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The purpose of this paper is to prove several results in approximation by complex Pi-
card, Poisson-Cauchy, and Gauss-Weierstrass singular integrals with Jackson-type rate,
having the quality of preservation of some properties in geometric function theory, like
the preservation of coefficients’ bounds, positive real part, bounded turn, starlikeness,
and convexity. Also, some sufficient conditions for starlikeness and univalence of analytic
functions are preserved.
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1. Introduction

Let us consider the open unit disk D = {z € C; |z| <1} and A(D) = {f : D — G; f is an-
alytic on D, continuous on D, f(0) =0, f'(0) = 1}. Therefore, if f € A(D), we have
f(z) =z+> 5 akz, forall z € D.

For f € A(D) and & € R, & > 0, let us consider the complex singular integrals

Pe(f)(z) = Zflgfoof(zei”)e"“‘/fdu, zeD,

@=L 4 2ep qipw=E[ L D4, cep,

m)onut+82 u?+&2

:2_53 +00 f(zeiu) o

sdu, z€D,
7 s v )

1 T . ) _
We(f)(2) = 7J f(ze™)e " du, zeD,
NI X

Re(f)(2)

1 +00 ) ) -
Wg*(f)(Z)=7J f(zeT™)e*"du, zeD.
Nt
(1.1)
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2 Geometric and approximation properties

Here P¢( f) is said to be of Picard type, Qs (f), ng (f),and R¢(f) are said to be of Poisson-
Cauchy type, and We(f) and W (f) are said to be of Gauss-Weierstrass type.

In the very recent papers [3—5], classes of convolution complex polynomials were in-
troduced and their approximation properties regarding rates, global smoothness preser-
vation properties, and some geometric properties like the preservation of coefficients’
bounds, positivity of real part, bounded turn, starlikeness, convexity, and univalence were
proved.

The aim of this paper is to obtain similar properties for the above-defined complex
singular integrals.

2. Complex Picard integrals

In this section, we study the properties of P¢( f)(z).
Firstly, we present the approximation properties.

TuEOREM 2.1. Let f € A(D) and & € R, € > 0. Then
(i) Pe(f)(z) is continuous on D, analytic on D, and P¢(£)(0) = 0;
(ii) w1 (Pe(f); 0)p < wi(f; 8)p, for all § = 0, where w1 (f; 8 )5 = supilf(z1) — f(z2);
21,2 €D, |21 -z| <6}
(iii) [P:(f)(2) — f(2)| < Cwy(f;&)ap, for all z € D, & >0, where

w2(f3§)ap = sup{ | f(e ™) —2f (") + f (™) [;x € R, |ul <&} (2.1)

Proof. (i) Let zo,z, € D be with lim,, . 2, = zo. We get
| Pe(f)(zn) — 20)| < ZEJ — f(zoe™) | e du

< LJ w1 (f; | zne™ — zoe™ | ) pe~ "  du
28 ) (2.2)

- %f:wl(f; |20 — 20| ) e~ " du
1(f; |Zn—250|)E

Passing to limit with n — oo, it follows that P¢(f)(z) is continuous at z, € D, since f is
continuous on D. It remains to prove that P¢(f)(z) is analytic on D. For f € A(D), we
can write f(z) = > p_oaxz", z € D. For fixed z € D, we get f(ze™) = > are™zF and
since |are™| = |axl, for all u € R, and the series > ;. axz" is absolutely convergent, it
follows that the series >, axe’*z* is uniformly convergent with respect to u € R. This
immediately implies that the series can be integrated term by term, that is,

UEERSY akzk(jm efkue—uvfdu). 23)
k=0 -

Also, since ag = 0, we get P:(f)(0) =
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(11) Letz1,2, € E, ‘Zl - Zz| < 4. We get

+o0

|Pf(f)(zl)_P€(f)(Z2)| S% . |f(zlei“)—f Zze |e lul/ gy,

<wi(f5 |21 - 22| )p < @i (f;0)p.

