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The embedding theorems in anisotropic Besov-Lions type spaces Bl
p,θ(R

n;E0,E) are stud-
ied; here E0 and E are two Banach spaces. The most regular spaces Eα are found such
that the mixed differential operators Dα are bounded from Bl

p,θ(R
n;E0,E) to Bs

q,θ(R
n;Eα),

where Eα are interpolation spaces between E0 and E depending on α= (α1,α2, . . . ,αn) and
l = (l1, l2, . . . , ln). By using these results the separability of anisotropic differential-operator
equations with dependent coefficients in principal part and the maximal B-regularity
of parabolic Cauchy problem are obtained. In applications, the infinite systems of the
quasielliptic partial differential equations and the parabolic Cauchy problems are stud-
ied.
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1. Introduction

Embedding theorems in function spaces have been studied in [8, 35, 37, 38]. A com-
prehensive introduction to the theory of embedding of function spaces and historical
references may be also found in [37]. In abstract function spaces embedding theorems
have been investigated in [4, 5, 10, 17, 21, 27, 34, 40]. Lions and Peetre [21] showed that
if

u∈ L2
(
0,T ;H0

)
, u(m) ∈ L2(0,T ;H), (1.1)

then

u(i) ∈ L2
(
0,T ;

[
H ,H0

]
i/m

)
, i= 1,2, . . . ,m− 1, (1.2)

where H0, H are Hilbert spaces, H0 is continuously and densely embedded in H , where
[H0,H]θ are interpolation spaces between H0 and H for 0≤ θ ≤ 1. The similar questions
for anisotropic Sobolev spaces Wl

p(Ω;H0,H), Ω ⊂ Rn and for corresponding weighted
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2 Embedding and B-regular operators

spaces have been investigated in [28–31] and [23, 24], respectively. Embedding theorems
in Banach-valued Besov spaces have been studied in [4, 5, 27, 32]. The solvability and
spectrum of boundary value problems for elliptic differential-operator equations (DOE’s)
have been refined in [3–7, 13, 28–33, 39, 40]. A comprehensive introduction to DOE’s and
historical references may be found in [15, 18, 40]. In these works, Hilbert-valued function
spaces essentially have been considered. The maximal Lp regularity and Fredholmness of
partial elliptic equations in smooth regions have been studied, for example, in [1, 2, 20]
and for nonsmooth domains studied, for example, in [16, 26]. For DOE’s the similar
problems have been investigated in [13, 28–32, 36, 39, 40].

Let E0, E be Banach spaces such that E0 is continuously and densely embedded in E.
In the present paper, E-valued Besov spaces Bl+s

p,θ(R
n;E0,E)= Bs

p,θ(R
n;E0)∩Bl+s

p,θ(R
n;E) are

introduced and called Besov-Lions type spaces. The most regular interpolation class Eα
between E0 and E is found such that the appropriate mixed differential operators Dα

are bounded from Bl+s
p,q(R

n;E0,E) to Bs
p,q(R

n;Eα). By applying these results the maximal
regularity of certain class of anisotropic partial DOE with varying coefficients in Banach-
valued Besov spaces is derived.

The paper is organized as follows. Section 2 collects notations and definitions. Section
3 presents the embedding theorems in Besov-Lions type spaces

Bs+l
p,q

(
Rn;E0,E

)
. (1.3)

Section 4 contains applications of the underlying embedding theorem to vector-valued
function spaces. Section 5 is devoted to the maximal regularity (in Bs

p,q(R
n;E)) of the

certain class of anisotropic DOE with variable coefficients in principal part. Then by us-
ing these results the maximal B-regularity of the parabolic Cauchy problem is shown. In
Section 6 these DOE are applied to BVP’s and Cauchy problem for the finite and infinite
systems of quasielliptic and parabolic PDEs, respectively.

2. Notations and definitions

Let E be a Banach space. Let Lp(Ω;E) denote the space of all stronglymeasurable E-valued
functions that are defined onΩ⊂ Rn with the norm

‖ f ‖Lp(Ω;E) =
(∫ ∥

∥ f (x)
∥
∥p
E dx

)1/p
, 1≤ p <∞,

‖ f ‖L∞(Ω;E) = esssup
x∈Ω

[∥∥ f (x)
∥
∥
E

]
, x = (x1,x2, . . . ,xn

)
.

(2.1)

The Banach space E is said to be a ζ-convex space (see [9, 11, 12, 19]) if there exists
on E×E a symmetric real-valued function ζ(u,v) which is convex with respect to each of
the variables, and satisfies the conditions

ζ(0,0) > 0, ζ(u,v)≤ ‖u+ v‖, for ‖u‖ ≤ 1≤ ‖v‖. (2.2)
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A ζ-convex space E is often called a UMD-space and written as E ∈ UMD. It is shown in
[9] that the Hilbert operator

(H f )(x)= lim
ε→0

∫

|x−y|>ε
f (y)
x− y

dy (2.3)

is bounded in Lp(R;E), p ∈ (1,∞) for those and only those spaces E, which possess the
property of UMD spaces. The UMD spaces include, for example, Lp, lp spaces and the
Lorentz spaces Lpq, p,q ∈ (1,∞).

Let C be the set of complex numbers and let

Sϕ =
{
λ; λ∈ C,|argλ−π| ≤ π−ϕ

}∪{0}, 0 < ϕ≤ π. (2.4)

A linear operator A is said to be a ϕ-positive in a Banach space E, with boundM > 0 if
D(A) is dense on E and

∥
∥(A− λI)−1

∥
∥
L(E) ≤M

(
1+ |λ|)−1 (2.5)

with λ ∈ Sϕ, ϕ ∈ (0,π], I is identity operator in E, and L(E) is the space of all bounded
linear operators in E. Sometimes A+ λI will be written as A+ λ and denoted by Aλ. It is
known [37, Section 1.15.1] that there exist fractional powers Aθ of the positive operator
A. Let E(Aθ) denote the space D(Aθ) with the graphical norm

‖u‖E(Aθ) =
(‖u‖p +∥∥Aθu

∥
∥p)1/p, 1≤ p <∞, −∞ < θ <∞. (2.6)

Let E0 and E be two Banach spaces. By (E0,E)σ ,p, 0 < σ < 1, 1≤ p ≤∞ we will denote
the interpolation spaces obtained from {E0,E} by the K-method (see, e.g., [37, Section
1.3.1] or [10]).

Let S(Rn;E) denote a Schwartz class, that is, the space of all E-valued rapidly decreasing
smooth functions ϕ on Rn. E = C will be denoted by S(Rn). Let S�(Rn;E) denote the space
of E-valued tempered distributions, that is, the space of continuous linear operators from
S(Rn) to E.

