∇φ] (2.12)

Therefore,

|Δφ̃|2− 2�(x, y)φ̃≥ |Δφ|2− 2�(x, y)φ̃+2Δφ[Δφ̃−Δφ]. (2.13)

Lemma 2.1. Suppose either
(1) φ ∈H2

0 (Ω)∩C4(Ω) and η ∈ C1
c (Ω); or

(2) φ ∈H2
0 (Ω)∩C3(Ω̄)∩C4(Ω) and η ∈H2

0 (Ω).
Let δI[φ;η] denote the first variation of I at φ in the direction η, that is,

δI[φ;η]= lim
ε→0

I[φ+ εη]− I[φ]
ε

. (2.14)

Then

δI[φ;η]= 2
∫
Ω

(
Δ2φ−�(x, y)

)
ηdxdy. (2.15)

Proof. We know that

I[φ+ εη]− I[φ]= 2ε
∫
Ω
[ΔφΔη−�η]dxdy + ε2

∫
Ω
(Δη)2dxdy. (2.16)

Hence,

εI[φ;η]= 2
∫
Ω
[ΔφΔη−�η]dxdy. (2.17)

If either assumption (1) or (2) holds, we can apply Green’s formula to a Lipschitz domain
Ω to obtain

∫
Ω
(ΔφΔη)dxdy =

∫
Ω
η
(
Δ2φ

)
dxdy +

∫
∂Ω

[
∂η

∂�n
Δφ−η

∂

∂�n
Δφ

]
dxdy, (2.18)

where ∂/∂�n is the derivative in the direction normal to ∂Ω. Since either η ∈ C1
c (Ω) or

η ∈H2
0 (Ω), the boundary term vanishes, which proves the lemma. �

Lemma 2.2. Let φ∈H2
0 (Ω). Then

‖φ‖H2
0 (Ω) ≈ ‖Δφ‖L2(Ω). (2.19)

Proof. The function φ ∈H2
0 (Ω) implies that there exists a sequence {φk} ⊂ C∞c (Ω) such

that limk→∞φk = φ in H2
0 -norm. From a well-known result for the Calderón-Zygmund

operator (see, Stein [10, page 77]), one has

∥∥∥∥ ∂2 f

∂xj ∂x�

∥∥∥∥
Lp
≤ C‖Δ f ‖Lp , j,� = 1, . . . ,n (2.20)
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for all f ∈ C2
c (R

n) and 1 < p <∞. Here C is a constant that depends on n only. Applying
this result to each φk, we obtain

∥∥∥∥∂2φk∂x2

∥∥∥∥
L2(Ω)

,
∥∥∥∥ ∂2φk
∂x∂y

∥∥∥∥
L2(Ω)

,
∥∥∥∥∂2φk∂y2

∥∥∥∥
L2(Ω)

≤ C
∥∥Δφk∥∥L2(Ω). (2.21)

Taking the limit, we conclude that

∥∥∥∥∂2φ∂x2

∥∥∥∥
L2(Ω)

,
∥∥∥∥ ∂2φ

∂x∂y

∥∥∥∥
L2(Ω)

,
∥∥∥∥∂2φ∂y2

∥∥∥∥
L2(Ω)

≤ C‖Δφ‖L2(Ω). (2.22)

Applying Poincaré inequality twice to the function φ ∈H2
0 (Ω), we have

‖φ‖L2(Ω) ≤ C1‖∇φ‖L2(Ω)

≤ C2

(∥∥∥∥∂2φ∂x2

∥∥∥∥
L2(Ω)

+
∥∥∥∥ ∂2φ

∂x∂y

∥∥∥∥
L2(Ω)

+
∥∥∥∥∂2φ∂y2

∥∥∥∥
L2(Ω)

)

≤ C‖Δφ‖L2(Ω).

(2.23)

Hence, ‖φ‖L2(Ω) ≤ C‖Δφ‖L2(Ω). The reverse inequality is trivial. The proof of this lemma
is therefore complete. �

Lemma 2.3. Let {φk} be a bounded sequence in H2
0 (Ω). Then there exist φ ∈H2

0 (Ω) and a
subsequence {φkj} such that

I[φ]≤ liminf I
[
φkj

]
. (2.24)

Proof. By a weak compactness theorem for reflexive Banach spaces, and hence for Hilbert
spaces, there exist a subsequence {φkj} of {φk} and φ in H2

0 (Ω) such that φkj → φ weakly
in H2

0 (Ω). Since

H2
0 (Ω)⊂H1

0 (Ω)⊂⊂L2(Ω), (2.25)

by the Sobolev embedding theorem, we have

φkj −→ φ in L2(Ω) (2.26)

after passing to yet another subsequence if necessary.
Now fix (x, y,φkj (x, y))∈R2×R and apply inequality (2.13), we have

∣∣Δφkj∣∣2− 2�(x, y)φkj (x, y)≥ |Δφ|2− 2�(x, y)φkj (x, y) + 2Δφ
[
Δφkj −Δφ

]
. (2.27)

This implies that

I
[
φkj

]≥
∫
Ω

[|Δφ|2− 2�(x, y)φkj
]
dxdy +2

∫
Ω
Δφ · [Δφkj −Δφ

]
dxdy. (2.28)

But φkj → φ in L2(Ω), hence
∫
Ω

[|Δφ|2− 2�(x, y)φkj
]
dxdy −→

∫
Ω

[|Δφ|2− 2�(x, y)φ
]
dxdy = I[φ]. (2.29)
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Besides φkj → φ weakly in H2
0 (Ω) implies that
∫
Ω
Δφ · [Δφkj −Δφ

]
dxdy −→ 0. (2.30)

It follows that when taking limit

I[φ]≤ liminf
j

I
[
φkj

]
. (2.31)

This completes the proof of the lemma. �

Remark 2.4. The above proof uses the convexity of L(x, y;z;X ,Y ;U ,V ,S,W) when (x, y;
z) is fixed. We already remarked at the beginning of this section that when (x, y) is fixed,
L(x, y;z;X ,Y ;U ,V ,S,W) is convex in the remaining variables, including the z-variable.
That is, we are not required to utilize the full strength of the convexity of L here.