Passing to sup with |z; — z,| < §, the desired inequality follows.
(iii) We have

Pe(f)(2) 2£J f(z )]e—|u|/fdu
25J C2f(2)+ f(ze ™) e edu,
which implies
[P:(f)(2) - f(2)] < 2_15J'oo | f(ze™) —2f(2)+ f(ze™™) | e du,
0

forallz € D.

(2.4)

(2.5)

(2.6)

By the maximum modulus principle (see, e.g., [3, page 421]), we can take |z| = 1, case

when

| f(ze™) —=2f(2) + f(ze ™) | < wo(fs u)aps

which implies that for all z € D we have
1 +oo
|P:(f)(2) = f(2)] = 2% L w2(f5 uw)ape ' du

< (215 L:w [1 + ?]26‘”/56114) w2(f58)ap < Cwa(f; &)ap

(for the last inequalities, see, e.g., [2, proof of Theorem 2.1(i), page 252]).

Remark 2.2. Theorem 2.1(ii) and (iii) remain valid for f only continuous on D.

In what follows, we present some geometric properties of Pz (f)(z).

Tueorem 2.3. If f(z) = Yo a2k, for all z € D, then

Pe(f)(z) = Z 1+aszk2 2t

(2.7)

(2.8)

(2.9)



4 Geometric and approximation properties

for all z € D, that is, if f(0) =0, then P¢(f)(0) = 0 and if f'(0) = 1, then Pé(f)(O) =
1/(1+&2) # 1, forall € > 0. Also,

ak(f)
1+

lax(Pe(f)) ] = < lac(f)|, Vk=0,1,... (2.10)

Proof. In the proof of Theorem 2.1(i), we can write

00 +oo
Pef)(e) = S ayt [2—15 J eikue-‘“‘/fdu], vzeD. (2.11)
k=0 -
But
L e iku ,—|ul/€
2 Lw ete du
1 +oo 1 +0o
= 2% Jﬁm cos(ku) - e 1“8 dy = EJO cos(ku)e **du (2.12)
1 e V5[ — (1/8)cos(ku) + ksin(kw)] |© 1
& 1/82 + k2 o 1+k2%2
which proves the theorem. O

Now, recall that a function f € A(D) is starlike if it is univalent and f(D) is a starlike
plane domain with respect to 0, and is convex if it is univalent on D and f(D) is a convex
plane domain.

Also, let us introduce the following classes of analytic functions:

S1 = {fEA(B);f(Z) =Z+iakzk, iklakl < 1},
k=2

k=2
S, = {fanalyticinD, fz)=> az", z€D, |a1| 2 > |ak|},
k=1 k=2

S;={feAD);|f’(2)] <1, Vze D}, (2.13)
P = {f:D — G; fisanalyticon D, f(0) =1, Re[f(z)] >0, Vz € D},
% ={f € AD);Re[f'(2)] >0, Vz € D},
Su={f€AD); |f'(z)| <M, VzeD}, M>1.

According to, for example, [6, Exercise 4.9.1, page 971, if f € Sy, then |zf" (2)/f(z) — 1| <
1, for all z € D, and therefore f is starlike (and univalent) on D.

According to [1, page 22 ], if f € S,, then f is starlike (and univalent) on D.

By [7],if f € S5, then f is starlike (and univalent) on D. Also, it is well known that R
is the class of functions with bounded turn (i.e., |arg f'(z)| < 7/2, for all z € D) and that
f € R implies the univalency of f on D.

According to, for example, [6, Exercise 5.4.1, page 111], f € Sy implies that f is uni-
valentin {z € G; |z| < 1/M}.
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We present the following.
THEOREM 2.4. Forall £ >0,

Proof. By Theorem 2.3, for f(z) = >, azk € Sy, we get

2

v el 1+8 |
1+£2k2 _g1+£2'1+52k2_1+£22| a| = 215
and since P¢(f)(z) = zf: olar/(1+E2k?))Z5, it follows that Pg(f) € S,.

Let f(2) =Y oarz* € P, thatis,ap=1and if f(z) =U(x,y) +iV(x,y), z=x+iy €D,
then U(x,y) >0, forallz =x+iy € D.