Let α= (α1,α2, . . . ,αn), αi are integers. An E-values generalized function Dα f is called
a generalized derivative in the sense of Schwartz distributions of the generalized function
f ∈ S

�

(Rn,E) if the equality

〈
Dα f ,ϕ

〉= (−1)|α|〈 f ,Dαϕ
〉

(2.7)

holds for all ϕ∈ S(Rn).
By using (2.7) the following relations

F
(
Dα

x f
)= (iξ1

)α1 , . . . ,
(
iξn
)αn f̂ , Dα

ξ

(
F( f )

)= F
[(− ixn

)α1 , . . . ,
(− ixn

)αn f
]

(2.8)

are obtained for all f ∈ S�(Rn;E).
Let L∗θ (E) denote the space of all E-valued function spaces such that

‖u‖L∗θ (E) =
(∫∞

0

∥
∥u(t)

∥
∥θ
E

dt

t

)1/θ
<∞, 1≤ θ <∞, ‖u‖L∗∞(E) = sup

0<t<∞

∥
∥u(t)

∥
∥
E. (2.9)
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Let s= (s1,s2, . . . ,sn) and sk > 0. Let F denote the Fourier transform. Fourier-analytic rep-
resentation of E-valued Besov space on Rn is defined as

Bs
p,θ

(
Rn;E

)=
{

u∈ S�
(
Rn;E

)
, ‖u‖Bs

p,θ(R
n;E)

=
∥
∥
∥
∥
∥F

−1
n∑

k=1
tκk−sk(1+

∣
∣ξk
∣
∣κk

)
e−t|ξ|

2
Fu

∥
∥
∥
∥
∥
L∗θ (Lp(Rn;E))

,

p ∈ (1,∞), θ ∈ [1,∞], κk > sk

}

.

(2.10)

It should be noted that the norm of Besov space do not depend on κk. Sometimes we
will write ‖u‖Bs

p,θ
in place of ‖u‖Bs

p,θ(R
n;E).

Let l = (l1, l2, . . . , ln), s= (s1,s2, . . . ,sn), where lk are integers and sk are positive numbers.
LetWlBs

p,θ(R
n;E) denote an E-valued Sobolev-Besov space of all functions u∈ Bs

p,θ(R
n;E)

such that they have the generalized derivativesDlk
k u=∂lku/∂xlkk ∈Bs

p,θ(R
n;E), k = 1,2, . . . ,n

with the norm

‖u‖WlBs
p,θ(R

n;E) = ‖u‖Bs
p,θ(R

n;E) +
n∑

k=1

∥
∥Dlk

k u
∥
∥
Bs
p,θ(R

n;E) <∞. (2.11)

Let E0 is continuously and densely embedded into E.WlBs
p,θ(R

n;E0,E) denotes a space of

all functions u∈ Bs
p,θ(R

n;E0)∩WlBs
p,θ(R

n;E) with the norm

‖u‖WlBs
p,θ
= ‖u‖WlBs

p,θ(R
n;E0,E) = ‖u‖Bs

p,θ(R
n;E0) +

n∑

k=1

∥
∥
∥Dlk

k u
∥
∥
∥
Bs
p,θ(R

n;E)
<∞. (2.12)

Let l = (l1, l2, . . . , ln), s= (s1,s2, . . . ,sn), where sk are real numbers and lk are positive num-
bers. Bl+s

p,θ(R
n;E0,E) denotes a space of all functions u∈ Bs

p,θ(R
n;E0)∩Bl+s

p,θ(R
n;E) with the

norm

‖u‖Bs+l
p,θ(R

n;E0,E) = ‖u‖Bs
p,θ(R

n;E0) +‖u‖Bl+s
p,θ(R

n;E). (2.13)

For E0 = E the space Bl+s
p,θ(R

n;E0,E) will be denoted by Bl+s
p,θ(R

n;E).
Letm be a positive integer. C(Ω;E) and Cm(Ω;E) will denote the spaces of all E-valued

bounded continuous and m-times continuously differentiable functions on Ω, respec-
tively. We set

Cb(Ω;E)=
{
u∈ C(Ω;E), lim

|x|→∞
u(x) exists

}
. (2.14)

Let E1 and E2 be two Banach spaces. A function Ψ∈ Cm(Rn;L(E1,E2)) is called a multi-
plier from Bs

p,θ(R
n;E1) to Bs

q,θ(R
n;E2) for p ∈ (1,∞) and q ∈ [1,∞] if the map u→ Ku=

F−1Ψ(ξ)Fu, u∈ S(Rn;E1), is well defined and extends to a bounded linear operator

K : Bs
p,θ

(
Rn;E1

)−→ Bs
q,θ

(
Rn;E2

)
. (2.15)
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The set of all multipliers from Bs
p,θ(R

n;E1) to Bs
q,θ(R

n;E2) will be denoted byM
q,θ
p,θ(s,E1,

E2). E1 = E2 = E will be denoted byM
q,θ
p,θ(s,E). The multipliers and operator-valued mul-

tipliers in Banach-valued function spaces were studied, for example, by [25], [37, Section
2.2.2.], and [4, 11, 12, 14, 22], respectively.

Let

Hk =
{
Ψh ∈M

q,θ
p,θ

(
s,E1,E2

)
, h= (h1h2, . . . ,hn

)∈ K
}

(2.16)

be a collection of multipliers in M
q,θ
p,θ(s,E1,E2). We say that Hk is a uniform collection of

multipliers if there exists a constantM0 > 0, independent on h∈ K , such that

∥
∥F−1ΨhFu

∥
∥
Bs
p,θ(R

n;E2)
≤M0‖u‖Bs

q,θ(R
n;E1) (2.17)

for all h∈ K and u∈ S(Rn;E1).
Let β = (β1,β2, . . . ,βn) be multiindexes. We also define

Vn =
{
ξ = (ξ1,ξ2, . . . ,ξn

)∈ Rn, ξi �= 0, i= 1,2, . . . ,n
}
,

Un =
{
β : |β| ≤ n

}
, ξβ = ξ

β1
1 ξ

β2
2 , . . . ,ξ

βn
n , ν= 1

p
− 1
q
.

(2.18)

Definition 2.1. A Banach space E satisfies a B-multiplier condition with respect to p, q,
θ, and s (or with respect to p, θ, and s for the case of p = q) when Ψ ∈ Cn(Rn;L(E)),
1≤ p ≤ q ≤∞, β ∈Un, and ξ ∈Vn if the estimate

∣
∣ξ1
∣
∣β1+ν∣∣ξ2

∣
∣β2+ν

, . . . ,
∣
∣ξn

∣
∣βn+ν∥∥DβΨ(ξ)

∥
∥
L(E) ≤ C (2.19)

implies Ψ∈M
q,θ
p,θ(s,E).

Remark 2.2. Definition 2.1 is a combined restriction to E, p, q, θ, and s. This condition
is sufficient for our main aim. Nevertheless, it is well known that there are Banach spaces
satisfying the B-multiplier condition for isotropic case and p = q, for example, the UMD
spaces (see [4, 14]).

A Banach space E is said to have a local unconditional structure (l.u.st.) if there exists a
constant C <∞ such that for any finite-dimensional subspace E0 of E there exists a finite-
dimensional space F with an unconditional basis such that the natural embedding E0 ⊂ E
factors as AB with B : E0 → F, A : F → E, and ‖A‖‖B‖ ≤ C. All Banach lattices (e.g., Lp,
Lp,q, Orlicz spaces, C[0,1]) have l.u.st.

The expression ‖u‖E1 ∼ ‖u‖E2 means that there exist the positive constants C1 and C2

such that

C1‖u‖E1 ≤ ‖u‖E2 ≤ C2‖u‖E1 (2.20)

for all u∈ E1∩E2.
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Let α1,α2, . . . ,αn be nonnegative and let l1, l2, . . . , ln be positive integers and let

1≤ p ≤ q ≤∞, 1≤ θ ≤∞, |α: .l| =
n∑

k=1

αk
lk
, κ =

n∑

k=1

αk +1/p− 1/q
lk

,

Dα =Dα1
1 Dα2

2 , . . . ,Dαn
n =

∂|α|

∂xα11 ∂xα22 , . . . ,∂xαnn
, |α| =

n∑

k=!
αk.