3. The extended Kantorovich method

Now, we shift our focus to the extended Kantorovich method for finding an approximate
solution to the minimization problem

min
φ∈H2

0 (Ω)
I[φ] (3.1)

when Ω = [−a,a]× [−b,b] is a rectangular region in R2. In the sequel, we will write
φ(x, y) (resp., φk(x, y)) as f (x)g(y) (resp., fk(x)gk(y)) interchangeably as notated in Kerr
and Alexander [8]. More specifically, we will study the extended Kantorovich method for
the case n = 2, which has been used extensively in the analysis of stress on rectangular
plates. Equivalently, we will seek for an approximate solution of the above minimization
problem in the form φ(x, y)= f (x)g(y) where f ∈H2

0 ([−a,a]) and g ∈H2
0 ([−b,b]).

To phrase this differently, we will search for an approximate solution in the tensor
product Hilbert spaces H2

0 ([−a,a])⊗̂H2
0 ([−b,b]), and all sequences {φk}, {φkj} involved

hereinafter reside in this Hilbert space. Without loss of generality, we may assume that
Ω = [−1,1]× [−1,1] for all subsequent results remain valid for the general case where
Ω= [−a,a]× [−b,b] by approximate scalings/normalizing of the x and y variables. As in
[8], we will treat the special case �(x, y) = γ, that is, we assume that the load �(x, y) is
distributed equally on a given rectangular plate.

To start the extended Kantorovich scheme, we first choose g0(y) ∈ H2
0 ([−1,1]) ∩

C∞c (−1,1), and find the minimizer f1(x)∈H2
0 ([−1,1]) of the functional:

I
[
f g0

]=
∫
Ω

[∣∣Δ( f g0)∣∣2− 2γ f (x)g0(y)
]
dxdy

=
∫
Ω

[
g20 ( f

′′)2 + 2 f f ′′g0g′′0 + f 2
(
g′′0

)2− 2γ f g0
]
dxdy

=
∫ 1

−1
( f ′′)2dx

∫ 1

−1
g20 dy +2

∫ 1

−1

(
g′0
)2
dy

∫ 1

−1
( f ′)2dx

+
∫ 1

−1

(
g′′0

)2
dy

∫ 1

−1
f 2dx− 2γ

∫ 1

−1
g0dy

∫ 1

−1
f dx,

(3.2)
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where the last equality was obtained via the integration by parts of f f ′′ and g0g
′′
0 . Since

g0 has been chosen a priori; we can rewrite the functional I as

J[ f ]= ∥∥g0∥∥2L2
∫ 1

−1
( f ′′)2dx+2

∥∥g′0∥∥2L2
∫ 1

−1
( f ′)2dx

+
∥∥g′′0 ∥∥2L2

∫ 1

−1
f 2dx− 2γ

∫ 1

−1
g0(y)dy

∫ 1

−1
f dx

(3.3)

for all f ∈H2
0 ([−1,1]). Now we may rewrite (3.3) in the following form:

J[ f ]=
∫ 1

−1

[
C1( f ′′)2 +C2( f ′)2 +C3 f

2 +C4 f
]
dx

≡
∫ 1

−1
K(x, f , f ′, f ′′)dx

(3.4)

with K :R×R×R×R→R given by

(x;z;V ;W) 
−→ C1W
2 +C2V

2 +C3z
2 +C4z, (3.5)

where

C1 =
∥∥g0∥∥2L2 , C2 =

∥∥g′0∥∥2L2 , C3 =
∥∥g′′0 ∥∥2L2 , C4 =−2γ

∫ 1

−1
g0(y)dy. (3.6)

As long as g0 �≡ 0, as we have implicitly assumed, the Poincaré inequality implies that

0 < C1 ≤ αC2 ≤ βC3 (3.7)

for some positive constants α and β, independent of g0. Consequently, K(x;z;V ;W) is a
strictly convex function in variable z, V ,W when x is fixed. In other words, K satisfies

K(x; z̃;Ṽ ;W̃)−K(x;z;V ;W)

≥ ∂K

∂z
(x;z;V ;W)(z̃− z) +

∂K

∂V
(x;z;V ;W)(Ṽ −V) +

∂K

∂W
(x;z;V ;W)(W̃ −W)

(3.8)

for all (x;z;V ;W) and (x; z̃;Ṽ ;W̃) in R4, and the inequality becomes equality at (x;z;V ;
W) only if z̃ = z, or Ṽ =V , or W̃ =W .