We get P:(f)(0) = ap = 1 and

Pe(f)(z) = 2%[;: U(rcos(u+t),rsin(u+1t))e“"du

1 | (2.16)
+i- 2% J_Oo V(rcos(u+t),rsin(u+t))e”*du, Vz=re"eD,
which immediately implies
Re[P:(f)(2)] = % f: Ulrcos(u+t),rsin(u+ ) e~ ™édu >0,  (2.17)
that is, P:(f) € P. O

THEOREM 2.5. For all £ >0, (1+&)Pe(S1) C S, (1+E)Pe(Sn) C Sy, and (1 +
E2)P(Ss¢) C S3, where

S36= {f €S |f ()] < %52, VzeD} CSs. (2.18)

Proof. Let f € S;. By Theorem 2.3, we obtain

(Y]

(1+8)Pe(f Zak 11:;](2 (2.19)

if f(z) = X5, axz" € Sy. It follows that (1 +E&)P(f)(0) = a; = 1, that is,

1+£2

(1+&8)Pe(f)(2) =z + Zz 1+£2k2

e e (2.20)
+
Zk| k|1+£2k2 §k|ak|<1

thatis, (1+&2)P:(f) € Sy.
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Let f € Sy. We get
1 (* o
(PN = (148) - |5 [ F (ee)ette

i (2.21)
< “ﬁ)%L@ | F (ze) | e /edu < M(1+€), zeD.

Also, P¢(f)(0) = 0and (1+&*)P;(f)(0) = 1, which implies that (1+&*)P¢(f) € Smqi+e2)-
Now, let f € S3¢. We have

(1+ )P/ (f)(2) = (1+8) - %Jj: £ (ze) e dy, (2.22)

which implies
|(1+&) P (f)2)]| < (1+£2)% - f: | £ (ze™) [ e du <1, (2.23)
thatis, (1+&2)P:(f) € Ss. O

Remarks 2.6. (1) Since the constant (1 + &2) does not influence the geometric properties
of P¢(f), it follows that for all £ > 0 we have the following:
(i) if f € Sy, then P¢(f) is starlike (and univalent) in D;
(ii) if f € Sy, then Pg(f) is univalent in {z € C; |z| < 1/M(1 +&2)1;
(iii) if f € S3¢ C Ss, then P¢(f) is starlike and univalent in D.
(2) Since

Pi(f)(z) = z_lfjj: f'(ze™) e e duy, (2.24)

it is obvious that the condition Re[ f"(z)] > 0, for all z € D, does not imply Re[Pé (H=z)] >
Oon D.

In this case, we may follow the idea in, for example, [5, Theorem 3.4] to construct
another singular integral as follows: for f € A(D), we define S¢(f)(z) = Jo Qu(u)du with

Qu(z) = %f: f'(ze")e 4 dt. (2.25)

Then, it is an easy task to show that (1 +&2)S;(R) C R, for all £ >0, and the following
estimate holds:

|S:(f)(2) = f(2)| <Cawr(f'58)ap, VzeED, E>0. (2.26)

Since inf{1/(1+&2); & € [0,1]} = 1/2, by Theorem 2.5, the following is immediate.

COROLLARY 2.7. P¢(S3,1/2) C Sz and f € Sy implies that Pe( f) is univalent in {z € G; |z| <
1/2M3, forall & € [0,1].
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Remark 2.8. Of course, if we consider, for example, & € [0,1/2], then inf{1/(1+&2);x €
[0,1/2]} = 4/5 and by Theorem 2.5 we get P:(S3,4/5) C S; and f € Sy implies that P¢(f)
is univalentin {z € C; |z| < 4/5M}, for all £ € [0,1/2].

Obviously S3,1/2 C S354 and {z € G; |z] < 1/2M} C {z € C; |z| < 4/5M}.

3. Complex Poisson-Cauchy integrals

In this section, we study the properties of Qs (f), Q;‘ (f),and Re(f).
Firstly, we present the approximation properties.

