ON AN INTEGRAL OPERATOR ON THE UNIT BALL IN C”
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Let H(B) denote the space of all holomorphic functions on the unit ball B ¢ C". In this
paper, we investigate the integral operator Ty(f)(z fo f(tz)Rg(tz)(dt/t), f € H(B

z € B, where g € H(B) and Rg(z) = Z;-Z:l zj(ag/az])( z) is the radial derivative of g. The
operator can be considered as an extension of the Cesaro operator on the unit disk. The
boundedness of the operator on a-Bloch spaces is considered.

1. Introduction

Let U be the unit disc in the complex plane C and H(U) the space of all analytic functions
in U.

For each complex y with Rey > —1 and k nonnegative integer, let A} be defined as the
kth coefficient in the expression

Y]

1
B T (1D
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so that A} = (y+1)---(y+k)/k
For an analytic function f(z) = >, ,a,z" on U, the generalized Cesaro operator is
defined by

00 1 n
-y (Ay+1 ZAflkak)z". (1.2)
n=0

n. k=0

For y = 0 we obtain the Cesaro operator on U. The boundedness of the operator on
some spaces of analytic functions was considered by a number of authors, see, for exam-
ple, [8, 10, 13], and the references therein.

The integral form of €° = € is
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or, taking simply as a path the segment joining 0 and z,

1 1 !
Cf)(z) = JO f(tz)<1nm)

On most holomorphic function spaces the boundedness of the previous operator is equiv-
alent to the boundedness of the operator

dt. (1.4)
(=tz

ne-[ 1Y a (15

Hence, Aleman and Siskakis [2] have introduced and investigated the following natural
generalization of operator (1.5):

Tof(2) = | FQg @) (16

In [1, 2, 3] were investigated the boundedness and the compactness of the operator on
Hardy and Bergman spaces. A natural question is to define a similar integral operator
which acts on H(B) (the space of all holomorphic functions in the unit ball B).

Let z = (z15...,2,) and w = (wy,...,w,) be points in complex vector space C" and

(zZ,w) =zZ1W1+ - - - +Z,Wy,. (1.7)

Let dVy stand for the normalized Lebesgue measure on C". For a holomorphic function
f we denote

af  of
ope (L), "

Let Rf(z) = Z;’:l zj(df/0z;j)(z) stand for the radial derivative of f € H(B) (see [7]).
It is easy to see that if f € H(B), f(z) = ., asz", where « is a multi-index, then

2) = lalagz". (1.9)
Let a > 0. The a-Bloch space B? = B(B) is the space of all f € H(B) such that
ba(f) =sup (1-1z1*)*| R f(2)] < . (1.10)
z€EB

The little a-Bloch space B = RB(B) consists of all f € H(B) such that

‘li‘ml—lzl “IRf(z)| = (1.11)

On % the norm is introduced by

I fllge = | £(0)] +ba(f). (1.12)
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With this norm %? is a Banach space and B is a closed subspace of B%. If a = 1, we
denote B and B simply by B and RB,.
The aim of this paper is to investigate the boundedness of the following operator:

1
Ty (f)(2) :JO f(tz)‘)%g(tz)%, fEeHB), z€B, (1.13)

where ¢ € H(B), on the a-Bloch spaces. This operator can be considered as a natural ex-
tension of operator (1.6) on H(B) (when n = 1 we indeed obtain (1.6)). Operator (1.13)
has appeared, for the first time, in [6] where its boundedness and compactness are inves-
tigated.

Closely related operators to the above mentioned on the unit polydisc were investi-
gated in [4, 5,9, 11, 12].

In this paper, we prove the following results.
TaEOREM 1.1. Let g € H(B) and a € (0,1). Then the following statements are equivalent:

(a) Ty is bounded on B*;
(b) sup,cp [Rg(2)|(1 - |2[)% < oo.

Moreover || T, < sup, 5 [Rg(2)[(1 - |2]*)%

THEOREM 1.2. Let g € H(B). Then the following statements are equivalent:

(a) T, is bounded on RB;
(b) Tg is bounded on By,
() sup,cp | Rg(2)|(1 - |z[*)In1/(1 - |2|?) < oo;

and the relationship || Tg|l < sup,.5 [Rg(2)|(1 - |2|*)In1/(1 — |z|?) holds.