Proposition 3.1. Let � : R×R×R×R→ R be a C∞ function satisfying the following
convexity condition:

�(x;z+ z′;V +V ′;W +W ′)−�(x;z;V ;W)

≥ ∂�
∂z

(x;z;V ;W)z′ +
∂�
∂V

(x;z;V ;W)V ′ +
∂�
∂W

(x;z;V ;W)W ′ (3.9)
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for all (x;z;V ;W) and (x;z + z′;V +V ′;W +W ′)∈ R4, with equality at (x;z;V ;W) only
if z′ = 0, or V ′ = 0, orW ′ = 0. Also, let

J[ f ]=
∫ β

α
�
(
x, f (x), f ′(x), f ′′(x)

)
dx, ∀ f ∈H2

0 (α,β). (3.10)

Then

J[ f +η]− J[ f ]≥ δJ[ f ,η], ∀η ∈ C∞c (α,β) (3.11)

and equality holds only if η ≡ 0. Here δJ[ f ,η] is the first variation of J at f in the direction η.

Proof. Condition (3.9) means that at each x,

�(x; f +η; f ′ +η′; f ′′ +η′′)−�(x; f ; f ′; f ′′)

≥ ∂�
∂z

(x; f ; f ′; f ′′)η(x) +
∂�
∂V

(x; f ; f ′; f ′′)η′(x) +
∂�
∂W

(x; f ; f ′; f ′′)η′′(x)
(3.12)

for all η ∈ C∞c (α,β) with equality only if η(x)= 0, or η′(x)= 0, or η′′(x)= 0. Equivalently,
the equality holds in (3.12) at x only if η(x)η′(x)= 0 or η′′(x)= 0. In other words,

η′′(x)
d

dx

(
η2(x)

)= 0. (3.13)

Integrating (3.12) gives

J[ f +η]− J[ f ]≥
∫ β

α

[
∂�
∂z

η+
∂�
∂V

η′ +
∂�
∂W

η′′
]
dx = δJ[ f ,η]. (3.14)

Now suppose there exists η ∈ C∞c (α,β) such that (3.14) is an equality. Since � is a smooth
function, this equality forces (3.12) to be a pointwise equality, which implies, in view of
(3.13), that

η′′(x)
d

dx

(
η2(x)

)= 0, ∀x. (3.15)

If η′′(x) ≡ 0, then η′(x) = constant which implies that η′(x) ≡ 0 (since η ∈ C∞c (α,β)).
This tells us that η ≡ constant and conclude that η ≡ 0 on the interval (α,β).

If η′′(x) �≡ 0, set U = {x ∈ (α,β) : η′′(x) �= 0}. Then U is a non-empty open set which
implies that there exist x0 ∈U and some open set �x0 of x0 contained inU . Then η′′(ξ) �=
0 for all ξ ∈ �x0 ⊂U . Thus

d

dx

(
η2
)= 0 on �x0 . (3.16)

Hence, η(ξ)≡ constant on �x0 . But this creates a contradiction because η′′(ξ)≡ 0 on �x0 .
Therefore,

J[ f +η]− J[ f ]= δJ[ f ,η] (3.17)

only if η(x)≡ 0, as desired. This completes the proof of the proposition. �



10 Poincaré inequality and Kantorovich method

Corollary 3.2. Let J[ f ] be as in (3.4). Then f1 ∈H2
0 ([−1,1]) is the unique minimizer for

J[ f ] if and only if f1 solves the following ODE:

∥∥g0∥∥2L2 d
4 f

dx4
− 2

∥∥g′0∥∥2L2 d
2 f

dx2
+
∥∥g′′0 ∥∥2L2 f = γ

∫ 1

−1
g0dy. (3.18)

Proof. Suppose f1 is the unique minimizer. Then f1 is a local extremum of J[ f ]. This
implies that δJ[ f ,η]= 0 for all η ∈H2

0 ([−1,1]). Using the notations in (3.4), we have

0= δJ[ f ,η]

=
∫ 1

−1

[
∂K

∂z
η+

∂K

∂V
η′ +

∂K

∂W
η′′

]
dx

=
∫ 1

−1

[
∂K

∂z
− d

dx

(
∂K

∂V

)
+

d2

dx2

(
∂K

∂W

)]
η(x)dx

(3.19)

for all η ∈H2
0 ([−1,1]). This implies that

∂K

∂z
− d

dx

(
∂K

∂V

)
+

d2

dx2

(
∂K

∂W

)
= 0, (3.20)

which is the Euler-Lagrange equation (3.18). This also follows from Lemma 2.1 directly.
Conversely, assume f1 solves (3.18). Then the above argument shows that δJ[ f ,η]= 0

for all η ∈H2
0 ([−1,1]). Since K satisfies condition (3.9) in Proposition 3.1, we conclude

that

J
[
f1 +η

]− J
[
f1
]≥ δJ

[
f1,η

]
, ∀η∈ C∞c

(
[−1,1]). (3.21)

This tells us that J[ f1 + η] ≥ J[ f1] for all η ∈ C∞c ([−1,1]) and J[ f1 + η] > J[ f1] if η �≡ 0.
Observe that J : H1

0 ([−1,1])→ R as given in (3.4) is a continuous linear functional in
the H2

0 -norm. This fact, combined with the density of C∞c ([−1,1]) in H2
0 ([−1,1]) (in the

H2
0 -norm), implies that

J
[
f1 +η

]≥ J
[
f1
]
, ∀η∈ C∞c

(
[−1,1]). (3.22)

This means that for all ϕ ∈ H2
0 ([−1,1]), we have J[ϕ] ≥ J[ f1] and if ϕ �≡ f1 (almost ev-

erywhere), then ϕ− f1 �≡ 0 and hence, J[ϕ] > J[ f1]. Thus f1 is the unique minimum
for J . �

Reversing the roles of f and g, that is, fixing f0 and finding g1 ∈H2
0 to minimize I[ f0g]

over g ∈H2
0 ([−1,1]), we obtain the same conclusion by using the same arguments.