(2.21)

Consider in general, the anisotropic differential-operator equation

(L+ λ)u=
∑

|α:.l|=1
aα(x)Dαu+Aλ(x)u+

∑

|α:.l|<1
Aα(x)Dαu= f (2.22)

in Bs
p,θ(R

n;E), where aα are complex-valued functions and A(x), Aα(x) are possibly un-
bounded operators in a Banach space E, here the domain definition D(A)=D(A(x)) of
operator A(x) does not depend on x. For l1 = l2 =, . . . ,= ln we obtain isotropic equations
containing the elliptic class of DOE.

The function belonging to space Bs+l
p,θ(R

n;E(A),E) and satisfying (2.22) a.e. on Rn is
said to be a solution of (2.22) on Rn.

Definition 2.3. The problem (2.22) is said to be a B-separable (or Bs
p,θ(R

n;E)-separable) if

the problem (2.22) for all f ∈ Bs
p,θ(R

n;E) has a unique solution u∈ Bs+l
p,θ(R

n;E(A),E) and

‖Au‖Bs
p,θ(R

n;E) +
∑

|α:l|=1

∥
∥Dαu

∥
∥
Bs
p,θ

(
Rn;E
) ≤ C‖ f ‖Bs

p,θ(R
n;E). (2.23)

Consider the following parabolic Cauchy problem

∂u(y,x)
∂y

+ (L+ λ)u(y,x)= f (y,x), u(0,x)= 0, y ∈ R+, x ∈ Rn, (2.24)

where L is a realization differential operator in Bs
p,θ(R

n;E) generated by problem (2.22),
that is,

D(L)= Bs+l
p,θ

(
Rn;E(A),E

)
, Lu=

∑

|α:.l|=1
aα(x)Dαu+A(x)u+

∑

|α:.l|<1
Aα(x)Dαu. (2.25)

We say that the parabolic Cauchy problem (2.24) is said to be a maximal B-regular,
if for all f ∈ Bs

p,θ(R
n+1
+ ;E) there exists a unique solution u satisfying (2.24) almost every-

where on Rn+1
+ and there exists a positive constant C independent on f , such that it has

the estimate
∥
∥
∥
∥
∂u(y,x)

∂y

∥
∥
∥
∥
Bs
p,θ(R

n+1
+ ;E)

+‖Lu‖Bs
p,θ(R

n+1
+ ;E) ≤ C‖ f ‖Bs

p,θ(R
n+1
+ ;E). (2.26)

3. Embedding theorems

In this section we prove the boundedness of the mixed differential operators Dα in the
Besov-Lions type spaces.
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Lemma 3.1. Let A be a positive operator in a Banach space E, let b be a positive number,
r = (r1,r2, . . . ,rn), α= (α1,α2, . . . ,αn), and l = (l1, l2, . . . , ln), where ϕ∈ (0,π], rk ∈ [0,b], lk
are positive and αk, k = 1,2, . . . ,n, are nonnegative integers such that κ = |(α+ r) : l| ≤ 1.
For 0 < h≤ h0 <∞ and 0≤ μ≤ 1−κ the operator-function

Ψ(ξ)=Ψh,μ(ξ)=
∣
∣ξ1
∣
∣r1
∣
∣ξ2
∣
∣r2 , . . . ,

∣
∣ξn

∣
∣rn(iξ)αA1−κ−μh−μ

[
A+η(ξ)

]−1
(3.1)

is a bounded operator in E uniformly with respect to ξ and h, that is, there is a constant Cμ

such that

∥
∥Ψh,μ(ξ)

∥
∥
L(E) ≤ Cμ (3.2)

for all ξ ∈ Rn, where

η = η(ξ)=
n∑

k=1

∣
∣ξk
∣
∣lk +h−1. (3.3)

Proof. Since −η(ξ)∈ S(ϕ), for all ϕ∈ (0,π] and A is a ϕ-positive in E, then the operator
A+η(ξ) is invertiable in E. Let

u= h−μ
[
A+η(ξ)

]−1
f . (3.4)

Then

∥
∥Ψ(ξ) f

∥
∥
E =

∥
∥(hA)1−κ−μu

∥
∥
Eh
−(1−μ)∣∣h1/l1ξ1

∣
∣α1+r1 , . . . ,

∣
∣h1/ln ξn

∣
∣αn+rn . (3.5)

Using the moment inequality for powers of positive operators, we get a constant Cμ de-
pending only on μ such that

∥
∥Ψ(ξ) f

∥
∥
E ≤ Cμh

−(1−μ)‖hAu‖1−κ−μ‖u‖κ+μ
∣
∣h1/l1ξ1

∣
∣α1+r1 , . . . ,

∣
∣h1/ln ξn

∣
∣αn+rn . (3.6)

Now, we apply the Young inequality, which states that ab ≤ ak1 /k1 + bk2 /k2 for any positive
real numbers a, b and k1, k2 with 1/k1 + 1/k2 = 1 to the product

‖hAu‖1−κ−μ
[
‖u‖κ+μ

∣
∣h1/l1ξ1

∣
∣α1+r1 , . . . ,

∣
∣h1/ln ξn

∣
∣αn+rn

]
(3.7)

with k1 = 1/(1−κ−μ), k2 = 1/(κ +μ) to get

∥
∥Ψ(ξ) f

∥
∥
E≤Cμh

−(1−μ)
{
(1−κ−μ)

∥
∥hAu

∥
∥

+(κ +μ)
[
h1/l1

∣
∣ξ1
∣
∣](α1+r1)/(κ+μ)

, . . . ,
[
h1/ln

∣
∣ξn

∣
∣](αn+rn)/(κ+μ)‖u‖

}
.

(3.8)

Since

n∑

i=1

αi + ri
(κ +μ)

= 1
κ +μ

n∑

i=1

αi + ri
li

= κ

κ +μ
≤ 1, (3.9)
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there exists a constantM0 independent on ξ, such that

∣
∣ξ1
∣
∣(α1+r1)/(κ+μ)

, . . . ,
∣
∣ξn

∣
∣(αn+rn)/(κ+μ) ≤M0

(

1+
n∑

k=1

∣
∣ξk
∣
∣lk
)

(3.10)

for all ξ ∈ Rn. Substituting this on the inequality (3.8) and absorbing the constant coeffi-
cients in Cμ, we obtain

∥
∥ψ(ξ) f

∥
∥≤ Cμ

[

hμ
(

‖Au‖+
n∑

k=1

∣
∣ξk
∣
∣lk‖u‖

)

+h−(1−μ)‖u‖
]

. (3.11)

Substituting the value of u we get

∥
∥ψ(ξ) f

∥
∥
∥≤ Cμh

μ

[
∥
∥A
[
A+η(ξ)

]−1
f
∥
∥+

n∑

k=1

∣
∣ξk
∣
∣lk
∥
∥[A+η(ξ)

]−1
f
∥
∥
]

+h−(1−μ)
∥
∥
∥
[
A+η(ξ)

]−1
f
∥
∥
∥.

(3.12)

By using the properties of the positive operator A for all f ∈ E we obtain from (3.12)

∥
∥Ψ(ξ) f

∥
∥
E ≤ Cμ‖ f ‖E. (3.13)

�

Lemma 3.2. Let E be a UMD space with l.u.st., p ∈ (1,∞), θ ∈ [1,∞] and let for all k, j ∈
(1,n)

sk
lk + sk

+
s j

l j + s j
≤ 1. (3.14)

Then the spaces Bl+s
p,θ(R

n;E) andWlBs
p,θ(R

n;E) are coincided.