Tueorem 3.1. (i) If f(z) = Xi gaxz® is analytic in D, then for all &€ >0, Q:(f)(z),
Qg‘ (f)(2), and Re(f)(z) are analytic in D and the following hold in D:

28 (™ cosku
0 ur+ 52

iz) = zakbk(f)z , with b(§) =

du,

(3.1)

Qi (N)z) = Zakb,’f(f)zk, with b} ( _ 2 Jm cosku
k=0

u2+£2

N 483 k
Z):kgoaka(f)Zk) with ¢(§) = i Jo (:%;)26”’-

Also, if f is continuous on D, then Q¢ (f), Qg“ (f), and R¢(f) are also continuous on D.
Here by (§) >0, forall € >0, bf (§) = e %, c1(§) = (1+&)e?, forall & > 0.
(ii)
Q)@ - £ < LR, yeeD ge o,

| Q¢ (f)(2) 2)| <c? ff)aD, vzeD, e (0,1],

(3.2)
|R:(f)(2) = f(2)] <Cwi(f;E)p, VzeD,&e(0,1].
(i)
wl(Q?(f);é)BSwl(f;s)ﬁ’ V£€(0,1],6>0,
w1 (Qe(f); 8)p < wi(f58)p VEE(0,1], V& >0, (3.3)
wi(Re(f); 8)p < wi(f;8)p, VEE(0,1], 8 >0.

Proof. (i) Let f(z) = > ;_oax2’, z € D.
Reasoning as for the case of Picard-type integral in Theorem 2.1(i), we obtain

_ < k é " iku |
% (1)2) = Yoz 2] e gzdu] (3.4)
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where
ir ik L _ & (" cosku & (™ sinku
- _ne u2+£2du_7r _ﬂu2+£2du+zﬂ _nu2+52du
_ 28 (" cosku ,
- T Jo u2+£2 du= bk({): (35)
B o) . { +00 iku 1 :|
_goakz |:7Tj—ooe u2+£2du
where
éJ'HO P _gr"cosku o
€ u? +£2 - u? +€2 du = bk (E))
) 3.6
o op e e (36)
S
& )
where
3 rtoo 3 oo
&J ok 1 du= ﬂJ’ cosku du, (3.7)
R O )

The continuity of f on D implies the continuity of Q:(f), ng (f), and R¢(f) as in the
proof of Theorem 2.1(i) for P¢(f).

It remains to show that b;(£) >0 and bj(§) = e %, ¢;(§) = (1 +&)et, for all £ >0.
Indeed, firstly we have

23;’ cosu 7&'[[ cosu J” cosu ]
Ju2+52 mLJo 1,12+f2du+ ﬂ/zu2+fzdu

_ 2 ™2 cosu 2 sinu
Uo u2+£2du Jo (u+n/2)2+§2du]

(3.8)
ZEJ cosu—smu
w2
2E[J cosu —sinu I”/Zcosu—sinu ] 28
——du+ ————du|:= =1+ L].
7 LJo u? +¢&2 " s ur+8&2 " 71[1 2]
Here
/4 : /4 :
cosu —sinu cosu —sinu
0<I = ———d >J ——d
! Jo u? +&2 " o (m%/16) + &2 “
. (3.9)
16 /4 16( 2_1)
= 21168 [sinu+ cosulj 2168
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Also, I, <0 and

/2 o /2
sinu — cosu 1
L|=—I- du < - J inu— cosuld
|L | 2 L/4 e u /16) + 8 o [sinu — cosu]du
7 (3.10)
16 o 16(V2-1)
= il 168 [—cosu—sinu]7/; = IR

which implies I + I, > 0. Therefore, it follows that b;(¢) > (2&/n)[I; + ] > 0, for all
&> 0. Now let

G R A Tl L PR ERTY

Applying now the classical residue theorem to f(z) = €?/(z? + 1), it is immediate that
Jo” (cos(u&)/(u? +1))du = (/2)e~%, which implies bi (&) = (2/m) - (n/2)e ¢ = e %, for all
£>0.Forc(§)=(48/n) - [y (cosu/(u? + £2)?)du, applying the residue theorem to f(z) =
/(2% + &%)?, we immediately get

