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We deal with the self-similar singular solution of doubly singular parabolic equation with
a gradient absorption term ut = div(|∇um |p−2 ∇um)− |∇u|q for p > 1, m(p − 1) > 1
and q > 1 in Rn × (0,∞). By shooting and phase plane methods, we prove that when
p > 1+n/(1+mn)q +mn/(mn+1) there exists self-similar singular solution, while p ≤
n+1/(1+mn)q+mn/(mn+1) there is no any self-similar singular solution. In case of ex-
istence, the self-similar singular solution is the self-similar very singular solutions which
have compact support. Moreover, the interface relation is obtained.
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1. Introduction andmain results

In this paper we consider the self-similar singular solution of the doubly singular para-
bolic equation with nonlinear gradient absorption terms

ut = div
(∣∣∇um∣∣p−2∇um)−|∇u|q in Rn× (0,∞), (1.1)

where p > 1, m > 0, m(p− 1) > 1 and q > 1. When m = 1 and p = 2 the corresponding
conclusions have given in [14, 15], respectively. Here by singular solution we mean a
nonnegative and nontrivial solution u(x, t) which is continuous in Rn × [0,∞)\{(0,0)}
and satisfies

lim
t→0

sup
|x|>ε

u(x, t)= 0, ∀ε > 0. (1.2)

A singular solution u(x, t) is called a very singular solution provided that it satisfies

lim
t→0

∫

|x|<ε
u(x, t)dx =∞, ∀ε > 0. (1.3)
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2 Singular solution of doubly singular parabolic equation

By self-similar solution we mean the function u(x, t) which has the following form

u(x, t)=
(
α

t

)α
f

(

|x|
(
α

t

)αβ)

, (1.4)

where

α= p− q

q
(
1−m(p− 1)

)
+ p(q− 1)

, β = q−m(p− 1)
p− q

. (1.5)

To guarantee the constants α and β are positive, here we consider the case

p > q, q > m(p− 1) > 1. (1.6)

Since q(1−m(p− 1))+ p(q− 1) > (p− q)(q− 1) > 0, the self-similar singular solution to
(1.1), if it exists, satisfies the following ODE boundary problem

(∣∣( f m
)′∣∣p−2( f m

)′)′
+
n− 1
r

∣
∣( f m

)′∣∣p−2( f m
)′
+βr f ′ + f −∣∣ f ′∣∣q = 0, ∀r > 0,

f (0)= a > 0, lim
r→∞r

1/β f (r)= 0,
(1.7)

where f = f (r) with the self-similar variable r = |x|(α/t)αβ, the prime denotes the differ-
entiation with respect to r.

Throughout this paper we set

ν= p+
(
m(p− 1)− 1

)/
β = q+ (q− 1)

/
β > 1, σ =m(p− 1)− 1,

γ = q−m(p− 1).
(1.8)

Singular solutions were first discovered for the semilinear heat equation

ut = Δu−up. (1.9)

Brézis and Friedman [1] proved that (1.9) admits a unique singular solution for every
c ∈ (0,∞) when 1 < p < 1+2/n such that

lim
t→0

∫

|x|<ε
u(x, t)dx = c, ∀ε > 0, (1.10)

which is called a fundamental solution with initial mass c, while it has no for p ≥ 1+2/n.
Shortly, Brézis et al. [2] had proved that (1.9) posses a unique very singular solution when
1 < p < 1 + 2/n. In recent years, many authors studied the self-similar singular solutions
(see [4, 7, 9–11, 13] and the references therein) of the following equations:

ut = Δ
(
um
)−up, 0 <m <∞, p > 1,

ut = Δ
(
um
)−|∇u|p, 1 <m <∞, p > 1,

ut = div
(∣∣∇um∣∣p−2∇um)−uq, 0 <m <∞, p > 1, q > 1.

(1.11)
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The large time behavior of solutions to the Cauchy problems corresponding to the above
equations with absorption up or uq (withm= 1) can also be characterized by their corre-
sponding self-similar solutions, singular solutions, fundamental solutions and very sin-
gular solution, see [3, 5, 6, 8, 12, 16] and the references therein.

To study the boundary value problem (1.7), we consider the initial value problem

(∣∣( f m
)′∣∣p−2( f m

)′)′
+
n− 1
r

∣
∣( f m

)′∣∣p−2( f m
)′
+βr f ′ + f −∣∣ f ′∣∣q = 0, r > 0,

f (0)= a > 0, f ′(0)= 0.
(1.12)

Let f (r;a) be the solution of (1.12) and (0,R(a)) be the maximal existence interval where
f (r;a) > 0. Our main results read as follows.

Theorem 1.1. Assume that p > q > m(p− 1) > 1, α and β satisfy (1.5). For each a > 0, let
f (r;a) be the solution of (1.12). Then the statements hold:

(I) If nβ ≥ 1, namely, p ≤ ((n+1)/(mn+1))q+mn/(mn+1), then f (r;a) > 0, f ′(r;a)
< 0 for r ∈ (0,∞) and limr→∞ r1/β f (r;a) = k(a) > 0 for some constant k(a). Moreover, for
r
 1,

f (r;a)= k(a)r−1/β
{

1+
1
β2

(
k(a)
β

)σ[

mp−1
(
1− nβ− 1

νβ

)
− 1

ν

(
k(a)
β

)γ]

r−ν + o
(
r−ν
)
}

.

(1.13)

(II) If nβ < 1. Then there exist one closed set � and two open sets � and � which are
nonempty and disjoint and satisfy �∪�∪�= (0,∞) such that the followings hold.

(i) There is a1 > 0 such that (0,a1) ⊂�. Moreover, when a ∈�, then R(a) <∞
and f (r;a) > 0, f ′(r;a) < 0∀r ∈ (0,R(a)), f (R(a);a)= 0 and f ′(R(a);a) < 0.

(ii) There exists a2 ≥ a1 such that (a2,∞)⊂�. If a∈� then f (r;a) > 0, f ′(r;a) < 0
for all r ∈ (0,∞), and there is k(a) > 0 such that limr→∞ r1/β f (r;a)= k(a) and
(1.13) holds for r
 1.

(iii) If a∈�⊂ [a1,a2], then R(a) <∞ and f (r;a) > 0, f ′(r;a) < 0 for 0 < r < R(a),
f (R(a);a)= f ′(R(a);a)= 0. Moreover, the interface relation

lim
r→R(a)

(
f m
)′
(r;a)

f 1/(p−1)(r;a)
=−(βR(a))1/(p−1) (1.14)

holds.

This theorem shows that when nβ < 1 and a ∈�, the solution f (r;a) of (1.12) has
compact support, hence limr→∞ r1/β f (r;a)= 0. Moreover, we have the following.