Corollary 3.3. Fix f0 ∈H2
0 ([−1,1]). Then g1 ∈H2

0 ([−1,1]) is the unique minimizer for

J[g]= I
[
f0g

]= ∥∥ f0∥∥2L2
∫ 1

−1
(g′′)2dy +2

∥∥ f ′0 ∥∥2L2
∫ 1

−1
(g′)2dy

+
∥∥ f ′′0 ∥∥2

L2

∫ 1

−1
g2dy− 2γ

∥∥ f0∥∥L1
∫ 1

−1
g dy

(3.23)
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if and only if g1 solves the Euler-Lagrange equation

∥∥ f0∥∥2L2 d
4g

dy4
− 2

∥∥ f ′0 ∥∥2L2 d
2g

dy2
+
∥∥ f ′′0 ∥∥2

L2g = 2γ
∫ 1

−1
f0(x)dx. (3.24)

Now we search for the solution f1 ∈H2
0 ([−1,1]) in (3.18), that is,

∥∥g0∥∥2L2 d
4 f

dx4
− 2

∥∥g′0∥∥2L2 d
2 f

dx2
+
∥∥g′′0 ∥∥2L2 f = 2γ

∫ 1

−1
g0(y)dy. (3.25)

Rewrite the above ODE in the following form:

∥∥g0∥∥2L2
⎡
⎣
(
D− ‖g

′‖2L2∥∥g0∥∥2L2
)2

+
‖g′′‖2L2∥∥g0∥∥2L2 −

‖g′‖4L2∥∥g0∥∥4L2
⎤
⎦ f = 2γ

∫ 1

−1
g0(y)dy, (3.26)

where D = d2/dx2.

Remark 3.4. In general when g ∈H2, that is, g needs not satisfy the zero boundary con-
ditions for function in H2

0 , then the quantity

(∥∥g′′0 ∥∥2L2∥∥g0∥∥2L2 −
∥∥g′0∥∥4L2∥∥g0∥∥4L2

)
(3.27)

can take on any values. However, if g ∈H2
0 and g0 �≡ 0, as proved below, this quantity is

always positive.

Lemma 3.5. Let Ω be a Lipschitz domain in Rn, n≥ 1. Let g ∈H2
0 (Ω) be arbitrary. Then

‖∇g‖2L2 ≤ ‖g‖L2 · ‖Δg‖L2 , (3.28)

and equality holds if and only if g ≡ 0.

Proof. Integration by parts yields

‖∇g‖2L2 =
∫
Ω
∇g ·∇g dx =−

∫
Ω
gΔg dx+

∫
∂Ω

g
∂g

∂�ndσ =−
∫
Ω
gΔg dx. (3.29)

By the Cauchy-Schwartz inequality, we have

‖∇g‖2L2 ≤ ‖g‖L2 · ‖Δg‖L2 , (3.30)

and the equality holds if and only if (see Lieb-Loss [9])
(i) |g(x)| = λ|Δg(x)| almost everywhere for some λ > 0,
(ii) g(x)Δg(x)= eiθ|g(x)| · |Δg(x)|.
Since g is real-valued, (i) and (ii) imply

g(x)Δg(x)= λ
(
Δg(x)

)2
. (3.31)
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So, g must satisfy the following PDE:

Δg − 1
λ
g = 0, (3.32)

where g ∈H2
0 (Ω). But the only solution to this PDE is g ≡ 0 (see, Evans [3, pages 300–

302]). This completes the proof of the lemma. �

Remark 3.6. If n= 1, one can solve g′′ − λ−1g = 0 directly without having to appeal to the
theory of elliptic PDEs.

Proposition 3.7. The solutions of (3.18) and (3.24) have the same form.

Proof. Using either Lemma 3.5 in case n= 1 to the above remark, we see that

‖g′′‖2L2∥∥g0∥∥2L2 −
‖g′‖4L2∥∥g0∥∥4L2 > 0 if g0 �≡ 0. (3.33)

Hence the characteristic polynomial associated to (3.26) has two pairs of complex con-
jugate roots as long as g0 �≡ 0. Apply the same arguments to the ODE in (3.24) and the
proposition is proved. �

Remark 3.8. The statement in Proposition 3.7 was claimed in [8] without verification.
Indeed the authors stated therein that the solutions of (3.18) and (3.24) are of the same
form because of the positivity of the coefficients on the left-hand side of (3.18) and (3.24).
As observed in Remark 3.4 and proved in Proposition 3.7, the positivity requirement is
not sufficient. The fact that f0,g0 ∈H2

0 must be used to conclude this assumption.

4. Explicit solution for (3.26)

We now find the explicit solution for (3.26), and hence for (3.18). Let

r = ‖g
′‖L2∥∥g0∥∥L2 , t = ‖g

′′‖L2∥∥g0∥∥L2 ,
ρ =

√
t+ r2

2
, κ=

√
t− r2

2
.