Proof. In the first step we show that the continuous embeddingWlBs
p,θ(R

n;E)⊂ Bl+s
p,θ(R

n;
E) holds, that is, there is a positive constant C such that

‖u‖Bl+s
p,θ(R

n;E) ≤ C‖u‖WlBs
p,θ(R

n;E) (3.15)

for all u ∈WlBs
p,θ(R

n;E). For this aim by using the Fourier-analytic definition of an E-

valued Besov space and the space WlBs
p,θ(R

n;E) it is sufficient to prove the following
estimate:
∥
∥
∥
∥
∥F

−1
n∑

k=1
tκk−lk−sk(1+

∣
∣ξk
∣
∣κk

)
e−t|ξ|

2
Fu

∥
∥
∥
∥
∥
Lθ p

≤ C

∥
∥
∥
∥
∥F

−1
n∑

k=1
tκk−sk(1+

∣
∣ξk
∣
∣κk

)
e−t|ξ|

2
Fυ

∥
∥
∥
∥
∥
Lθ p

,

(3.16)

where

Lθp = L∗θ
(
Lp
(
Rn;E

))
, υ = F−1

(

1+
n∑

k=1
ξlkk

)

Fu. (3.17)
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To see this, it is sufficient to show that the function

φ(ξ)=
n∑

k=1

(
1+

∣
∣ξk
∣
∣lk+sk+δ

)
( n∑

k=1

(
1+

∣
∣ξk
∣
∣sk+δ

)
)−1(

1+
n∑

k=1

∣
∣ξk
∣
∣lk
)−1

, δ > 0 (3.18)

is Fourier multiplier in Lp(Rn;E). It is clear to see that for β ∈Un and ξ ∈Vn

∣
∣ξ1
∣
∣β1
∣
∣ξ2
∣
∣β2 , . . . ,

∣
∣ξn

∣
∣βn
∥
∥Dβφ(ξ)

∥
∥
L(E) ≤ C. (3.19)

Then in view of [41, Proposition 3] we obtain that the function φ is Fourier multiplier in
Lp(Rn;E).

In the second step we prove that the embedding Bl+s
p,θ(R

n;E)⊂WlBs
p,θ(R

n;E) is contin-
uous. In a similar way as in the first step we show that for sk/(lk + sk) + s j /(l j + s j)≤ 1 the
function

ψ(ξ)=
( n∑

k=1

(
1+

∣
∣ξk
∣
∣sk+δ

)
)(

1+
n∑

k=1

∣
∣ξk
∣
∣lk
)[ n∑

k=1

(
1+

∣
∣ξk
∣
∣lk+sk+δ

)
]−1

(3.20)

is Fourier multiplier in Lp(Rn;E). So, we obtain for all u∈ Bl+s
p,θ(R

n;E) the estimate

∥
∥
∥
∥
∥F

−1
n∑

k=1
tκk−sk(1+

∣
∣ξk
∣
∣κk

)
(

1+
n∑

k=1
ξlkk

)

e−t|ξ|
2
Fu

∥
∥
∥
∥
∥
Lθ p

≤ C

∥
∥
∥
∥
∥F

−1
n∑

k=1
tκk−lk−sk(1+

∣
∣ξk
∣
∣κk

)
e−t|ξ|

2
Fu

∥
∥
∥
∥
∥
Lθ p

.

(3.21)

It implies the second embedding. This completes the prove of Lemma 3.2. �

Theorem 3.3. Suppose the following conditions hold:
(1) E is a UMD space with l.u.st. satisfying the B-multiplier condition with respect to

p,q ∈ (1,∞), θ ∈ [1,∞], and s= (s1,s2, . . . ,sn), where sk are positive numbers;
(2) α= (α1,α2, . . . ,αn), l = (l1, l2, . . . , ln), where αk are nonnegative, lk are positive integers,

and sk such that sk/(lk + sk) + s j /(l j + s j) ≤ 1 for k, j = 1,2, . . . ,n and 0 ≤ μ ≤ 1−κ, κ =
|(α+1/p− 1/q) : l|;

(3) A is a ϕ-positive operator in E, where ϕ∈ (0,π] and 0 < h≤ h0 <∞.
Then the following embedding

DαBl+s
p,θ

(
Rn;E(A),E

)⊂ Bs
q,θ

(
Rn;E

(
A1−κ−μ)) (3.22)

is continuous and there exists a positive constant Cμ depending only on μ, such that

∥
∥Dαu

∥
∥
Bs
q,θ(R

n;E(A1−κ−μ)) ≤ Cμ
[
hμ‖u‖Bl+s

p,θ(R
n;E(A),E) +h−(1−μ)‖u‖Bs

p,θ(R
n;E)
]

(3.23)

for all u∈ Bl+s
p,θ(R

n;E(A),E).
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Proof. We have

∥
∥Dαu

∥
∥
Bs
q,θ(R

n;E(A1−κ−μ)) =
∥
∥A1−κ−μDαu

∥
∥
Bs
q,θ(R

n;E) (3.24)

for all u such that

∥
∥Dαu

∥
∥
Bs
q,θ(R

n;E(A1−κ−μ)) <∞. (3.25)

On the other hand by using the relation (2.8) we have

A1−α−μDαu= F−�FA1−κ−μDαu= F−�(iξ)αA1−κ−μFu. (3.26)

Since the operator A is closure and does not depend on ξ ∈ Rn hence denoting Fu by û,
from the relations (3.24), (3.26) and by definition of the spaceWlBs

p,θ(R
n;E0,E) we have

∥
∥Dαu

∥
∥
Bs
q,θ(R

n;E(A1−κ−μ)) �
∥
∥F−�(iξ)αA1−κ−μû

∥
∥
Bs
q,θ(R

n;E),

‖u‖WlBs
p,θ(R

n;E0,E) ∼ ‖Au‖Bs
p,θ(R

n;E) +
n∑

k=1

∥
∥F−1ξlkk û

∥
∥
Bs
p,θ(R

n;E).
(3.27)

By virtue of Lemma 3.2 and by the above relations it is sufficient to prove that

∥
∥F−�(iξ)αA1−κ−μû

∥
∥
Bs
q,θ(R

n;E)

≤ Cμ

[

hμ
(
∥
∥F−�Aû

∥
∥
Bs
p,θ(R

n;E) +
n∑

k=1

∥
∥F−�

(
ξlkk û

)∥∥
Bs
p,θ(R

n;E)

)

+h−(1−μ)
∥
∥F−�û

∥
∥
Bs
p,θ(R

n;E)

]

.