Theorem 1.2. Let the conditions of Theorem 1.1 fulfill. Then the sufficient and necessary
condition that (1.7) has at least one nonnegative and nontrivial solution is nβ < 1. In case
of existence, the function u(x, t), defined by (1.4), is a self-similar very singular solution to
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(1.1) and satisfies
∫

Rn
unβ(x, t)dx = constant, lim

t→0

∫

|x|<ε
u(x, t)dx =∞, ∀ε > 0. (1.15)

In fact, applying (1.4), for every t > 0 and ε > 0, we have
∫

|x|<ε
u(x, t)dx = (α/t)α(1−nβ)

∫

|y|<ε(α/t)αβ
f
(|y|)dy,

∫

Rn
unβ(x, t)dx =

∫

Rn
f nβ
(|y|)dy.

(1.16)

Recall that (1.6) and f has compact support, the integrands at the right-hand side of
(1.16) are integrable as t → 0. Then the result follows. Therefore, the condition p >
((n+1)/(mn+1))q +mn/(mn+1) implies that the self-similar very singular solution of
(1.1) exists and has compact support.

The organization of this paper is as follows. In Section 2, some properties of the solu-
tions of (1.12) are studied. In particular, the behavior of the positive solution is obtained.
In Sections 3 and 4, we prove the first part and the second part of Theorem 1.1, respec-
tively.

2. Preliminary

In this section we consider (1.12). Let z = f m, am = b, it follows from (1.12) that

(|z′|p−2z′)′ + n− 1
r
|z′|p−2z′ +βr

(
z1/m

)′
+ z1/m−∣∣(z1/m)′∣∣q = 0, r > 0,

z(0)= b, z′(0)= 0.
(2.1)

Writing initial value problem (2.1) as an equivalent integral equation and using the stan-
dard Picard’s iteration, we may prove that for each b > 0, (2.1) has a unique solution
z(r)= z(r;b), at least locally. In addition, (2.1) can be rewritten as

z′ = |v|−(p−2)/(p−1)v,

v′ = −n− 1
r

v− βr

m
z(1−m)/m|v|−(p−2)/(p−1)v− z1/m +

1
mq z

(1−m)q/m|v|q/(p−1).
(2.2)

For each r0 > 0 and z(r0) = z0 > 0, v(r0) = v0, the above first order system admits an
unique local solution at r0 by the locally Lipschits continuous condition. Let (0,R(b))
be the maximal existence interval where z(r;b) > 0, it is easy to see that R(a)= R(b).

Lemma 2.1. Let p > q > 1, m > 0, and q > m(p− 1) > 1. Equation (1.5) holds. For every
b > 0, let z(r) be the solution to (2.1), then the following statements hold:

(i) z′(r) < 0 for all r ∈ (0,R(b));
(ii) If R(b)=∞, then limr→∞ z′(r)= 0.

Proof. (i) Since (|z′|p−2z′)′ = (p− 1)|z′|p−2z′′ and limr→0(|z′|p−2z′)′ = −b1/m/n < 0, we
deduce that there is τ > 0 such that z′′(r) < 0 for each r ∈ (0,τ). By z′(0) = 0, we get
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z′(r) < 0 in (0,τ). If there is r1 ∈ (0,R(b)) such that z′(r1) = 0 and z′(r) < 0 in (0,r1),
we have limr→r1 (|z′|p−2z′)′ = −z1/m(r1) < 0. It follows that there exists δ > 0 such that
z′(r) > 0 in (r1− δ,r1). This is a contradiction.

(ii) Since z(r) is strictly decreasing in (0,R(b)) and 0≤ z(r)≤ b, we see that

lim
r→R(b)

z(r)= 	 (2.3)

for some 	 ≥ 0. We claim that

lim
r→R(b)

z′(r)=−	1 (2.4)

with 	1 ≥ 0. In fact, we set

E(r)= p− 1
p

∣
∣z′(r)

∣
∣p +

m

m+1
z(m+1)/m(r), (2.5)

then it follows from (2.1) that

E′(r)=−n− 1
r

∣
∣z′(r)

∣
∣p− βr

m
z(1−m)/m(r)

∣
∣z′(r)

∣
∣2− 1

mq z
(1−m)q/m(r)

∣
∣z′(r)

∣
∣q+1 < 0

(2.6)

for all r ∈ (0,R(b)). Thus, E(r) is strictly decreasing in (0,R(b)) and 0 ≤ E(r) ≤m/(m+
1)b(1+m)/m. From (2.3) and the existence of limr→R(b)E(r), (2.4) follows. Moreover,

∣
∣z′(r)

∣
∣≤

(
mp

(m+1)(p− 1)
b(m+1)/m

)1/p
, r ∈ [0,R(b)). (2.7)

If R(b)=∞, by (2.3) and (2.4), it is easy to see that 	1 = 0. This completes the proof. �

Lemma 2.2. Assume that p > q > q > m(p− 1) > 1, m > 0 and R(b) =∞, α and β satisfy
(1.5). Then, for each μ satisfying 0 < μ < β, there exists a r∗(μ) depending on μ such that
(μ/m)rz′(r) + z(r) > 0 when r > r∗(μ).

Proof. Set h(r)= (μ/m)rz′(r) + z(r), we first show that there is a r∗(μ) > 0 such that h(r)
does not change signs for all r > r∗(μ). In fact, if there is r0 > 0 such that h(r0)= 0, namely,
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z′(r0)=−(m/μr0)z(r0). As σ > 0, we have

h′
(
r0
)=

(
μ

m
+1
)
z′
(
r0
)
+

μ

m
r0z

′′(r0
)=

(
μ

m
+1
)
z′
(
r0
)

− μr0
m(p− 1)

[
n− 1
r0

z′
(
r0
)
+
βr0
m

z(1−m)/m(r0
)
z′
(
r0
)∣∣z′

(
r0
)∣∣2−p

+ z1/m
(
r0
)∣∣z′

(
r0
)∣∣2−p− 1

mq z
(1−m)q/m(r0

)∣∣z′
(
r0
)∣∣2+q−p

]

= 1
r0
z1−σ/m

(
r0
)
[
μp−2(β−μ)
(p− 1)mp−1 r

p
0 − (m/μ+1)zσ/m

(
r0
)
]

+
n− 1

(p− 1)r0
z
(
r0
)
+

1
(p− 1)mq

(
m

μ

)1+q−p
r
p−q−1
0 z1+γ/m

(
r0
)
> 0

(2.8)

provided that

m1−pμp−2(β−μ)r
p
0 − (p− 1)(1+m/μ)zσ/m

(
r0
)≥ 0. (2.9)

Hence, when r0 ≥ r∗(μ) := [(p− 1)((m+μ)/(β−μ))(m/μ)p−1bσ/m]1/p, we have h′(r0) > 0.
This implies that there is a δ > 0 such that h(r) > 0 in (r0,r0 + δ) whenever h(r0)= 0 and
r0 > r∗(μ). If there exists a r1 > r0 such that h(r1) = 0, we may assume that r1 is the first
one. It follows that h(r) > 0 in (r0,r1). On the other hand, from h′(r1) > 0 we see that there
exists a δ′ > 0 such that h(r) < 0 in (r1− δ′,r1). It is a contradiction. The above arguments
show that, for r > r∗(μ),

either h(r) < 0 or h(r) > 0. (2.10)