(4.1)

Then from Proposition 3.7 and its proof, the 4 roots of the characteristic polynomial
associated to ODE (3.26) are

ρ+ iκ, ρ− iκ, −ρ− iκ, −ρ+ iκ. (4.2)

Thus the homogeneous solution of (3.26) is

fh(x)= c1 cosh(ρx)cos(κx) + c2 sinh(ρx)cos(κx)

+ c3 cosh(ρx)sin(κx) + c4 sinh(ρx)sin(κx).
(4.3)
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It follows that a particular solution of (3.26) is

fp(x)= 2γ
∫ 1
−1 g0(y)dy∥∥g′′0 ∥∥2L2 . (4.4)

Thus the solution of (3.18) is

f (x)= c1 cosh(ρx)cos(κx) + c2 sinh(ρx)cos(κx)

+ c3 cosh(ρx)sin(κx) + c4 sinh(ρx)sin(κx) + cp,
(4.5)

where cp = 2γ
∫ 1
−1 g0(y)dy/‖g′′0 ‖2L2 is a known constant. This implies that

f ′(x)= ρc1 sinh(ρx)cos(κx)− κc1 cosh(ρx)sin(κx)

+ ρc2 cosh(ρx)cos(κx)− κc2 sinh(ρx)sin(κx)

+ ρc3 sinh(ρx)sin(κx) + κc3 cosh(ρx)cos(κx)

+ ρc4 cosh(ρx)sin(κx) + κc4 sinh(ρx)cos(κx).

(4.6)

Apply the boundary conditions f (1)= f (−1)= f ′(1)= f ′(−1)= 0, we get

c1 cosh(ρ)cos(κ) + c2 sinh(ρ)cos(κ) + c3 cosh(ρ)sin(κ) + c4 sinh(ρ)sin(κ)=−cp,
c1 cosh(ρ)cos(κ)− c2 sinh(ρ)cos(κ)− c3 cosh(ρ)sin(κ) + c4 sinh(ρ)sin(κ)=−cp,
c1
[
ρ sinh(ρ)cos(κ)− κcosh(ρ)sin(κ)

]
+ c2

[
ρcosh(ρ)cos(κ)− κsinh(ρ)sin(κ)

]
+ c3

[
ρ sinh(ρ)sin(κ) + κcosh(ρ)cos(κ)

]
+ c4

[
ρcosh(ρ)sin(κ) + κsinh(ρ)cos(κ)

]= 0,

c1
[− ρ sinh(ρ)cos(κ) + κcosh(ρ)sin(κ)

]
+ c2

[
ρcosh(ρ)cos(κ)− κsinh(ρ)sin(κ)

]
+ c3

[
ρ sinh(ρ)sin(κ) + κcosh(ρ)cos(κ)

]− c4
[
ρcosh(ρ)sin(κ) + κsinh(ρ)cos(κ)

]= 0.
(4.7)

Hence,

c1 cosh(ρ)cos(κ) + c4 sinh(ρ)sin(κ)=−cp, (4.8)

c2 sinh(ρ)cos(κ) + c3 cosh(ρ)sin(κ)= 0, (4.9)

c2
[
ρcosh(ρ)cos(κ)− κsinh(ρ)sin(κ)

]
+ c3

[
ρ sinh(ρ)sin(κ) + κcosh(ρ)cos(κ)

]= 0,
(4.10)

c1
[
ρ sinh(ρ)cos(κ)− κcosh(ρ)sin(κ)

]
+ c4

[
ρcosh(ρ)sin(κ) + κsinh(ρ)cos(κ)

]= 0.
(4.11)

We know, beforehand, that there must be a unique solution. Thus (4.9) and (4.23) force
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c2 = c3 = 0. We are left to solve for c1 and c4 from (4.8) and (4.11). But (4.11) tells us that

c1 =−c4 ρcosh(ρ)sin(κ) + κsinh(ρ)cos(κ)
ρ sinh(ρ)cos(κ)− κcosh(ρ)sin(κ)

. (4.12)

Substituting (4.12) into (4.8), we have

c4 = cp
ρ sinh(ρ)cos(κ)− κcosh(ρ)sin(κ)
ρ sin(κ)cos(κ) + κsinh(ρ)cosh(ρ)

. (4.13)

Plugging (4.13) into (4.12), we have

c1 =−cp ρcosh(ρ)sin(κ) + κsinh(ρ)cos(κ)
ρ sin(κ)cos(κ) + κsinh(ρ)cosh(ρ)

. (4.14)

Therefore, the solution f1(x) can be written in the form

f1(x)= cp

[
K1

K0
cosh(ρx)cos(κx) +

K2

K0
sinh(ρx)sin(κx) + 1

]
, (4.15)

where

cp = 2γ
∫ 1
−1 g0(y)dy∥∥g′′0 ∥∥2L2 ,

ρ=
√

t+ r2

2
=
√√√√∥∥g′′0 ∥∥L2 /∥∥g0∥∥L2 +∥∥g′0∥∥2L2 /∥∥g0∥∥2L2

2
,

κ=
√

t− r2

2
=
√√√√∥∥g′′0 ∥∥L2 /∥∥g0∥∥L2 −∥∥g′0∥∥2L2 /∥∥g0∥∥2L2

2
,

K0 = ρ sin(κ)cos(κ) + κsinh(ρ)cosh(ρ),

K1 =−ρcosh(ρ)sin(κ)− κsinh(ρ)cos(κ),

K2 = ρ sinh(ρ)cos(κ)− κcosh(ρ)sin(κ).