®  cosu
|, i LHrDet (3.12)

that is, ¢; (§) = (1 +&)e~¢, forall € > 0.
(ii) We can write

AN - fio= & [ LEE 22 o S by foee,  Ga3)

where

E@)| =E@ =1-2 [ 4

T Jo u2+f2

2 m_ 2
=1-— - < — .14
ﬂarcth ﬂzf (3.14)

(for the last estimate |E(&)| < (2/72)E, see, e.g., [2, page 257]).
Passing to modulus, it follows that

EJ | f(ze™) —2f(2)+ f (ze ™) |

u?+8&2

|Qe(f)(2) - du+ |l fllp| EE)|

'fJ wzf”aDd utllfllp - |E@)| (3.15)

<t w0 _J”[Hz]z;du
=~ 2\J>S)oD 0 &— 2 +£2
Reasoning as in the proof of Theorem 3.1 [2, pages 257-258], we arrive at the desired
estimate.
For Qg‘ (f)(z), we have

Q@) - fio = & [ LEE =2 T, (3.16)

u?+&2
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which implies

R e e e

_CEJ u2+52 22 P9D gy, —ij w2 (f5 (wré) - "t)aDd (3.17)

u?+&2

S 2 .

For R:(f)(z), we obtain
) < 28 J*‘”If (ze™) f(z>|
Sl ey

<L‘$3J+°°w1(f;|2|'|€'“—1|)5du

T (12 +82)’

L2 [ty

7w (w24 82)

|Re(f)(2) — f(2)

o (3.18)
280 (% u 1
=], (g 8),

. 7253 o0 u 1
ng1(f’f)D7J0 [1+E] . (u2+fz)2du

—Cwle)D[l+ﬁL u Zdu],

g

where

)

1
e (3.19)

2 _wde 28 L("dy £ (1)
0

m o eve)’ w2l m

v

which proves the estimate for R¢(f)(z) too.
(iii) Let 21,2, € D be with |z; — 23| < 8. We get

f J f(z1e™) — f(z2e™) | du

u2+52

Q¢ ()(z1) —QF (N)(=z
(3.20)

E +o00
filai—2z|)p J u2+f2_w1f s

where from passing to supremum after z;, z, it follows that w; (Qg’< (f);0)p <wi(f;0)p.
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Also
|Qf(f)(zl) —Qg(f 22) | < _J |f Z1eu2+§2(22€ )| du
swl(f;l21—22|)5'%£ 2+ E (3.21)
an(fio & [ w0
The reasonings for R¢( f) are similar, which proves the theorem. O

In what follows, we present some geometric properties of complex Poisson-Cauchy
integrals.

Tueorem 3.2. () If f(2) =D, arz*, z € D, and T:(f)(z) = S5 Ak is any from Qe (f),
Q¢ (f), and Re(f), then

|Ak| < |ak|, Vk=0,1,.... (3.22)
(i) If f(2) = Dy arz*, z € D, is univalent in D and f(D) is convex, then for any & >0,

Q:(f)(z) is close-to-convex on D.
(iii) For all § > 0, with the notation in Section 2, Qf () C P, Re(P) C P;

I 1
by () Qe (S30,6) C S35 G) : Q? (Sspr)) C Sss
! 1
NG “Re(S3,6() C S5, b—E)QE (Sm) C Savivy )15 (3.23)
1
b (§) QG (Sw) < Swpt o (E)Rf(SM) C SM/jer()

where S, = {f € S35 1" (2)| < |al} and Sg = {f € A(D); | f'(2)| < B, z € D}.

Proof. (i) With the notations in the statement of Theorem 3.1(i), for all k = 0,1,2,..., we
obtain

G ZE J" Icoskul ZEJ'

u2+£2 uZ.{_EZ

s

28

= —arctg - =£arct E<1
n ENORE| T R8T o)
28 1 ul® '
|b,’f(f)|s;zarctgg . =1,
483 d
w®)] < £J e,
7o (e g)

which immediately implies (i).
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(ii) First, it is immediate that we can write

Qe(f)(z E " flee m)du. (3.25)

. u2+£2

Since h(u) = 1/(u? + &?) satisfies h(m) = h(—m), we may extend it by 27-periodicity on
the whole R, such that this extension is continuous on R.