In the following we prove that it is impossible for the case of h(r) < 0 to occur. In fact,
if h(r) < 0 then z(r) < (μ/m)r|z′(r)| or z1/m(r) < μr|(z1/m)′(r)|, it follows that

z(r)≤ Cr−m/μ, i.e., z(r)−→ 0 as r −→∞. (2.11)

By the first equation of (2.1) and Lemma 2.1, we have

(|z′|p−2z′)′(r)= n− 1
r

∣
∣z′(r)

∣
∣p−1 +

∣
∣(z1/m

)′
(r)
∣
∣q−βr

(
z1/m

)′
(r)− z1/m(r)

>−(β−μ)
(
z1/m(r)

)′ = β−μ

m
rz(1−m)/m|z′|.

(2.12)

(a) Ifm≥ 1, then z(1−m)/m(r)≥ ((μ/m)r|z′(r)|)(1−m)/m. By (2.12), we have

(|z′|p−2z′)′(r) > β−μ

m

(
μ

m

)(1−m)/m

r1/m
∣
∣z′(r)

∣
∣1/m. (2.13)
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This implies that

(|z′|σ/m−1z′)′(r) > σ(β−μ)
m2(p− 1)

(
μ

m

)(1−m)/m

r1/m := δr1/m. (2.14)

Integrating (2.14) over (r∗(μ),r) gives
(|z′|σ/m−1z′)(r) > (|z′|σ/m−1z′)(r∗(μ)

)

+
m

m+1
δ
(
r(m+1)/m− r(m+1)/m

∗ (μ)
)
−→∞ as r −→∞,

(2.15)

which contradicts to Lemma 2.1(ii) since σ > 0.
(b) If 0 <m < 1. Since r|z′(r)| > (m/μ)z(r), applying (2.12), we have

(|z′|p−2z′)′ > β−μ

μ
z1/m(r). (2.16)

It follows that

(|z′|p−1z′)′ >− p(β−μ)
μ(p− 1)

z1/m(r)z′(r) :=−δ1z1/m(r)z′(r). (2.17)

Using (2.11) and Lemma 2.1(ii) and integrating (2.17) from r ≥ r∗(μ) to∞ gives

∣
∣z′(r)

∣
∣p >

mδ1
m+1

z(m+1)/m(r), r > r∗(μ), (2.18)

that is,

−z′z−(m+1)/(mp) >
(
mδ1
m+1

)1/p
, ∀r > r∗(μ). (2.19)

Since (m+1)/(mp) < 1, integrating (2.19) from r∗(μ) to r gives

−zσ/(mp)(r) >−zσ/(mp)(r∗(μ)
)
+

σ

mp

(
mδ1
m+1

)1/p(
r− r∗(μ)

)−→∞ as r −→∞. (2.20)

It is a contradiction. This completes the proof. �

For 0 < μ < β, the following estimates are the direct conclusion of Lemma 2.2

∣
∣z′(r)

∣
∣ <

m

μr
z(r), z(r) > C0r

−m/μ ∀r
 1. (2.21)

Lemma 2.3. Assume that the conditions of Lemma 2.1 fulfill. Then limr→R(b) z(r;b)= 0.

Proof. The conclusion is obvious when R(a) <∞. We only prove the result for R(b)=∞.
By Lemma 2.1(ii), we have limr→∞ |z′|p−2z′ = 0. We divide the proof into four steps.

Step 1. We first claim that

lim
r→∞ inf

∣
∣(|z′|p−2z′)′∣∣(r)= 0. (2.22)
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In fact, if (2.22) is not true, there must exist δ0 > 0 and r0 > 0 such that |(|z′|p−2z′)′| > δ0
for r > r0. We will obtain a contradiction from the following two facts.

(a) If there is a t̂ > r0 such that |z′|p−2z′(r) is monotonic in r > t̂, then it must be in-
creasing (because z′′≤0 in (t̂,∞) contradicts withR(b)=∞). Therefore, (p−1)|z′|p−2z′′ =
(|z′|p−2z′)′ = |(z′|p−2z′)′| > δ0 in (t̂,∞). Integrating the above over (t̂,r) gives

(|z′|p−2z′)(r) > (|z′|p−2z′)(t̂ ) + δ0(r− t̂ )−→∞ as r −→∞. (2.23)

It is impossible.
(b) If |z′|p−2z′(r) is notmonotonic in r>t for any t>r0, which implies that (|z′|p−2z′)(r)

ultimately oscillates infinite times. Let {t j} be the sequence realizing the minima and sat-
isfying lim j→∞ t j = ∞. Then (|z′|p−2z′)′(t j) = 0, which contradicts to what we assume
previously.

Step 2. We will show that limr→∞ |(z1/m)′(r)| = 0. In fact, if 0 < m≤ 1, it is a direct con-
clusion of Lemma 2.1(ii). Whilem> 1, using Lemma 2.2 yields

∣
∣(z1/m

)′
(r)
∣
∣= 1

m
z(1−m)/m(r)

∣
∣z′(r)

∣
∣ <

1
μr

z1/m(r)≤ 1
μr

b1/m −→ 0 as r −→∞. (2.24)

Step 3. We claim that

lim
r→∞r

(
z1/m

)′
(r)=−	1/m/β, (2.25)

where 	 is defined in (2.3). To prove this, we consider the following two cases.
(a) If there is r̃ > 0 such that r(z1/m)′(r) is monotonic in r ∈ (r̃,∞), then it must be

increasing (if it decrease then r(z1/m)′(r) ≤ r̃(z1/m)′(r̃ ) := −C0 < 0 for all r ≥ r̃, which
gives z1/m(r) ≤ z1/m(r̃ )−C0 ln(r/r̃ )→−∞ as r →∞). Since r(z1/m)′(r) < 0, we see that
limr→∞ r(z1/m)′(r) exists. From (2.22) we can take {r̂ j} such that lim j→∞ r̂ j = ∞ and
lim j→∞(|z′|p−2z′)′(r̂ j)=0. Applying (2.1), we get limr→∞ r(z1/m)′(r)= lim j→∞ r̂ j(z1/m)′(r̂ j)
=−	1/m/β.