(4.16)

The next step in the extended Kantorovich method is to fix f1(x) just found above and
solve for g1(y)∈H2

0 ([−1,1]) from (3.24). Lemma 2.2 and the computation above show
that

g1(y)= c̃p

[
K̃1

K̃0
cosh(ρ̃y)cos(κ̃y) +

K̃2

K̃0
sinh(ρ̃y)sin(κ̃y) + 1

]
, (4.17)
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where

c̃p = 2γ
∫ 1
−1 f1(x)dx∥∥ f ′′1 ∥∥2

L2

,

ρ̃ =
√√√√∥∥ f ′′1 ∥∥

L2 /
∥∥ f1∥∥L2 +∥∥ f ′1 ∥∥2L2 /∥∥ f1∥∥2L2

2
,

κ̃=
√√√√∥∥ f ′′1 ∥∥

L2 /
∥∥ f1∥∥L2 −∥∥ f ′1 ∥∥2L2 /∥∥ f1∥∥2L2

2
,

K̃0 = ρ̃ sin(κ̃)cos(κ̃) + κ̃sinh(ρ̃)cosh(ρ̃),

K̃1 =−ρ̃cosh(ρ̃)sin(κ̃)− κ̃sinh(ρ̃)cos(κ̃),

K̃2 = ρ̃ sinh(ρ̃)cos(κ̃)− κ̃cosh(ρ̃)sin(κ̃).

(4.18)

Now we start the next iteration by fixing g1(y) and solving for f2(x) in (3.18), and so
forth. In particular, we will write

fn(x)= cn

[
K1n

K0n
cosh

(
ρnx

)
cos

(
κnx

)
+
K2n

K0n
sinh

(
ρnx

)
sin

(
κnx

)
+1

]
, (4.19)

where

cn = 2γ
∫ 1
−1 gn−1(y)dy∥∥g′′n−1∥∥2L2 ,

ρn =
√√√√∥∥g′′n−1∥∥L2 /∥∥gn−1∥∥L2 +∥∥g′n−1∥∥2L2 /∥∥gn−1∥∥2L2

2
,

κn =
√√√√∥∥g′′n−1∥∥L2 /∥∥gn−1∥∥L2 −∥∥g′n−1∥∥2L2 /∥∥gn−1∥∥2L2

2
,

K0n = ρn sin
(
κn
)
cos

(
κn
)
+ κn sinh

(
ρn
)
cosh

(
ρn
)
,

K1n =−ρn cosh
(
ρn
)
sin

(
κn
)− κn sinh

(
ρn
)
cos

(
κn
)
,

K2n = ρn sinh
(
ρn
)
cos

(
κn
)− κn cosh

(
ρn
)
sin

(
κn
)
.

(4.20)

Similarly,

gn(y)= c̃n

[
K̃1n

K̃0n
cosh

(
ρ̃n y

)
cos

(
κ̃n y

)
+
K̃2n

K̃0n
sinh

(
ρ̃n y

)
sin

(
κ̃n y

)
+1

]
, (4.21)
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where

c̃n = 2γ
∫ 1
−1 fn(x)dx∥∥ f ′′n ∥∥2

L2

,

ρ̃=
√√√√∥∥ f ′′n ∥∥

L2 /
∥∥ fn∥∥L2 +∥∥ f ′n∥∥2L2 /∥∥ fn∥∥2L2

2
,

κ̃n =
√√√√∥∥ f ′′n ∥∥

L2 /
∥∥ fn∥∥L2 −∥∥ f ′n∥∥2L2 /∥∥ fn∥∥2L2

2
,

K̃0n = ρ̃n sin
(
κ̃n
)
cos

(
κ̃n
)
+ κ̃n sinh

(
ρ̃n
)
cosh

(
ρ̃n
)
,

K̃1n =−ρ̃n cosh
(
ρ̃n
)
sin

(
κ̃n
)− κ̃n sinh

(
ρ̃n
)
cos

(
κ̃n
)
,

K̃2n = ρ̃n sinh
(
ρ̃n
)
cos

(
κ̃n
)− κ̃n cosh

(
ρ̃n
)
sin

(
κ̃n
)
.

(4.22)

In summary, a solution φn(x, y) in Lemma 2.3 can be written into the following form:

φn(x, y)= fn(x)gn(y)

= cnc̃n

[
K1nK̃1n

K0nK̃0n
cosh

(
ρnx

)
cosh

(
ρ̃n y

)
cos

(
κnx

)
cos

(
κ̃n y

)

+
K1nK̃2n

K0nK̃0n
cosh

(
ρnx

)
sinh

(
ρ̃n y

)
cos

(
κnx

)
sin

(
κ̃n y

)

+
K2nK̃1n

K0nK̃0n
sinh

(
ρnx

)
cosh

(
ρ̃n y

)
sin

(
κnx

)
cos

(
κ̃n y

)

+
K2nK̃2n

K0nK̃0n
sinh

(
ρnx

)
sinh

(
ρ̃n y

)
sin

(
κnx

)
cos

(
κ̃n y

)

+
K1n

K0n
cosh

(
ρnx

)
cos

(
κnx

)
+
K2n

K0n
sinh

(
ρnx

)
sin

(
κnx

)

+
K̃1n

K̃0n
cosh

(
ρ̃n y

)
sin

(
κ̃n y

)
+
K̃2n

K̃0n
sinh

(
ρ̃n y

)
sin

(
κ̃n y

)
+1

]
.

(4.23)

5. Convergence of the solutions

In order to discuss the convergence of the extended Kantorovich method, let us start with
the following auxiliary lemma.