By h'(u) = —2u/(u? + &?)?, it follows that & is nondecreasing on [—7,0] and nonin-
creasing on [0,7]. Then, by [11, Theorem 3, page 799], it follows that Qz(f)(z) is close-
to-convex on D.

(iii) Let f € P, f = U+iV, U >0. Then, by definitions, it easily follows that Q:(f),
Q?( f), Re(f) € . We take here into account that, by Theorem 3.1(i), the condition
ap = f(0) = 1 implies

Q: (NO0) = ahi @ = b = & [,

w U? +52 320
3.26
28 du
Re()(0) = (&) = 22 rverhll
Now, let f(z) = > ;"o axzk, with ag = 0, a; = 1. First, by Theorem 3.1(i), we get
. -
AL 5) GAO =1 @ NO=0
1 1 (3.27)
Then,
. T 1
Qi (f)(z) = %Lﬂf (ze)e - 21 E du,
[QF (N (2) = %jw [ (ze7 )2 uzi g2 (3.28)
2£ H 2114 . 1
[Re()]” J f( ” +€2)2du.
Let f € S3p,(¢)- We get
1 7" 1 E i 7 iu 1
b FNE| = i |1 )
; ) (3.29)
T 2
< ;Lﬂ 2 _:lfz = ;arctg% <1

that is, (1/b1(£)) - Qe(f) € Ss.
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Let f € 8347 (¢). We get

1 f Sy, L
(3.30)
J u2 + gz =
that is, (1/bf (f))Qg‘(f) € S3. The proof in the case of (1/¢1(£)) - Re(f) is similar.
Now, let f € Sy It follows that

1 1 ¢ i

%) = IDGIE )] g
(3.31)

The proofs in the cases of (1/b; (£)) - ng (f) and (1/¢1(§)) - Re(f) are similar, which
proves the theorem. U

Remarks 3.3. (1) Theorem 3.2(iii) says that if f € S3,(r), then Q¢(f) is starlike and uni-
valent on D and if f € Spyp,(¢)> then Qg (f) is univalent in the disk

{ze(;lzl<%}c{ze(;lzl<ﬁ}. (3.32)

Similar properties hold for QE (f), bf (&), and Re(f), c1(§).

(2) Let us denote B = inf{|b;(§)]; & € (0,1]}. If B > 0, then, by Theorem 3.2(iii), the
following properties hold: f € Ss g implies Q:(f) € Ss, for all £ € (0,1], f € Syt (M > 1)
implies that Qg ( f) is univalent in {|z| < B/M}, for all £ € (0,1]. Therefore it remains to
calculate B, to check if B > 0, problems which are left to the reader as open questions.

Now, since inf{|bj (£)[;¢ € (0,1]} = inf{e % & € (0,1]} = 1/e and inf{|c;(§)[;& €
(0,1]} =inf{(1+&)e % & € (0,1]} = 2/e (since h(&) = (1 +&)e¢ is decreasing on [0,1]),
from Theorems 3.1(i) and 3.2(iii), we immediately get the following.

CoroLLARY 3.4. (i) If f € Ss,1/e, then Qg‘ (f) € Ss, forall € (0,1), and if f € Sy (M > 1),
then Qg‘ (f) is univalent in {z € C; |z| < 1/eM}, for all & € (0,1].

(ii) If f € S3,0/e, then Re(f) € Ss, forall& € (0,1, and if f € Sy, then Re(f) is univalent
in {|z| <2/eM}, forall & € (0,1].

4. Complex Gauss-Weierstrass integrals

In this section, we study the complex integrals We( f)(z) and Wg" (f)(z)
Concerning the approximation properties, we present the following.

Tueorem 4.1. (i) If f(2) = D p_o a2’ is analytic in D, then for all &€ >0, We(f)(z) and
WE* (f)(z) are analytic in D and the following holds on D:

We(f)(2) = D axdi(§)2", (4.1)
k=0
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with
1 " —u?/€
=—- e coskudu,
. (4.2)
WE()(@) = S ady (6)2,
k=0
with
+00 5
e/ coskudu. (4.3)

d:(f):Jl?J
.