(b) If r(z1/m)′(r) oscillates infinite times in (r̄,∞) for each r̄ > 0, then we take the
sequences {r j} and {r̂ j} realizing the minima and the maxima, respectively, such that
lim j→∞(r j , r̂ j)= (∞,∞) and r j < r̂ j < rj+1 < r̂j+1 for all j. Therefore, 0= (r(z1/m)′)′(r j)=
(z1/m)′(r j) + r j(z1/m)′′(r j), that is, z′′(r j) = −z′(r j)/r j + ((m− 1)/m)(z′(r j))2/z(r j). In
view of (2.1), we have

(p−n)|z′|p−1(r j
)
/r j + (p− 1)(m− 1)

∣
∣z′
(
r j
)∣∣p/

(
mz
(
r j
))

+βrj
(
z1/m

)′(
r j
)

+ z1/m
(
r j
)−∣∣(z1/m)′∣∣q(r j

)= 0.
(2.26)

By Lemma 2.2, we get |z′(r)|p/z(r) < (m/μr)pzp−1(r)→ 0. Putting j →∞, it follows from
(2.26) and Lemma 2.2 that lim j→∞ r j(z1/m)′(r j) = −	1/m/β. In the similar way,
lim j→∞ r̂ j(z1/m)′(r̂ j) = −	1/m/β. Since for each sufficiently large r, either r j ≤ r < r̂ j or
r̂ j ≤ r < rj+1, we obtain (2.25).

Step 4. We prove 	 = 0. Assume by contradiction that 	 > 0, then from (2.25) there is
r1 > 0 such that r(z1/m)′(r) < −	1/m/(2β) < 0 in r ∈ (r1,∞). Integrating this inequality
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gives

b1/m > z1/m
(
r1
)− z1/m(r)

=
∫ r

r1

(− (z1/m)′(s))ds > 	1/m

2β
ln
(
r/r1

)−→∞ as r −→∞.
(2.27)

It is impossible. The proof is completed. �

Lemma 2.4. Assume that the conditions of Lemma 2.1 fulfill and R(a)=∞. Then

lim
r→∞rz

′(r)/z(r)=−m/β. (2.28)

Moreover, for each small ε > 0,

z(r)≤ C1r
−m/(β+ε),

∣
∣z′(r)

∣
∣≤ C2r

−1−m/(β+ε), ∀r
 1, (2.29)

where C1 and C2 are positive constants.

Proof. We first prove that H(r) = (μ/m)rz′(r) + z(r) does not change signs as r
 1 for
every μ > β. Using the arguments of Lemma 2.2, if there is a r0 ≥ 1 such that H(r0)= 0, it
follows that z′(r0)=−(m/μr0)z(r0). Then we have

H′(r0
)=

(
μ

m
+1
)
z′
(
r0
)
+

μ

m
r0z

′′(r0
)

= 1
m(p− 1)

r
p−1
0 z1−σ/m

(
r0
)

×
[
(β−μ)

(
μ

m

)p−2
+ (n− 1)mr

−p
0 zσ/m

(
r0
)
+μm−q

(
m

μ

)2+q−p
r
−q
0 z(q−1)/m

(
r0
)
]

− m+μ

μr0
z
(
r0
)
< 0

(2.30)

provided that

(β−μ)
(
m

μ

)2−p
+ (n− 1)mr

−p
0 zσ/m

(
r0
)
+μm−q

(
m

μ

)2+q−p
r−qz(q−1)/m

(
r0
)
< 0. (2.31)

Recall that p > q >m(p− 1) > 1 and r0 ≥ 1, set

r̄(μ)=
[

1
μ−β

(
μ

m

)2−p(
(n− 1)m+μm−q

(
m

μ

)2+q−p)
bσ/m

]1/q

. (2.32)

Let r∗(μ) =max{1, r̄(μ)}. We see that H′(r0) < 0 whenever H(r0) = 0 and r0 ≥ r∗(μ),
which implies that there exists a δ > 0 such thatH(r) < 0 in (r0,r0 + δ). If there is a r1 > r0
such that H(r1) = 0, we may assume that r1 is the first one. Then H(r) < 0 in (r0,r1).
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On the other hand, by H′(r1) < 0 we see H(r) > 0 in (r1 − δ′,r1) for some δ′ > 0. It is a
contradiction. Thus,

either H(r) < 0 or H(r) > 0, ∀r > r∗(μ). (2.33)

If H(r) > 0 then |z′(r)| < (m/μr)z(r) and βr(z1/m)′(r) + (β/μ)z1/m(r) > 0. By (2.1), we
have

(|z′|p−2z′)′(r)= n− 1
r

∣
∣z′(r)

∣
∣p−1 +

∣
∣(z1/m

)′
(r)
∣
∣q−βr

(
z1/m

)′
(r)− z1/m(r)

<
[
n− 1
r p

(
m

μ

)p−1
zσ/m(r) +

1
(μr)q

z(q−1)/m +
β

μ
− 1
]
z1/m.

(2.34)

Since σ > 0, q > 1 and μ > β, we see

lim
r→∞

[
n− 1
r p

(
m

μ

)p−1
zσ/m +

1
(μr)q

z(q−1)/m
]
= 0. (2.35)

It follows from (2.34) that there is r̂ ≥ r∗(μ) such that (|z′|p−2z′)′(r) < 0, that is, z′′(r) <
0 in (r̂,∞). It contradicts to R(b) = ∞. This implies that for each ε > 0, there exists a
r∗(β+ ε) > 0 such that

β+ ε

m
rz′(r) + z(r) < 0, ∀r > r∗(β+ ε). (2.36)

Integrating (2.36) over (r∗(β+ ε),r) and applying (2.21), we obtain (2.29).
Using Lemma 2.2 and (2.36), we have, for each ε > 0,

− m

β− ε
<
rz′(r)
z(r)

<− m

β+ ε
, ∀r >max

{
r∗(β− ε), r∗(β+ ε)

}
. (2.37)

This completes the proof. �

3. The case of nβ ≥ 1

In this section, we will prove the following lemma.

Lemma 3.1. Assume that p > q > m(p− 1) > 1, α and β satisfy (1.5). Then for each b > 0
there exists a k(b) > 0 such that when nβ ≥ 1, R(b) = ∞ and limr→∞ r1/βz1/m(r) = k(b).
Moreover, for r
 1,

z1/m(r;b)= k(b)r−1/β
{

1+
1
β2

(
k(b)
β

)σ[

mp−1
(
1− nβ− 1

βν

)
− 1

ν

(
k(a)
β

)γ]

r−ν + o
(
r−ν
)
}

.

(3.1)

Proof. By (2.1), we have

(
r1/β−1|z′|p−2z′ +βr1/βz1/m

)′ = (n− 1/β)r1/β−2|z′|p−1 + r1/β−1
∣
∣(z1/m

)′∣∣q > 0. (3.2)
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So the function G(r) := r1/β−1|z′|p−2z′ +βr1/βz1/m is strictly increasing in (0,R(b)). In the
proof of Lemma 2.1(i) we see that |z′(r)|p−1 =O(r) as r� 1. Thus limr→0G(r)= 0 and
G(r) > 0 in (0,R(b)), which implies R(b)=∞. Consequently,

r1/β−1
(|z′|p−2z′)(r) +βr1/βz1/m(r)

= (n− 1/β)
∫ r

0
s1/β−2

∣
∣z′(s)

∣
∣p−1ds+

∫ r

0
s1/β−1

∣
∣(z1/m

)′
(s)
∣
∣qds.