Lemma 5.1. Let φn(x, y) = fn(x)gn(y) and ψn(x, y) = fn+1(x)gn(y). Then these two
sequences are bounded in H2

0 (Ω).

Proof. We will verify the boundedness of {ψn} for the arguments which is identical for
the sequence {φn}. Fix an integer n∈ Z+ and assume that gn has been determined from
the extended Kantorovich scheme when n≥ 1 or gn has been chosen a priori when n= 0.
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Then fn+1 is determined by minimizing

I
[
f gn

]= J[ f ]

= ∥∥gn∥∥2L2
∫
( f ′′)2dx+2

∥∥g′n∥∥2L2
∫
( f ′)2dx

+
∥∥g′′n ∥∥2L2

∫
f 2dx− 2γ

∫
gn dy ·

∫
f dx.

(5.1)

By Corollary 3.2, if fn+1 is as in (4.19), then fn+1 is the unique minimum for J[ f ] over
H2

0 (Ω). Thus we must have

I
[
fn+1gn

]= I
[
fn+1

]
< I[0]= 0. (5.2)

This implies that

∫
Ω

∣∣Δψn

∣∣2− γ
∫
Ω
ψndxdy < 0. (5.3)

Lemma 2.2 then yields

∥∥ψn

∥∥2
H2

0 (Ω) < Cγ
∥∥ψn

∥∥2
L2(Ω) < Cγ

∥∥ψn

∥∥
H2

0 (Ω). (5.4)

Therefore, ‖ψn‖H2
0 (Ω) < Cγ as desired. �

Now we are in a position to prove the main theorem of this section.

Theorem 5.2. There exist subsequences {φnj} j and {ψnj} j of {φn} and {ψn}which converge
in L2(Ω) to some functions φ,ψ ∈H2

0 (Ω). Furthermore if

�=
{
g ∈H2

0

(
[−1,1]) :

∫ 1

−1
g(y)dy = 0

}
(5.5)

and if g0 �∈�, then

lim
j

∥∥φnj

∥∥
L2 > 0, lim

j

∥∥ψnj

∥∥
L2 > 0, lim

j

∥∥φnj

∥∥
L1 > 0, lim

j

∥∥ψnj

∥∥
L1 > 0. (5.6)

Therefore, the above limits are zero if and only if g0 ∈�.

Proof. From Lemma 5.1, {φn} and {ψn} are bounded in H2
0 (Ω). As a consequence of a

weak compactness theorem, there are subsequences {φnj} and {ψnj} and functions φ and
ψ in H2

0 (Ω) such that

φnj −→ φ, ψnj −→ ψ, weakly in H2
0 (Ω). (5.7)

By the Sobolev embedding theorem on the compact embedding of H1
0 (Ω) in L2(Ω), we

conclude that after passing to another subsequence if necessary,

φnj −→ φ, ψnj −→ ψ, in L2(Ω). (5.8)
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From (4.19), we see that g0 ∈� if and only if f1 ≡ 0. Hence if g0 ∈�, the iteration process
of the extended Kantorovich method stops and we have ψ1(x, y) = f1(x)g0(y) ≡ 0. Now
suppose g0 �∈�, that is, f1 �≡ 0. As in the proof of Lemma 5.1, Corollary 3.2 implies that

I
[
f1g0

]
< I[0]= 0, (5.9)

since f1 is the unique minimizer of I[ f g0] and f1 �≡ 0. Applying Corollary 3.2 repeatedly,
one has

I
[
fm+1gm

]
< ··· < I

[
f2g1

]
< I

[
f1g1

]
< I

[
f1g0

]
< 0. (5.10)

But by Lemma 2.3,

I[ψ]≤ liminf
j

I
[
ψnj

]
:= liminf

j
I
[
fnj+1gnj

]
. (5.11)

In view of (5.10), we must have J[ψ] < 0, which implies lim j ‖ψnj‖L2 = ‖ψ‖L2 > 0; oth-
erwise, we would have ‖ψ‖L2 = 0 which implies that J[ψ] = 0. Similarly, lim j ‖φnj‖L2 =
‖φ‖L2 > 0. Since ψnj → ψ and φnj → φ in L2, we also have ψnj → ψ and φnj → φ in L1. Thus

lim
j

∥∥ψnj

∥∥
L1 = ‖ψ‖L1 > 0, lim

j

∥∥ψnj

∥∥
L1 = ‖ψ‖L1 > 0. (5.12)

This completes the proof of the proposition. �

Corollary 5.3. Let g0 �∈� and set

rn =
∥∥g′n−1∥∥L2∥∥gn−1∥∥L2 , r̃n =

∥∥ f ′n∥∥L2∥∥ fn∥∥L2 , tn =
∥∥g′′n−1∥∥L2∥∥gn−1∥∥L2 , t̃n =

∥∥ f ′′n ∥∥
L2∥∥ fn∥∥L2 . (5.13)

Then there exist subsequences { fnj} and {gnj} such that the following limits exist and are
positive:

lim
j
rnj , lim

j
r̃nj , lim

j
tnj , lim

j
t̃nj . (5.14)

Proof. In the proof of Theorem 5.2, we showed that for each n,

I
[
φn
]=

∫
Ω

∣∣Δφn∣∣2dxdy− γφn < 0 (5.15)

as long as g0 �∈�. Consequently,

∥∥ f ′′n ∥∥2
L2
∥∥gn∥∥2L2 +∥∥g′′n ∥∥2L2∥∥ fn∥∥2L2 ≤ γ

∥∥ fn∥∥2L2∥∥gn∥∥2L2 . (5.16)