Also, if f is continuous on D, then We(f) and WE* (f) are continuous on D. Here dy (&) >0
and di (§) = e ¥4 - 1/n, for all € > 0.

(ii)
f §)ap =
| We(f)(2) — f(Z)|<C , z€D, £e(0,1],
(4.4)
|WE(f)(2) - f(2)] = Cw1<f; V&), zeD, £
(iii)
w1(Wg*(f);5)5Sw1(f;5)5, V8 >0, &>0, ()
5
wl(Wg(f);é)Eswl(f; 6)5, V6>O, £>0
Proof. (i) Reasoning as for the P;( f) operator, we can write
WE () = jm S aucterte
w (4.6)
= Z \/>J cos(ku) +isin(ku)]e " du = Zakd,f(f)zk,
=0 k=0
where
cos(ku)e /4 du. (4.7)

]
The reasonings in the case of W¢( f)(z) are similar. The proof of continuity on D of W¢(f)
and Wf* (f) is similar to that for P¢( f) in the proof of Theorem 2.1(i).

It remains to prove that d,(£) >0, for all £ >0, and that df (§) = (1/m)e~%4, for all
E>0.

Indeed, firstly we have

di(§) = LJ e cosudu = LJ cosue™ W’ dy, (4.8)
&) Van Jo
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where # = \/E > 0. We obtain

/2 5 T 5
J cosue” WM du+J cosue” W dy
/2

2
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0
2 /2 ) /2 2
= Zn Jo cosue” “M" dy — Jo sinue” (/27 gy (4.9)
2 /2 ) 2
> \/_711 Jo (cosu —sinu)e” ™D dy | := \/_711[11 +h],
where
/4 )
I = J (cosu —sinu)e” " dy >0,
. (4.10)
L=- J (sinu — cosu)e” W' du < 0.
/4
It follows that
/4 2 2
L > J (cosu — sinu)e” ™4’ dy = (/2 — 1)e~ VD)
0
. (4.11)
|L| =-L< e*(”/(‘*’?))zj (sinu — cosu)du = (V2 — 1)e~ W),
/4
Therefore,
(4.12)

di(p) > L+ 1 = (V2 = 1)e” ™) — (2 - 1)e ™) = g,

for any > 0.
Now, for dff (§) = (1/ﬁ\ﬁ) . fjfj cosue’(”/\/g)zdu, we have (see, e.g., [10, page 228])

1 J+oo —( /\/E)Z ( u ) 1 I+m 12
_— cosue " du=|by ==v|=— cos \/7ve"dv
\/ﬁ\/g —o0 \/E \/E —o0 ( )
R YT _
== Lm e'Vele ™ dy = 7 e i -

forall £ >0.
(ii) We can write

_ _L " o) — el e—uzf u
We()(@) -~ () = J;EJO [f (ze") = 2f () + f (ze ) e *ed

+f(2) [1 - Jj?g J:re”z/fdu]

(4.13)

(4.14)
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1 (" e
'f(z)[l—m5 | e

Here

_ _ 2 (T e
‘f(z)[l \/;5 Oe du}
- ‘ f(z)[ 2 e_“Z/Edu——J ‘”Z/fdu} (4.15)
ﬂ 0
_ . L ” —u?/€
—|f(Z)| ‘\/;fjne du
N L ST TI o O
snan-ﬁL =21 loE -
By the maximum modulus principle, we can take |z| = 1 which implies
|We(F)(2) — f(2)] = J:Tg |, w25 wape 421 fWE%
(reasoning as in [2, page 258]) (4.16)
- Cwy(f35&)ap B 1 wy(f3 f)aD
= TR 12 f - -
Also, we get
(Wi - f(2)] < LJ T Flae™) = £(2)| e du
1 ® _ 2
<— | w(f;]1-e™|)ge ™ du
\/7J’ W) (f 2| sin— ‘)}‘”%du
D
(4.17)

el /fdu

(Iul ) e dy

- wi(f38), wi/(gf \/\/E%D L 2ue du.