(3.3)

It follows from (2.21) and (2.29) that

r1/β−2
∣
∣z′(r)

∣
∣p−1 ≤ Cr−m1 , r1/β−1

∣
∣(z1/m

)′
(r)
∣
∣q ≤ Cr−m2 (3.4)

with

m1 = 1+ ν− m(p− 1)ε
β(β+ ε)

, m2 = 1+ ν− qε

β(β+ ε)
. (3.5)

Hence, limr→∞ r1/β−1(|z′|p−2z′)(r) = 0 and the integrals at the right-hand side of (3.3)
make sense over (0,∞) if ε is suitably small. Therefore, from (3.3) we derive

lim
r→∞r

1/βz1/m(r)

=
(
(n− 1/β)

∫∞

0
s1/β−2

∣
∣z′(s)

∣
∣p−1ds+

∫∞

0
s1/β−1

∣
∣(z1/m

)′
(r)
∣
∣qds

)/
β := k(b).

(3.6)

Consequently, by Lemma 2.4 we have

z1/m(r;b)= k(b)r−1/β
(
1+ o(1)

)
,
(
z1/m

)′
(r;b)=−k(b)

β
r−1−1/β

(
1+ o(1)

)
, ∀r
 1.

(3.7)

Moreover, applying the first equation of (2.1) yields

β
(
r1/βz1/m(r)

)′ = r1/β−1
[∣
∣(z1/m

)′
(r)
∣
∣q +

n− 1
r

∣
∣z′(r)

∣
∣p−1− (∣∣z′(r)∣∣p−2z′(r))′

]

=
(
k(b)
β

)q
r−1−ν

(
1+ o(1)

)
+ (n− 1)mp−1

(
k(b)
β

)m(p−1)
r−1−ν

(
1+ o(1)

)

− r1/β−1
(∣∣z′(r)

∣
∣p−2z′(r)

)′
.

(3.8)
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Integrating (3.8) over (r,∞) we obtain

βk(b)−βr1/βz1/m(r)

= 1
ν

(
k(b)
β

)q
r−ν
(
1+ o(1)

)
+
(n− 1)mp−1

ν

(
k(b)
β

)m(p−1)
r−ν
(
1+ o(1)

)

−
∫∞

r
s1/β−1

(|z′|p−2z′)′(s)ds.

(3.9)

Since limr→∞ r1/β−1(|z′|p−2z′)(r)= 0, it follows that
∫∞

r
s1/β−1

(|z′|p−2z′)′(s)ds= r1/β−1|z′|p−1(r) + (1/β− 1)
∫∞

r
s1/β−2|z′|p−1(s)ds

=mp−1
(
k(b)
β

)m(p−1)
r−ν
(
1+ o(1)

)

+ (1/β− 1)mp−1
(
k(b)
β

)m(p−1)∫∞

r
s−1−ν

(
1+ o(1)

)
ds

=mp−1
(
k(b)
β

)m(p−1)(
1+

1−β

βν

)
r−ν
(
1+ o(1)

)
.

(3.10)

By (3.9) we see

βk(b)−βr1/βz1/m(r)=
{
1
ν

(
k(b)
β

)q

+mp−1
(
k(b)
β

)m(p−1)(
nβ− 1
βν

− 1
)}

r−ν
(
1+ o(1)

)
.

(3.11)

Hence, we have

z1/m(r)= k(b)r−1/β
{

1+
1
β2

(
k(b)
β

)σ[

mp−1
(
1− nβ− 1

βν

)
− 1

ν

(
k(b)
β

)γ]

r−ν
(
1+ o(1)

)
}

.

(3.12)

This completes the proof. �

Lemma 3.1 gives the proof of the first part of Theorem 1.1, which indicates that when
nβ ≥ 1 there is no self-similar singular solution.

4. The case of nβ < 1

In this section we will prove the second part of Theorem 1.1.

Lemma 4.1. Assume that p > q > m(p− 1) > 1, equation (1.5) holds. Let b > 0, z(r) be the
solution of (2.1). Then

(i) Ifmq+1− q > 0, then |z′(r)| ≤mb(mq+1−q)/(mq),∀r ∈ (0,R(b)).
(ii) Ifmq+1− q ≤ 0, then |z′(r)| ≤mz(mq+1−q)/(mq)(r),∀r ∈ (0,R(b)).
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Proof. Notice that limr→0(|z′|p−2z′)′(r) = −b1/m/n < 0, it is easy to see that there is a r̂
such that (|z′|p−2z′)′(r)≤ 0, namely, z′′(r)≤ 0 in (0, r̂ ). Combining (2.1) with z′(r) < 0
yields z1/m(r)−|(z1/m)′(r)|q ≥ 0 in (0, r̂ ). Therefore,

∣
∣z′(r)

∣
∣≤mz(mq+1−q)/(mq)(r), ∀r ∈ (0, r̂ ). (4.1)

If (|z′|p−2z′)′(r̃ ) > 0 for some r̃ > 0, then there exists r0 < r̃ such that (|z′|p−2z′)′(r0)= 0
and (|z′|p−2z′)′(r) > 0, that is, z′′(r) > 0 in (r0, r̃ ). So z′(r0) < z′(r̃ ) < 0, and |z′(r0)| ≤
mz(mq+1−q)/(mq)(r0), which implies

∣
∣z′(r̃ )

∣
∣ <

∣
∣z′
(
r0
)∣∣≤mz(mq+1−q)/(mq)(r0

)
. (4.2)

If mq + 1− q > 0, then for every r ∈ (0,R(b)) combining (4.1) with (4.2) gives (i).
Whilemq+1− q ≤ 0, since z(r) is strictly decreasing, it follows from (4.2) that

∣
∣z′(r̃ )

∣
∣≤mz(mq+1−q)/(mq)(r̃ ). (4.3)

Hence, (ii) follows from (4.1) and (4.3). This completes the proof. �

If mq+1− q > 0, then 0 < (mq+1− q)/(mq) < (m+1)/(mp) < 1 and 1/[m(p− 1)] <
(m+1)/(mp) since 1 <m(p− 1) < q < p. We can choose θ such that

max
{
mq+1− q

mq
,

1
m(p− 1)

}
< θ <

m+1
mp

(4.4)

whether or not mq+1− q > 0. It follows from that (4.4) that 1− θ > (p− 1)θ− 1/m. We
define, for each λ > 0 and η > 0,

�λ,η =
{
(z,z′) | 0 < z < η, −λzθ < z′ < 0

}
,

�λ =
{
(z,z′) | z > 0, −λzθ < z′ < 0

}
.