This implies that

∥∥ f ′′n ∥∥2
L2
∥∥gn∥∥2L2 ≤ γ

∥∥ fngn∥∥L2 =⇒
∥∥ f ′′n ∥∥2

L2∥∥ fn∥∥2L2 ≤
γ∥∥φn∥∥L2 . (5.17)
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Combining with the Poincaré inequality, it follows that

0 < C′ ≤ C

∥∥ f ′′n ∥∥2
L2∥∥ fn∥∥2L2 ≤

∥∥ f ′′n ∥∥2
L2∥∥ fn∥∥2L2 ≤

γ

‖φn‖L2 (5.18)

for some universal constantsC and C′. With Theorem 5.2, the above string of inequalities
yields

C̃1 ≤ limsup
j

r̃nj ≤ C̃2, C̃1 ≤ limsup
j

t̃nj ≤ C̃2,

C̃1 ≤ liminf
j

r̃nj ≤ C̃2, C̃1 ≤ liminf
j

t̃nj ≤ C̃2,
(5.19)

for some positive constants C̃1 and C̃2. Similar inequalities hold for rnj and tnj with some
positive constants C1 and C2. Thus after further extracting subsequences of { fnj} and
{gnj}, we may conclude that the following limits exist and are non-zero:

lim
j

∥∥ f ′′n ∥∥
L2∥∥ fn∥∥L2 , lim

j

∥∥ f ′n∥∥L2∥∥ fn∥∥L2 , lim
j

∥∥g′′n ∥∥L2∥∥gn∥∥L2 , lim
j

∥∥g′n∥∥L2∥∥gn∥∥L2 . (5.20)

This completes the proof of the corollary. �

Corollary 5.4. If g0 �∈ �, then there exists a subsequence { fnj gnj} j that converges point-
wisely to a function of the form

Θ(x, y)=
N∑
k=1

Fk(x)Gk(y)∈H2
0 (Ω). (5.21)

Furthermore, the derivatives of all orders of { fnj gnj} j also converge pointwisely to that of
F(x)G(y).

Proof. Let us observe the expression of φn(x, y) = fn(x)gn(y) in (4.23). Applying
Corollary 5.3 to the constants on the right-hand side of (4.23), we can find convergent
subsequences:

{
K0nj

}
,
{
K1nj

}
,
{
K2nj

}
,
{
K̃0nj

}
,
{
K̃1nj

}
,
{
K̃2nj

}
, (5.22)

and {ρnj}, {κnj}, {ρ̃nj}, {κ̃nj}. In addition, the constants cnc̃n can be rewritten as

cnc̃n = γ2
∫ 1
−1 gn−1(y)dx

∫ 1
−1 fn(x)dx∥∥g′′n−1∥∥2L2∥∥ f ′′n ∥∥2

L2

= γ2
∫
Ω fn(x)gn−1(y)dxdy∥∥ fngn−1∥∥2L2 ·

∥∥gn−1∥∥2L2∥∥g′′n−1∥∥2L2 ·
∥∥ fn∥∥2L2∥∥ f ′′n ∥∥2

L2

;

(5.23)

hence Theorem 5.2 and Corollary 5.3 guarantee the convergence of the subsequence
{cn−1c̃n− j}. Altogether, after replacing all sequences on the right-hand side of (4.23) with
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either convergent subsequences, we get

Θ(x, y)= lim
j

fnj gnj

= C
{
K1∞K̃1∞
K0∞K̃0∞

cosh
(
ρ∞x

)
cosh

(
ρ̃∞y

)
cos

(
κ∞x

)
cos

(
κ̃∞y

)

+
K1∞K̃2∞
K0∞K̃0∞

cosh
(
ρ∞x

)
sinh

(
ρ̃∞y

)
cos

(
κ∞x

)
sin

(
κ̃∞y

)

+
K2∞K̃1∞
K0∞K̃0∞

sinh
(
ρ∞x

)
cosh

(
ρ̃∞y

)
sin

(
κ∞x

)
cos

(
κ̃∞y

)

+
K2∞K̃2∞
K0∞K̃0∞

sinh
(
ρ∞x

)
sinh

(
ρ̃∞y

)
sin

(
κ∞x

)
cos

(
κ̃∞y

)

+
K1∞
K0∞

cosh
(
ρ∞x

)
cos

(
κ∞x

)
+
K2∞
K0∞

sinh
(
ρ∞x

)
sin

(
κ∞x

)

+
K̃1∞
K̃0∞

cosh
(
ρ̃∞y

)
sin

(
κ̃∞y

)
+
K̃2∞
K̃0∞

sinh
(
ρ̃∞y

)
sin

(
κ̃∞y

)
+1

}
.

(5.24)

Now if we differentiate fngn a finite number of times, then from (4.23) we have each
summand scaled by integral powers of ρn, ρ̃n, κn and κ̃n. But we just argued above that
these sequences have convergent subsequences. Hence when x, y are fixed, we conclude
that all derivatives of fnj gnj at (x, y) will converge to that of Θ(x, y) as k→∞. The proof
of the corollary is therefore complete. �

Remark 5.5. Corollary 5.4 implies that

I
[
fnj gnj

]−→ I
[
Θ(x, y)

]
, (5.25)

by directly using the definition of I[ f g]. Without Corollary 5.4, we can only assert that

I
[
Θ(x, y)

]≤ liminf
j

I
[
fnj gnj

]
. (5.26)
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