(j L(fs lul)p

IA

%,‘H
S
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But [, 2ue " du = & ;" e vdv = &, which implies

We @ - 1@ <0 (£i1E)y ron(1538)y 5o = Can(153) . 419)

(iii) For |z — z2| < §, we get

(W () (@) - Wi (f)(z2) %J | f (z1e) = f (z2e7) [ e du

IA

wi(f; |z —2z2])p < w1 (f50)p,

JM |f(Z1€i”) —f(Zzei") |e_“z/5du

| We(f)(21) = We(f)(22) | <
- (4.19)

Bl

T

1 /s
Swﬂﬂ|ﬁ—@nﬁ”__J

NEt

<wi(f;0)p- \/LT[? Lw e gy = w1 (f50)p,

e “idy

which proves the theorem. O

Concerning the geometric properties of complex Gauss-Weierstrass singular integrals,
we present the following.

Tueorem 4.2. (i) If f(z) = Y oazr, z € D, and T:(f)(z) = D i Axz" is any from
We(£)(2) and W (f)(z), then

|Ak| < |ak|, Vk=0,1,.... (4.20)

(i) If f(2) = X5, a2k, z € D, is univalent in D and f (D) is convex, then for any & >0,
We(f)(2) is univalent in D and We(f)(D) is convex.

Similarly, if f(z) is univalent in D and f (D) is starlike with respect to the origin, then for
any & >0, We(f)(2) is univalent in D and We(f)(D) is starlike with respect to the origin.

(iii) For all &€ > 0, with the notations in Theorem 3.2,

W (P) P, We(S3,4,6)) C S3»

b
di(§)

We(Sum) C Swriay¢)» (4.21)

. 1
& " Sao) €S g

1
d* (5) W{ (SM) c SM/\d1
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Proof. (i) By Theorem 4.1(i), we get

_”z/f\cosku\du

lakdi (&) ] < |ax| - | di(£)

1 s
=l 2] e

oo (4.22)
1 2
< |ax| —I e du=|ar|, Vk=0,1,2,...
Nz
Also, by the same theorem, we obtain
|akd;f(£)| = |ag| - |d,f(£)| < la|, Vk=0,1,2,.... (4.23)

Also, note that |dy(&)| = dop(&) < 1and |dj (&) = do(&) = 1.

(ii) Let g(u) = e/ ue [—m, ). Since g(—m) = g(m), we can extend g(u) by 27-
periodicity on the whole R, such that the extension, denoted by h(u), is continuous on
R.

It is easy to check that log|h’(u)] is concave in each interval [k, (k + 1)7], h'(u) =0
if and only if u = 2km, k € Z, and in wy = kn, k € Z, h takes its minimum and maximum
values.

Then, applying [9, Theorem, page 130], we get that h is PMP as in [9], which implies
that W (f) preserves the convexity of f.

Also, by similar reasoning with those in [8, Lemma 5 and Corollary 5, page 321], it
follows that W¢(f)(z) preserves the starlikeness of f(z) (with respect to origin) too.

(iii) The proofs are similar to the proofs in Theorem 3.2(iii), which proves Theorem
4.2 too. ([l

Remarks 4.3. (1) From the results presented above, it follows that Wi (f)(z) has the best
preservation property among the classes of complex singular integrals studied by the
present paper.

(2) Let us denote D = inf{|d;(¢)]; £ € (0,1]}. If D > 0, then, by Theorem 4.2(iii), we
get the following:

(i) if f € S3,p then We(f) € S5, forall & € (0,1],
(ii) if f € Sm, (M > 1), then We(f) is univalent in {z € C; |z| < D/M}, for all £ €
(0,1].

Therefore it remains to calculate D, to check if D > 0, problems which are left to the reader
as an open question.

Since inf{|d{ (§)]; & € (0,1]} = 1/(me'*), applying now Theorems 4.1(i) and 4.2(iii)
to WE* (f)(2), we immediately get the following.

COROLLARY 4.4. If f € S31/zevs, then WE* (f) € Ss, forallE € (0,1], andif f € Sy (M > 1),
then W (f) is univalent in {z € C; |z| < 1/nMe"*}, for all & € (0,1].
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