(4.5)

Lemma 4.2. Assume that p > q >m(p− 1) > 1, (1.5) holds. Let

rλ,η :=m
(
θ(p− 1)λpη(p−1)θ−1/m +η1−θ

)/
(λβ). (4.6)

Then, for any given λ > 0 and η > 0, �λ,η is positively invariant for r > rλ,η, namely, if
(z(rλ,η),z′(rλ,η))∈�λ,η then the orbit (z(r),z′(r)) of (2.2) remains in �λ,η for all r > rλ,η.

Proof. Since the vector field enters �λ,η from the positive z-axis, we only need to show
that it also enters �λ,η from the parabola

lλ,η :=
{
(z,z′) | 0 < z < η, z′ = −λzθ}. (4.7)
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On lλ,η,

z′′
(
zθ
)′ =

1
p− 1

[
− n− 1

θr
z1−θ − βr

mθ
|z′|2−pz1/m−θ + 1

θ
|z′|1−pz(m+1)/m−θ

− 1
mqθ

|z′|1+q−pz1−θ+(1−m)q/m
]

<
1

m(p− 1)θ

[−βrλ2−pz1/m−(p−1)θ +mλ1−pz(m+1)/m−pθ] <−λ

(4.8)

provided that

r > m
(
θ(p− 1)λpz(p−1)θ−1/m(r) + z1−θ(r)

)/
(λβ). (4.9)

Notice that m(p− 1)θ > 1, 1− θ > 0 and 0 < z < η. Consequently, (4.8) holds when r >
rλ,η = m(θ(p − 1)λpη(p−1)θ−1/m + η1−θ)/(λβ). This implies that (z′ + λzθ)′ > 0 on the
parabola lλ,η when r > rλ,η and that the orbit enters �λ,η again unless the orbit is not
in �λ,η all the time. This completes the proof. �

We define three sets:

�= {b > 0 | R(b) <∞ and z′
(
R(b)

)
< 0
}
,

�= {b > 0 | R(b) <∞ and z′
(
R(b)

)= 0
}
,

�= {b > 0 | the orbit (z,z′) starting from (b,0) enters �1 eventually
}
.

(4.10)

Remark 4.3. For any b ∈ �, the corresponding solution z(r;b) satisfies z′ + zθ > 0 when
r < R(b) and close to R(b), which implies R(b)=∞. On the other hand, if R(b)=∞ and
b /∈�, by Lemma 4.2 there is r0 > 0 such that z′ + zθ ≤ 0 for r > r0. This implies that

z1−θ(r)≤ z1−θ
(
r0
)− (1− θ)

(
r− r0

)−→−∞, as r −→∞. (4.11)

It is impossible. Therefore the three sets �, � and � are disjoint with �∪�∪� =
(0,∞).

Lemma 4.4. Set � is nonempty and open. Moreover, (0,b1)⊂� if 0 < b1� 1.

Proof. Let wε(t)= ε−1z(r;ε) with t = rε−σ/(mp), applying (2.1), wε satisfies

(∣∣w′ε
∣
∣p−2w′ε

)′
+
n− 1
t

(∣∣w′ε
∣
∣p−2w′ε

)
+βt

(
w1/m
ε

)′
+w1/m

ε − εσ1
∣
∣(w1/m

ε

)′∣∣q = 0, r > 0,

wε(0)= 1, w′ε(0)= 0,
(4.12)
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where σ1 = [p(q− 1)− qσ]/(mp) > 0 since p(q− 1)+ q(1−m(p− 1)) > (p− q)(q− 1) >

0, we see that σ1 > 0. Set Eε(t)= ((p− 1)/p)|w′ε(t)|p + (m/(m+1))w(m+1)/m
ε (t), then it fol-

lows that

E′ε(t)=−
n− 1
t

∣
∣w′ε(t)

∣
∣p− βt

m
w(1−m)/m
ε (t)

∣
∣w′ε(t)

∣
∣2− εσ1

mqw
(1−m)q/m
ε (t)

∣
∣w′ε(t)

∣
∣q+1 < 0.

(4.13)

Consequently, Eε(t)≤m/(m+1) for each ε>0, bothwε(t) andw′ε(t) are uniformly bounded
with respect to t ≥ 0 and ε > 0. Moreover,

∣
∣w′ε(t)

∣
∣≤

(
mp

(m+1)(p− 1)

)1/p
. (4.14)

Denote by (0,Tε) the maximal existence interval wherewε(t) > 0, thenw′ε(t) < 0 in (0,Tε).
Considering the problem

(|w′|p−2w′)′ + n− 1
t
|w′|p−2w′ +βt

(
w1/m)′ +w1/m = 0, r > 0,

w(0)= 1, w′(0)= 0.
(4.15)

We claim that there exists some t0 > 0 such that the solutionw(t) of (4.15) satisfiesw(t0)=
0, w′(t0) < 0 and w(t) > 0, w′(t) < 0 for every t ∈ (0, t0). In fact, by the contradiction that
if the solution w(t) of (4.15) is strictly positive, then we have, since nβ < 1,

(
tn−1|w′|p−2w′ +βtnw1/m)′ = −(1−nβ)tn−1w1/m < 0, ∀t > 0. (4.16)

The function tn−1(|w′|p−2w′)(t) +βtnw1/m(t) is strictly decreasing in (0,∞), thus

w′(t) +β1/(p−1)w1/(m(p−1))(t)t1/(p−1) < 0, ∀t > 0. (4.17)

It follows from (4.17) that

1−wσ/(m(p−1))(t) >
σ

mp
β1/(p−1)tp/(p−1) −→∞ as t −→∞. (4.18)

It is a contradiction. Hence, there is some finite t0 > 0 such that w(t) > 0, w′(t) < 0 for
t ∈ (0, t0) and w(t0) = 0. Moreover, we can show w′(t0) < 0. In fact, let t0 > t > t0/2 and
integrate (4.16) over (0, t), we have

tn−1
(
w′ |p−2 w′)(t) +βtnw1/m(t)

=−(1−nβ)
∫ t

0
sn−1w1/m(s)ds <−(1−nβ)

∫ t0

0
sn−1w1/m(s)ds :=−C0 < 0

(4.19)

for some C0 > 0. Sending t→ t0 yields tn−10 (|w′|p−2w′)(t0)≤−C0 < 0, namely, w′(t0) < 0.
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Let η0 > 0 be so small that when t1 fulfills 0 < t0− t1� 1, the followings hold

w
(
t1
)
< η0, w′

(
t1
)
< w′

(
t0
)/
2,

1
2p−1

(|w′|p−2w′)(t0
)
+βt0η

1/m
0 +

1
mq

(
mp

(m+1)(p− 1)

)(q−1)/p
ησ20 < 0,

(4.20)

with σ2 = [(1−m)q +m]/m > [q−m(p− 1)]/m > 0. By the continuous dependence of
the solution on the parameter ε we have

Tε > t1, wε
(
t1
)= η < η0, w′ε

(
t1
)
< w′

(
t0
)/
2, ∀0 < ε� 1. (4.21)

It follows from (4.12) and (4.14) that, for t > t1,

(
tn−1

∣
∣w′ε

∣
∣p−2w′ε +βtnw1/m

ε

)′

<−(1−nβ)tn−1w1/m
ε − εσ1

mq

(
mp

(m+1)(p− 1)

)(q−1)/p
tn−1w(1−m)q/mw′ε.