(3.28)

The inequality (3.23) will be followed if we prove the following inequality

∥
∥F−�

[
(iξ)αA1−κ−μû

]∥∥
Bs
p,θ(R

n;E) ≤ Cμ

∥
∥F−�

[
hμ(A+η)

]
û
∥
∥
Bs
p,θ(R

n;E) (3.29)

for a suitable Cμ and for all u∈ Bs+l
p,θ(R

n;E(A),E), where

η = η(ξ)=
n∑

k=1

∣
∣ξk
∣
∣lk +h−1. (3.30)

Let us express the left-hand side of (3.29) as follows:

∥
∥F−�

[
(iξ)αA1−κ−μû

]∥∥
Bs
q,θ(R

n;E) (3.31)

= ∥∥F−�(iξ)αA1−κ−μ[hμ(A+η)
]−1[

hμ(A+η)
]
û
∥
∥
Bs
q,θ(R

n;E). (3.32)

(Since A is the positive operator in E and −η(ξ) ∈ S(ϕ) so it is possible). By virtue of
Definition 2.1 it is clear that the inequality (3.23) will follow immediately from (3.31) if
we can prove that the operator-function Ψ= (iξ)αA1−κ−μ[hμ(A+ η)]−1 is a multiplier in



Veli B. Shakhmurov 11

M
q,θ
p,θ(s,E), which is uniform with respect to h. Since E satisfies the multiplier condition

with respect to p, q, θ, and s, then by Definition 2.1 in order to show that Ψ∈M
q,θ
p,θ(s,E),

it suffices to show that there exists a constantMμ > 0 with

∣
∣ξ1
∣
∣β1+ν∣∣ξ2

∣
∣β2+ν

, . . . ,
∣
∣ξn

∣
∣βn+ν∥∥D

β
ξΨ(ξ)

∥
∥
L(E) ≤Mμ (3.33)

for all β ∈ Un, ξ ∈ Vn, and 0 < h ≤ h0 <∞. To see this, we apply Lemma 3.1 and get a
constantMμ > 0 depending only on μ such that

∣
∣ξ1
∣
∣ν∣∣ξ2

∣
∣ν
, . . . ,

∣
∣ξn

∣
∣ν∥∥Ψ(ξ)

∥
∥
L(E) ≤Mμ (3.34)

for all ξ ∈ Rn and ν = 1/p − 1/q. This shows that the inequality (3.33) is satisfied for
β = (0, . . . ,0). We next consider (3.33) for β = (β1, . . . ,βn) where βk = 1 and βj = 0 for
j �= k. By differentiation of the operator-function Ψ(ξ), by virtue of the positivity of A,
and by using (3.34) we have

∥
∥
∥
∥

∂

∂ξk
Ψ(ξ)

∥
∥
∥
∥
L(E)

≤Mμ

∣
∣ξk
∣
∣−(1+ν)

, k = 1,2 . . . ,n. (3.35)

Repeating the above process we obtain the estimate (3.33). Thus the operator-function
Ψh,μ(ξ) is a uniform multiplier with respect to h, that is,

Ψh,μ ∈HK ⊂M
q,θ
p,θ(s,E), K =R+. (3.36)

This completes the proof of Theorem 3.3. �

Result 3.4. Let all conditions of Theorem 3.3 hold. Then for all u∈ Bl+s
p,θ(R

n;E(A),E) we
have a multiplicative estimate

∥
∥Dαu

∥
∥
Bs
q,θ(R

n;E(A1−κ−μ)) ≤ Cμ‖u‖1−μBl+s
p,θ(R

n;E(A),E)
‖u‖μBs

p,θ(R
n;E). (3.37)

Indeed setting h= ‖u‖Bs
p,θ(R

n;E) · ‖u‖−1Bl+s
p,θ(R

n;E(A),E)
in the estimate (3.23) we obtain the above

estimate.

Remark 3.5. It seems from the proof of Theorem 3.3 that the extra condition to space
E (E is UMD space with l.u.st.) and the condition sk/(lk + sk) + s j /(l j + s j) ≤ 1 for k, j =
1,2, . . . ,n are due to Lemma 3.2 (here the l.u.st. condition for the space E is required due to
using ofMarcinkiewicz-Lizorkin typemultiplier theorem [41] in Lp(Rn;E) space). There-
fore, the proof of Theorem 3.3 implies the following.

Result 3.6. Suppose the following conditions hold:
(1) E is a Banach space satisfying the B-multiplier condition with respect to p,q ∈

(1,∞), θ ∈ [1,∞] and s= (s1,s2, . . . ,sn), where sk are positive numbers;
(2) α = t(α1,α2, . . . ,αn), l = (l1, l2, . . . , ln), where αk are nonnegative and lk are positive

integers such that κ = |(α+1/p− 1/q) : l| ≤ 1 and let 0≤ μ≤ 1−κ;
(3) A is a ϕ-positive operator in E, where ϕ∈ (0,π] and 0 < h≤ h0 <∞.
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Then the following embedding

DαWlBs
p,θ

(
Rn;E(A),E

)⊂ Bs
q,θ

(
Rn;E

(
A1−κ−μ)) (3.38)

is continuous and there exists a positive constant Cμ depending only on μ such that

∥
∥Dαu

∥
∥
Bs
q,θ(R

n;E(A1−κ−μ)) ≤ Cμ
[
hμ‖u‖WlBs

p,θ(R
n;E(A),E) +h−(1−μ)‖u‖Bs

p,θ(R
n;E)
]

(3.39)

for all u∈WlBs
p,θ(R

n;E(A),E).

Remark 3.7. The condition sk/(lk + sk) + s j /(l j + s j)≤ 1 for k, j = 1,2, . . . ,n in Theorem 3.3
arise due to anisotropic nature of space Bs

p,θ . For an isotropic case the above conditions
hold without any assumptions.

4. Application to vector-valued function spaces

By virtue of Theorem 3.3 we obtain the following.

Result 4.1. For A = I we obtain the continuous embedding DαBl+s
p,θ(R

n;E) ⊂ Bs
p,θ(R

n;E)

and corresponding estimate (3.23) for 0≤ μ≤ 1−κ in space Bs+l
p,θ(R

n;E).

Result 4.2. For E=Rm,A=I we obtain the following embeddingDαBl+s
p,θ(R

n;Rm)⊂Bs
q,θ(R

n;
Rm) for 0 ≤ μ ≤ 1− κ and a corresponding estimate (3.23). For E = R, A = I we get
the embedding DαBl+s

p,θ(R
n)⊂ Bs

q,θ(R
n) proved in [8, Section 18] for the numerical Besov

spaces.

Result 4.3. Let l1 = l2 = ··· = ln =m, s1 = s2 = ··· = sn = σ , and p = q. Then for all E
∈ UMD and |α| ≤m we obtain that the continuous embedding DαBσ+m

p,θ (Rn;E(A),E) ⊂
Bσ
p,θ(R

n;E(A1−|α|/m)) and a corresponding estimate (3.23) for the isotropic Besov-Lions
spaces Bσ+m

p,θ (Rn;E(A),E).

Result 4.4. Let σ be a positive number. Consider the following space [37, Section 1.18.2]:

lσq =
{
u; u= {ui

}
, i= 1,2, . . . ,∞, ui ∈ C

}
(4.1)

with the norm

‖u‖lσq =
( ∞∑

i=1
2iqσ

∣
∣ui
∣
∣q
)1/q

<∞. (4.2)

Note that l0q = lq. Let A be an infinite matrix defined in lq such that

D(A)= lσq , A= [δi j2si
]
, (4.3)

where δi j = 0, when i �= j, δi j = 1, when i = j, i, j = 1,2, . . . ,∞. It is clear to see that
this operator A is positive in lq. Then from Theorem 3.3 for sk/(lk + sk) + s j /(l j + s j)≤ 1,
k, j = 1,2, . . . ,n and 0 ≤ μ ≤ 1−κ, κ =∑n

k=1(αk +1/p1− 1/p2)/lk we obtain the contin-

uous embedding DαBl+s
p1,θ(Ω; lσq , lq) ⊂ Bs

p2,θ(Ω; l
σ(1−κ−μ)
q ) and the corresponding estimate

(3.23).
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It should not be that the above embedding has not been obtained with a classical
method until now.