(4.22)

Let t2 > t1 and satisfy

t
p/(p−1)
2 = t

p/(p−1)
1 +

mp

m(p− 1)− 1
β−1/(p−1)ησ/(m(p−1))

0 , ε≤
(

t1
t2 + 1

)(n−1)/σ1
. (4.23)

Integrating (4.22) from t1 to t <min{Tε, t2 + 1}, we get,

tn−1
(∣
∣w′ε

∣
∣p−2w′ε

)
(t) +βtnw1/m

ε (t)

< tn−11

(∣∣w′ε
∣
∣p−2w′ε

)(
t1
)
+βtn1w

1/m
ε

(
t1
)

− εσ1

mq

(
mp

(m+1)(p− 1)

)(q−1)/p ∫ t

t1
sn−1w(1−m)q/m

ε w′εds

< tn−11

(∣∣w′ε
∣
∣p−2w′ε

)(
t1
)
+βtn1w

1/m
ε

(
t1
)
+
εσ1 tn−1

mq

(
mp

(m+1)(p− 1)

)(q−1)/p
wσ2
ε

(
t1
)

≤ tn−11

{
(∣∣w′ε

∣
∣p−2w′ε

)(
t1
)
+βt1w

1/m
ε

(
t1
)
+

1
mq

(
mp

(m+1)(p− 1)

)(q−1)/p
wσ2
ε

(
t1
)
}

< tn−11

{
1

2p−1
(|w′|p−2w′)(t0

)
+βt0η

1/m
0 +

1
mq

(
mp

(m+1)(p− 1)

)(q−1)/p
ησ20

}

< 0.

(4.24)

It follows from (4.24) that

w′ε(t) + (βt)1/(p−1)w1/(m(p−1))
ε (t) < 0, t1 < t <min

{
Tε, t2 + 1

}
. (4.25)
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Integrating (4.25) from t1 to t2, we have

w
σ/(m(p−1))
ε

(
t2
)
< w

σ/(m(p−1))
ε

(
t1
)− m(p− 1)− 1

mp
β1/(p−1)

(
t
p/(p−1)
2 − t

p/(p−1)
1

)

< w
σ/(m(p−1))
ε

(
t1
)−η

σ/(m(p−1))
0 < 0.

(4.26)

This shows that Tε < t2. By (4.24) it follows that, for some constant C,

(∣∣w′ε
∣
∣p−2w′ε

)
(t) +βtw1/m

ε (t) < C < 0, ∀t ∈ (t1,Tε
)
. (4.27)

Sending t→ Tε gives w′ε(Tε) < 0.
The above arguments show that whenever b = ε� 1, (0,b) ⊂�. By the continuous

dependence of the solution on the initial value b, it is easy to see that � is open. The
proof is completed. �

Lemma 4.5. Set � is nonempty and open. Moreover, (b,∞)⊂� if b
 1.

Proof. We first show that if the initial value b is suitably large then the corresponding
orbit (z,z′) must remain in �1 for all r > 0. This implies that b ∈�.

To do this, let r0 > 0 be the first value where the orbit intersects with the boundary of
�1. Then z′(r0)=−zθ(r0) because the orbit enters �1 from the positive z-axis.

(a) Applying Lemma 4.1(i) we have

z
(
r0
)= ∣∣z′(r0

)∣∣1/θ ≤m1/θb(mq+1−q)/(mqθ) (4.28)

provided thatmq+1− q > 0. On the other hand,

z
(
r0
)= z(0)+

∫ r0

0
z′(s)ds≥ b+

∫ r0

0

(−mb(mq+1−q)/(mq))ds= b−mb(mq+1−q)/(mq)r0.

(4.29)

Consequently, we obtain

r0 ≥ 1
m
b1−(mq+1−q)/(mq)(1−m1/θb(mq+1−q)/(mqθ)−1) := φ1(b). (4.30)

By Lemma 4.2, r1,b =m(1 + θ(p− 1)bpθ−(m+1)/m)b1−θ/β. According to (4.4) the choice of
θ, we have

φ1(b)
r1,b

−→∞ as b −→∞. (4.31)

It contradicts to Lemma 4.2.
(b) If mq+1− q ≤ 0, then m < 1 and (q− 1)(1−m)≥m. Since |z′(r0)| = zθ(r0), ap-

plying Lemma 4.1(ii), we have zθ+(q−1−mq)/(mq)(r0)≤m and

r0 ≥ q

q− 1

(
b(q−1)/(mq)− z(q−1)/(mq)(r0

))

≥ q

q− 1

(
b(q−1)/(mq)−C(m)

)
:= φ2(b)

(4.32)
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with C(m)=mq(q−1)(1−m)/(mqθ+q−1−mq). Notice that

q− 1
mq

> 1− θ,
φ2(b)
r1,b

−→∞ as b −→∞. (4.33)

This also contradicts to Lemma 4.2. This fact shows that when b
 1, (b,∞)⊂�.
Now, we prove that � is open. By the definition of � and Lemma 4.2, if b0 ∈� then

there exists r0 > r1,2b0 = m(1 + θ(p − 1)(2b0)pθ−(m+1)/m)(2b0)1−θ/β > r1,b0 such that
(z(r0;b0),z′(r0;b0)) ∈ �1. Hence, by the continuous dependence of the solution on the
initial value there must be a neighborhood � of b0 such that r0 > r1,b, z(r;b) > 0 on [0,r0]
and (z(r0;b), z′(r0;b))∈�1 for all b ∈�. Lemma 4.2 implies that (z(r;b),z′(r;b)) ∈�1

for all r0 < r < R(b), and hence b ∈�. �

When b ∈�, the corresponding solution of (2.1) is strictly positive and R(b)=∞.

Lemma 4.6. Let b ∈�. Then there exists a k(b) > 0 such that limr→∞ r1/βz1/m(r;b)= k(b).
Moreover, for r
 1,

z1/m(r;b)= k(b)r−1/β
{

1+
1
β2

(
k(a)
β

)σ[

mp−1
(
1− nβ− 1

βν

)
− 1

ν

(
k(a)
β

)γ]

r−ν + o
(
r−ν
)
}

.