5. Maximal B-regular DOE in Rn

Consider the following differential-operator equation

(L+ λ)u=
∑

|α:.l|=1
aα(x)Dαu+Aλ(x)u+

∑

|α:.l|<1
Aα(x)Dαu= f (5.1)

in Bs
p,q(R

n;E), where A(x), Aα(x) are possible unbounded operators in a Banach space E,
ak are complex-valued functions, l = (l1, l2, . . . , ln) and li are positive integers. The max-
imal regularity for DOE was investigated, for example, in [12, 14, 30]. Let us consider
DOE with constant coefficients

(
L0 + λ

)
u=

∑

|α:.l|=1
bαD

αu+Aλu= f , (5.2)

where A is a possible unbounded operator in E, Aλ = A+ λ and bα are complex numbers.

Theorem 5.1. Suppose the following conditions hold:
(1) E is UMD space with l.u.st. satisfying B-multiplier condition with respect to p ∈

(1,∞), q ∈ [1,∞], and s= (s1,s2, . . . ,sn), where sk are positive numbers;
(2) A is a ϕ-positive operator in E with ϕ∈ (0,π] and

K(ξ)=−
∑

|α:.l|=1
bα(iξ1)α1 ·

(
iξ2
)α2 , . . . ,

(
iξn
)αn ∈ S(ϕ),

∣
∣K(ξ)

∣
∣≥ C

n∑

k=1

∣
∣ξk
∣
∣lk , ξ ∈ Rn;

(5.3)

(3) sk/(lk + sk) + s j /(l j + s j)≤ 1 for k, j = 1,2, . . . ,n.
Then for all f ∈ Bs

p,q(R
n;E), for |argλ| ≤ π − ϕ and sufficiently large |λ| > 0 (5.2) has

a unique solution u(x) that belongs to space Bl+s
p,q(R

n;E(A),E), and the coercive uniform
estimate

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαu

∥
∥
Bs
p,q
+‖Au‖Bs

p,q ≤ C‖ f ‖Bs
p,q (5.4)

holds with respect to the parameter λ.

Proof. By applying the Fourier transform to (5.2) we obtain

[
K(ξ) +Aλ

]
û(ξ)= f̂ (ξ). (5.5)

Since K(ξ)∈ S(ϕ) for all ξ ∈ Rn, the operator A+ [λ+K(ξ)] is invertible in E. So, we
obtain that the solution of (5.5) can be represented in the form

u(x)= F−1
[
A+ λ+K(ξ)

]−1
f̂ . (5.6)
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By using (5.6) we have

‖Au‖Bs
p,q =

∥
∥
∥F−1A

[
A+

(
λ+K(ξ)

)]−1
f̂
∥
∥
∥
Bs
p,q
,

∥
∥Dαu

∥
∥
Bs
p,q
=
∥
∥
∥F−1

(
iξ1
)α1 · (iξ2

)α2 , . . . ,
(
iξn
)αn[A+

(
λ+K(ξ)

)]−1
f̂
∥
∥
∥
Bs
p,q
.

(5.7)

Hence, it is suffices to show that the operator-functions

σ1λ(ξ)=
[
A+

(
λ+K(ξ)

)]−1
,

σ2λ(ξ)= |λ|1−|α:.l|
(
iξ1
)α1 · (iξ2

)α2 , . . . ,
(
iξn
)αn[A+

(
λ+K(ξ)

)]−1
(5.8)

are multipliers in Bs
p,q(R

n;E) uniformly with respect to λ. Firstly, by using the positivity
properties of operatorAwe obtain that the operator function σλ(ξ) is bounded uniformly
with respect to λ. That is,

∥
∥σjλ(ξ)

∥
∥
B(E) ≤ C, j = 1,2. (5.9)

Then by virtue of the same properties of the operator A we obtain from (5.9)

∥
∥ξβD

β
ξ σjλ(ξ)

∥
∥
L(E) ≤Mj , β ∈Un, ξ ∈Vn, j = 1,2. (5.10)

Then in view of (5.10) we obtain that the operator-valued functions σjλ(ξ) are the
uniform collection of multipliers from Bs

p,q(R
n;E) to Bs

p,q(R
n;E). So we get that for all f ∈

Bs
p,q(R

n;E) there is a unique solution of (5.2) in the form u(x)= F−1[A+ (λ+K(ξ))]−1 f̂
and the estimate (5.4) holds.

Consider the problem (5.1). Let L0 and L operators in Bs
p,q(R

n;E) be generated by
problems (5.2) and (5.1), respectively, that is,

D
(
L0
)=D(L)= Bl+s

p,q

(
Rn,E(A),E

)
,

L0u=
∑

|α:.l|=1
aα(x)Dαu+Au,

Lu= L0u+L1u, L1u=
∑

|α:l|<1
Aα(x)Dαu.

(5.11)

�

Theorem 5.2. Suppose condition (1) of Theorem 5.1 holds and let
(1) A(x) be a ϕ positive in E uniformly with respect to x, A(x)A−1(x0) ∈ Cb(R;

B(E))∃x0 ∈ (−∞,∞), aα ∈ Cb(R), where ϕ∈ (0,π];
(2) Aα(x)A−(1−|α:l|−μ) ∈ L∞(Rn;L(E)), 0 < μ < 1−|α : l|;
(3)K(x,ξ)=−∑|α:.l|=1 bα(iξ1)α1 · (iξ2)α2 , . . . ,(iξn)αn∈S(ϕ), |K(x,ξ)|≥C

∑n
k=1 |ξk|lk , ξ∈

Rn, x ∈ Rn.
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Then for all f ∈ Bs
p,q(R

n;E), |argλ| ≤ π − ϕ and for sufficiently large |λ| (5.1) has a
unique solution u(x) that belongs to space Bl+s

p,q(R
n;E(A),E), and the coercive uniform esti-

mate

∑

‖α:.l‖≤1
|λ|1−|α:.l|∥∥Dαu

∥
∥
Bs
p,q
+‖Au‖Bs

p,q ≤ C‖ f ‖Bs
p,q (5.12)

holds with respect to λ.

Proof. Let ϕj ∈ C∞0 (Rn), j = 1,2, . . . ,∞, be a partition of unity such that 0 ≤ ϕj ≤ 1 and
suppϕj ⊂ Gj ,

∑
j ϕj(x)= 1. Let gj ∈ C∞(Rn) such that gj(x)≡ 1 on suppϕj . Then for all

u∈ Bl+s
p,q(R

n;E(A),E) we have u(x)=∑ j u j(x), where uj(x)= u(x)ϕj(x). From the equal-

ity (5.1) for u∈ Bl+s
p,q(R

n;E(A),E) we obtain

(L+ λ)uj =
∑

|α:.l|=1
aα(x)Dαuj +Aλ(y)uj(y)= f j(y), (5.13)

where

f j = f ϕj −
∑

|α:.l|<1
bαj(x)Dαu−

∑

|α:.l|<1
Aα(x)Dαuj (5.14)

and bαj(x) are continuous and uniformly bounded functions containing derivatives of
ϕj . Choose a large ball Br0 (0) such that |aα(x)− aα(∞)| ≤ δ for all |x| ≥ r0 and G0 =
Rn \Br0 (0). Cover Br0 (0) by finitely many ballsGj = Brj (xj) such that |aα(x)− aα(xj)| ≤ δ
for all |x− xj| ≤ r j , j = 1,2, . . . ,N . Define coefficients of the local operators Lj as in [12,
Theorem 5.7], that is,

a0α(x)=

⎧
⎪⎪⎨

⎪⎪⎩

aα(x), x /∈ Br0 (0),

aα

(
r20

x

|x|2
)
, x ∈ Br0 (0),

a
j
α(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα(x), x ∈ Brj

(
xj
)
,

aα

(

xj + r20
x− xj

∣
∣x− xj

∣
∣2

)

, x /∈ Brj

(
xj
)

(5.15)

for each j = 1,2, . . . ,N . Then |aα(x)− aα(xj)| ≤ δ for all x ∈ Rn and j = 0,1,2, . . . ,N .
Freezing the coefficients in (5.13) we obtain that

∑

|α:.l|=1
aα
(
xj
)
Dαuj +Aλ

(
xj
)
uj(x)= Fj(x), (5.16)

where

Fj = f j +
∑

|α:.l|=1

[
aα
(
xj
)− aα(x)

]
Dαuj +

[
A
(
xj
)−A(x)

]
uj . (5.17)



16 Embedding and B-regular operators

By virtue of Theorem 5.1 we obtain that the problem (5.16) has a unique solution uj ,
and for |argλ| ≤ π−ϕ and sufficiently large |λ| we get

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαuj

∥
∥
Bs
p,q(Gj ;E)

+
∥
∥Auj

∥
∥
Bs
p,q(Gj ;E)

≤ C
∥
∥Fj

∥
∥
Bs
p,q

(
Gj ;E
). (5.18)

Whence, using properties of the smoothness of coefficients of (5.14), (5.17) and choos-
ing diameters of Gj sufficiently small, we get that

∥
∥Fj

∥
∥
Bs
p,q(Gj ;E)

≤ ε
∥
∥uj

∥
∥
Bs+l
p,q(Gj ;E(A),E)

+C(ε)
∥
∥uj

∥
∥
Bs
p,q(Gj ;E)

, (5.19)

where ε is a sufficiently small function and C(δ) is a continuous function. Consequently,
from (5.18) and (5.19) we get

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαuj

∥
∥
Bs
p,q(Gj ;E)

≤ C‖ f ‖Bs
p,q(Gj ;E) + δ

∥
∥uj

∥
∥
Bs+l
p,q
+C(δ)

∥
∥uj

∥
∥
Bs
p,q(Gj ;E)

. (5.20)

Choosing δ < 1 from the above inequality we have

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαuj

∥
∥
Bs
p,q(Gj ;E)

≤ C
[
‖ f ‖Gj +

∥
∥uj

∥
∥
Bs
p,q(Gj ;E)

]
. (5.21)

Then by using the equality u(x) =∑ j u j(x) and by virtue of the estimate (5.21) for u ∈
Bs+l
p,q(R

n;E(A),E) we have

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαuj

∥
∥
Bs
p,q(Gj ;E)

≤ C
[∥
∥(L+ λ)u

∥
∥
Bs
p,q
+‖u‖Bs

p,q

]
. (5.22)

Let u∈ Bs+l
p,q(R

n;E(A),E) be a solution of the problem (5.1). Then for |argλ| ≤ π −ϕ we
have

‖u‖Bs
p,q =

∥
∥(L+ λ)u−Lu

∥
∥
Bs
p,q
≤ 1

λ

[∥
∥(L+ λ)u

∥
∥
Bs
p,q
+‖u‖Bs+l

p,q

]
. (5.23)

Then by Theorem 3.3 and by virtue of (5.21)–(5.23), for sufficiently large |λ| we have
∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαuj

∥
∥
Bs
p,q
≤ C

∥
∥(L+ λ)u

∥
∥
Bs
p,q
. (5.24)

The above estimate implies that the problem (5.1) has a unique solution and the op-
erator (L+ λ) has an invertible operator in its rank space. We need to show that this rank
space coincide with the space Bs

p,q(R
n;E). Let us construct for all j the function uj , that

is defined on the regions Gj and satisfying the problem (5.1). The problem (5.1) can be
expressed in the form

∑

|α:.l|=1
aα
(
xj
)
Dαuj +Aλ

(
xj
)
uj(x)

=
{

gj f +
[
A
(
xj
)−A(x)

]
uj −

∑

|α:.l|<1
Aα(x)Dαuj

}

, j = 1,2, . . . .

(5.25)
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Consider operators Ojλ in Bs
p,q(Gj ;E) generated by problems (5.25). By virtue of The-

orem 5.1 for all f ∈ Bs
p,q(Gj ;E), for |argλ| ≤ π−ϕ and sufficiently large |λ| we obtain

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥DαO−1jλ f

∥
∥
Bs
p,q
+
∥
∥AO−1jλ f

∥
∥
Bs
p,q
≤ C‖ f ‖Bs

p,q . (5.26)

Extending uj zero on the outside of suppϕj in equalities (5.25) and passing substitu-
tions uj =O−1jλ υj we obtain operator equations with respect to υj :

υj = Kjλυj + gj f , j = 1,2, . . . ,N. (5.27)

By virtue of Theorem 3.3 and the estimate (5.26), in view of the smoothness of the
coefficients of the expression Kjλ for |argλ| ≤ π − ϕ and sufficiently large |λ| we have
‖Kjλ‖ < ε, where ε is sufficiently small. Consequently, (5.27) has a unique solution υj =
[I −Kjλ]−1gj f and we get

∥
∥υj

∥
∥
Bs
p,q
= ∥∥[I −Kjλ

]−1
gj f

∥
∥
Bs
p,q
≤ ‖ f ‖Bs

p,q . (5.28)

Whence, [I −Kjλ]−1gj are the bounded linear operators from Bs
p,q(R

n;E) to Bs
p,q(Gj ;E).

Thus, we obtain that the functions uj = Ujλ f = O−1jλ [I −Kjλ]−1gj f are the solutions of
(5.25). Consider a linear operator (U + λI)=∑ j ϕj(y)Ujλ f in Bs

p,q(R
n;E). It is clear from

the constructions Uj and the estimate (5.26) that the operators Ujλ are bounded linear
from Bs

p,q(R
n;E) to Bs+l

p,q(R
n;E(A),E) and

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥DαU−1

jλ f
∥
∥
Bs
p,q
+
∥
∥AU−1

jλ f
∥
∥
Bs
p,q
≤ C‖ f ‖Bs

p,q , (5.29)

for |argλ| ≤ π − ϕ and sufficiently large |λ|. Therefore, (U + λI) is a bounded linear
operator from Bs

p,q to Bs
p,q. Then the act of (L + λ) to u =∑ j ϕjUjλ f gives (L + λ)u =

f +
∑

jΦ jλ f , where Φ jλ are linear combinations of Ujλ and (d/dy)Ujλ. By virtue of
Theorem 3.3, by estimate (5.29), and from the expression Φ jλ we obtain that operators
Φ jλ are bounded linear from Bs

p,q(R
n;E) to Bs

p,q(Gj ;E) and ‖Φ jλ‖ < δ. Therefore, there
exists a bounded linear invertible operator

(

I +
∑

j

Φ jλ

)−1
. (5.30)

Whence, we obtain that for all f ∈ Bs
p,q(R

n;E) the problem (5.1) has a unique solution

u= (U + λI)

(

I +
∑

j

Φ jλ

)−1
f , (5.31)

that is, we obtain the assertion of Theorem 5.2. �



18 Embedding and B-regular operators

Result 5.3. Theorem 5.2 implies that the differential operator L has a resolvent operator
(L+ λ)−1 for |argλ| ≤ π−ϕ, and for sufficiently large |λ| it has the estimate

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dα(L+λ)−1

∥
∥
L(Bs

p,q(Rn;E)) +
∥
∥A(L+ λ)−1

∥
∥
L(Bs

p,q(Rn;E)) ≤ C. (5.32)

Remark 3.5 and Theorem 5.2 imply the following.