(4.34)

Proof. Since the proof of the second part of this lemma is completely similar to Lemma
3.1, we only prove the first part. By the first equation of (2.1), we have

(
r1/β−1|z′|p−2z′ +βr1/βz1/m

)′
(r)= (n− 1/β)r1/β−2

∣
∣z′(r)

∣
∣p−1 + r1/β−1

∣
∣(z1/m

)′
(r)
∣
∣q.
(4.35)

Integrating the above over (0,r), we have

r1/β−1
(|z′|p−2z′)(r) +βr1/βz1/m(r)

= (n− 1/β)
∫ r

0
s1/β−2

∣
∣z′(s)

∣
∣p−1ds+

∫ r

0
s1/β−1

∣
∣(z1/m

)′
(s)
∣
∣qds.

(4.36)

Since nβ < 1, using the estimates (2.21) and (2.29), the integrals at the right-hand side of
(4.36)make sense over (0,∞) and limr→∞r1/β−1|z′(r)|p−2 f ′(r)=0. Hence, limr→∞r1/βz1/m(r)
= k(b)≥ 0 exists.

Assume that k(b)= 0, it follows from (2.21) that

z(r)≤ Cr−m/β,
∣
∣z′(r)

∣
∣≤ Cr−1−m/β, ∀r
 1, (4.37)

with some positive constant C. Then integrating (4.35) from r to∞, we have

r1/β−1
(|z′|p−2z′)(r) +βr1/βz1/m(r)

= (1/β−n)
∫∞

r
s1/β−2

∣
∣z′(s)

∣
∣p−1ds−

∫∞

r
s1/β−1

∣
∣(z1/m

)′
(s)
∣
∣qds.

(4.38)
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Applying Lemma 2.2 and (4.37) we have, for r
 1,

r1/β
∣
∣z′(r)

∣
∣p−1 ≤ C1r

1−ν,

r1+1/β
∣
∣(z1/m

)′
(r)
∣
∣q ≤ Cr1/β+1−qzm/q(r)≤ C2r

1−ν
(4.39)

with some constants C1 and C2. Thus we see that

lim
r→∞r

1/β
∣
∣z′(r)

∣
∣p−2z′(r)

= lim
r→∞r

∫∞

r
s1/β−2

∣
∣z′(s)

∣
∣p−1ds= lim

r→∞r
∫∞

r
s1/β−1

∣
∣(z1/m

)′
(s)
∣
∣qds= 0.

(4.40)

It follows from (4.38) that limr→∞ r1+1/βz1/m(r)= 0 and the following estimates

z(r)≤ Cr−m(1+/β),
∣
∣z′(r)

∣
∣≤ Cr−1−m(1+/β) (4.41)

hold for all r
 1 and some C > 0. Repeating this argument, we have limr→∞ rMz(r)= 0
for every positive number M. This implies that there is a constant C such that z(r) ≤
Cr−M , which contradicts to (2.21). This completes the proof. �

Lemma 4.7. � is nonempty and closed. Moreover, if b ∈ �, the corresponding solution
z(r;b) of (2.1) satisfies the following interface condition:

lim
r→R(b)

z′(r;b)
z1/(m(p−1))(r;b)

=−(βR(b))1/(p−1). (4.42)

Proof. Applying Lemmas 4.4 and 4.5 and the definitions of the three sets �, � and �, we
see that � is nonempty and closed. By the first equation of (2.1) we have

(
rn−1|z′|p−2z′ +βrnz1/m

)′ = −(1−nβ)rn−1z1/m + rn−1
∣
∣(z1/m

)′∣∣q. (4.43)

Integrating the above from r to R(b) yields

rn−1
(|z′|p−2z′)(r) +βrnz1/m(r)

= (1−nβ)
∫ R(b)

r
sn−1z1/m(s)ds−

∫ R(b)

r
sn−1

∣
∣(z1/m

)′
(s)
∣
∣qds.

(4.44)

It is easy to calculate that limr→R(a) z−1/m(r)
∫ R(a)
r sn−1z1/m(s)ds = 0. Divided (4.44) by

z1/m(r) and putting r → R(b), by L’Hospital’s rule we have

lim
r→R(b)

(|z′ |p−2 z′)(r)
z1/m(r)

+βR(b)= lim
r→R(b)

∣
∣(z1/m

)′
(r)
∣
∣q−1. (4.45)

In the following we prove that

lim
r→R(b)

∣
∣(z1/m

)′
(r)
∣
∣q−1 = 0. (4.46)
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Ifm≤ 1, from the definition of � the conclusion is obviously. Thus we only need to prove
(4.46) for m > 1. Since 1− (m− 1)(p− 1)= p−m(p− 1) > 0, namely, (m− 1)(p− 1)∈
(0,1), it follows that

lim
r→R(b)

z−(m−1)(p−1)/m(r)
∫ R(b)

r
sn−1z1/m(s)ds= 0. (4.47)

Divided (4.44) by z(m−1)(p−1)/m(r) and putting r → R(b), by L’Hospital’s rule we have

lim
r→R(b)

∣
∣(z(1−m)/mz′

)
(r)
∣
∣p−1 = m1−q

(m− 1)(p− 1)
lim

r→R(b)

∣
∣z(1−m)/m+m1 (r)z′(r)

∣
∣q−1, (4.48)

where m1 = [1− (m− 1)(p− 1)]/[m(q− 1)] > 0. Denote by l0 = (1−m)/m, l1 = l0 +m1.
If l1 ≥ 0, by (4.48), then (4.46) holds. If l1 < 0, since 1/m+ (p− 1)l1 > [1− (m− 1)(p−
1)]/m > 0, divided (4.44) by z−(p−1)l1 and sending r → R(b) and using L’Hospital’s rule we
get

lim
r→R(b)

∣
∣zl1 (r)z′(r)

∣
∣p−1 =− m−q

(p− 1)l1
lim

r→R(b)

∣
∣zl2 (r)z′(r)

∣
∣q−1, (4.49)

where

l2 = 1−m

m
+
p− 1
q− 1

l1 +
1

m(q− 1)
= l1 +

p− 1
q− 1

m1. (4.50)

If l2 ≥ 0, then it follows from (4.48) and (4.49) that (4.46) holds. If l2 ≤ 0 then repeating
the above method, we obtain a sequence

lk = lk−1 +
(
p− 1
q− 1

)k−1
m1, k = 1,2, . . . , (4.51)

such that

lim
r→R(b)

∣
∣zlk (r)z′(r)

∣
∣p−1 =− m−q

(p− 1)lk
lim

r→R(b)

∣
∣zlk+1 (r)z′(r)

∣
∣q−1 (4.52)

provided that lk < 0. From p > q > 1 and m1 > 0, we see lk →∞ as k→∞. There is k0 > 0
such that lk0 < 0, lk0+1 ≥ 0. Then by (4.52) we see that limr→R(b) |zlk0 z′| = 0. By a recursion
relation (4.52), (4.46) follows. From (4.45) and (4.46) the conclusion holds. This prove
(4.42). �

Proof of Theorem 1.1. Applying Lemmas 3.1, 4.4–4.7, the theorem follows. �
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