Result 5.4. Suppose the following conditions hold:
(1) E is a Banach space satisfying B-multiplier condition with respect to p ∈ (1,∞)

and q ∈ [1,∞];
(2) A is a ϕ-positive operator in E with ϕ∈ (0,π] and

K(ξ)=−
∑

|α:.l|=1
bα
(
iξ1
)α1 · (iξ2

)α2 , . . . ,
(
iξn
)αn ∈ S(ϕ),

∣
∣K(x,ξ)

∣
∣≥ C

n∑

k=1

∣
∣ξk
∣
∣lk , ξ ∈ Rn, x ∈ Rn;

(5.33)

(3) A(x) is a ϕ positive in E uniformly with respect to x, A(x)A−1(x0) ∈ Cb(R;B(E)),
x0 ∈ (−∞,∞), aα ∈ Cb(R), where ϕ∈ (0,π];

(4) Aα(x)A−(1−|α:l|−μ) ∈ L∞(Rn;L(E)), 0 < μ < 1−|α : l|.
Then for all f ∈ Bs

p,q(R
n;E), |argλ| ≤ π − ϕ and for sufficiently large |λ| (5.1) has a

unique solution u(x) that belongs to spaceWlBs
p,θ(R

n;E(A),E), and the coercive uniform
estimate

∑

|α:.l|≤1
|λ|1−|α:.l|∥∥Dαu

∥
∥
Bs
p,q
+‖Au‖Bs

p,q ≤ C‖ f ‖Bs
p,q (5.34)

holds with respect to λ.

Theorem 5.5. Let all conditions of Theorem 5.2 hold for ϕ ∈ (0,π/2). Then the parabolic
Cauchy problem (2.24) for |argλ| ≤ π−ϕ and sufficiently large |λ| is maximal B-regular.

Proof. The problem (2.24) can be expressed in Bs
p,θ(R+;F) in the following form:

du(y)
dy

+ (L+ λ)u(y)= f (t), u(0)= 0, y > 0, (5.35)

where F = Lp(G;E) and L is the differential operator in Bs
p,θ(R

n;E) generated by the prob-
lem (5.1). In view of Result 4.3 the operator L is positive in Bs

p,θ(R
n;E) for ϕ ∈ (0,π/2).

Then by virtue of [4, Corollary 8.9] we obtain the assertion. �

Remark 5.6. There are lots of positive operators in concrete Banach spaces. Therefore,
putting concrete Banach spaces instead of E and concrete positive differential, pseudo
differential operators, or finite, infinite matrices, and so forth, instead of operator A on
DOE (5.1), by virtue of Theorem 5.2 we can obtain the maximal regularity of different
class of BVP’s for partial differential equations or system of equations. Here we give some
of its applications.
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6. Applications

6.1. Infinite systems of quasielliptic equations. Consider the following infinity systems
of boundary value problem:

(L+ λ)um(x)=
∑

|α:.l|=1
aα(x)Dαum(x) +

(
dm(x) + λ

)
um(x)

+
∑

|α:.l|<1

∞∑

k=1
dαkm(x)Dαuk(x)= fm(x), x ∈ Rn, m= 1,2, . . . ,∞.

(6.1)

Let

D(x)= {dm(x)
}
, dm > 0, u= {um

}
, Du= {dmum

}
, m= 1,2, . . . ,∞,

lq(D)=
⎧
⎨

⎩u : u∈ lq, ‖u‖lq(D) = ‖Du‖lq =
( ∞∑

m=1

∣
∣dmum

∣
∣q
)1/q

<∞
⎫
⎬

⎭ ,

x ∈G, 1 < q <∞, l = (l1, l2, . . . , ln
)
, s= (s1,s2, . . . ,sn

)
, sk > 0, lk ∈N.

(6.2)

Let O denote a differential operator in Bs
p,θ(R

n; lq) generated by problem (6.1). Let

B = L
(
Bs
p,θ

(
Rn; lq

))
. (6.3)

Theorem 6.1. Let aα ∈ Cb(Rn), dm ∈ Cb(Rn), dαkm ∈ L∞(Rn), and sk, lk such that

sk
lk + sk

+
s j

l j + s j
≤ 1, j = 1,2, . . . ,n,

∞∑

k,m=1
d
q1
αkmd

−q1(1−|α:l|−μ)
m <∞,

1
q
+

1
q1
= 1,

(6.4)

where p,q ∈ (1,∞), θ ∈ [1,∞].
Then
(a) for all f (x) = { fm(x)}∞1 ∈ Bs

p,θ(R
n; lq), |argλ| ≤ π −ϕ and for sufficiently large |λ|

the problem (6.1) has a unique solution u= {um(x)}∞1 that belongs to space Bs+l
p,θ(R

n, lq(D),
lq), and the coercive estimate

∑

|α:l|≤1

∥
∥Dαu

∥
∥
Bs
p,θ(R

n;lq)
+‖du‖Bs

p,θ(R
n;lq) ≤ C‖ f ‖Bs

p,θ(R
n;lq) (6.5)

holds for the solution of the problem (6.1);
(b) for |argλ| ≤ π −ϕ and for sufficiently large |λ| there exists a resolvent (O+ λ)−1 of

operator O and

∑

|α:l|≤1

(
1+ |λ|)1−|α:l|∥∥Dα(O+ λ)−1

∥
∥
B +

∥
∥d(O+ λ)−1

∥
∥
B ≤M. (6.6)
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Proof. Really, let E = lq, A(x), and Aα(x) be infinite matrices, such that

A= [dm(x)δkm
]
, Aα(x)=

[
dαkm(x)

]
, k,m= 1,2, . . . ,∞. (6.7)

It is clear to see that operator A is positive in lq. Therefore, by virtue of Theorem 5.2 we
obtain that the problem (6.1) for all f ∈ Bs

p,θ(R
n; lq), |argλ| ≤ π−ϕ, and sufficiently large

|λ| has a unique solution u that belongs to space Bs+l
p,θ(R

n; lq(D), lq) and the estimate (6.5)
holds. By virtue of estimate (6.5) we obtain (6.6). �

6.2. Cauchy problems for infinite systems of parabolic equations. Consider the follow-
ing infinity systems of parabolic Cauchy problem:

∂um(y,x)
∂y

+
∑

|α:.l|=1
aα(x)Dαum(y,x) +

(
dm(x) + λ

)
um(y,x) +

∑

|α:.l|<1

∞∑

k=1
dαkm(x)Dαuk(y,x)

= fm(y,x), um(0,x)= 0, m= 1,2, . . . ,∞, y ∈ R+, x ∈ Rn.
(6.8)

Theorem 6.2. Let all conditions of Theorem 6.1 hold. Then the parabolic systems (6.8) for
|argλ| ≤ π−ϕ and for sufficiently large |λ| are maximal B-regular.

Proof. Really, let E = lq, A, and Ak(x) be the infinite matrices, such that

A= [dm(x)δkm
]
, Aα(x)=

[
dαkm(x)

]
, k,m= 1,2, . . . ,∞. (6.9)

Then the problem (6.8) can be expressed as the problem (2.24), where

A= [dm(x)δkm
]
, Aα(x)=

[
dαkm(x)

]
, k,m= 1,2, . . . ,∞. (6.10)

Then by virtue of Theorems 5.2 and 5.5 we obtain the assertion. �
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