TaEOREM 1.3. Let g € H(B) and a > 1. Then the following statements are equivalent:

(a) Ty is bounded on RB*;
(b) sup,cp [Rg(2)I(1 - |2]?) < co.

Moreover || T, || = sup,p|Rg(2)|(1— |z]?).

2. Auxiliary results

In order to prove our results, we need some auxiliary results which are incorporated in
the following lemmas.

LemMA 2.1. Forevery f,g € H(B), it holds that

R[T,(f)](2) = f(2)Rg(2). (2.1)

Proof. Assume that the holomorphic function fRg has the expansion >, a,z%. Then

1
R[T,()](2) = %L S au(tz 4t - %(Z ﬂzﬂf) = S a2, (22)

|a]

which is what we wanted to prove. O
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LemMma 2.2. Let f € B*(B),0< a< . Then

| £O) |+ 1 fll s (0,1)
| f(2)| <C | f( 0)|+||f||(]au1n | B a=1,
al
| f(0)] +—f Of I >1,
(1-1z[2)
for some C > 0 independent of f.
Proof. Let |z| >1/2,z=r(, and { € dB. We have
1 1
r@-1(5)]=| [ vreaaa] < [ |22
2 12 12 t
1
|z|dt
< 4| fllgpe -
<4l o | = a1
LetI, = fol(lzldt/(l —21z|*)*). Ifa € (0,1), then
1 1-a
Iaﬁj Izldtuzl—(l—lzl) 1 '
0(1—t|z|) l1—a 1—a
If a = 1, then
Jl lzldt 1 d+lzl 1, 4
(1-2[z2)* 2 1=zl 2 1-|z]*

Finally, if a > 1, then

b lzldt 1 ( 1 ) 24!
Ias 7 = — -1] <
L (1-tlz)®  a=1\(1-|z))*" (a—-1)(1-|212)

From all of the above we have

<

>

()t

2 l1—a

1 4
F@) <M (5) + 21l =,

<

2

where M(1/2) = max;j<12 | f(2)

(1) zaﬂnfnw
(a—1)(1-z[2)*"

-1

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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Let |z| < 1/2, then, by the mean value property of the function f(z) — f(0) (see [7]),
and Jensen’s inequality, we obtain

max | f(z) - £(0)|* = 4"J | F(w) = £(0) |2 dVi(w)
lz|<1/2 |z|<3/4
<4 Jl LY 12dV(w) (2.9)
" max |?’\f(z)|

|z|<3/4

The second inequality can be easily proved by using the homogeneous expansion of f.
Hence,

24{1 ( )

m(3) <150 +(V3)" max [Rf()| = |£(0)] + Ifllge.  (2.10)

From (2.8) and (2.10), the result follows easily when a # 1. If a = 1, then we have

f@] =< |fO)]+—— 6(f) ||f||%+2\|f||0731r1 |z|
n (2.11)
16(+/3
s( (;f) +1n16>(|f(0 |+||f|\galn e |2)
thus finishing the proof. O

3. Proofs of the main results

Proof of Theorem 1.1. Assume that T, is bounded on %B¢. Choose fy(z) = 1. It is clear that
fo € WG and that || follg« = 1. The boundedness of T, implies

(1= 123 [R[Te(f)](@) ]| = (1= 121 [ Rg@) | < | Telll| follye = ITell < 0. (3.1)

Hence g € R, as desired.
Assume now that g € B Then, by Lemma 2.2 we have

(1= 12 R[T(NH]@)] = (1-1z11)"| f(2)] | Rg(2) |
< liglla«C(| £O)| + 1l fllgpe) (3.2)
< 2ClIgllgpe Il f ll e

Taking supremum z € B in (3.2), we obtain

I Tg(f)

ga < 2ClIgllgall f llga. (3.3)
Hence
| T || < 2ClIg g0 (3.4)

as desired. O
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Proof of Theorem 1.2. First, assume that T is bounded on %. From the proof which fol-
lows we will see that we also consider the case when Ty is bounded on %,. For w € B, put
fw(z) =In1/(1 - (z,w)). Since

(1-12P) R fu()] = (1= 12) |V @) = (1= 12P) | = |

(L-12P) _ 33
B |1_<Z)W>| -
we have || f,, |3 < 2, for each w € B. On the other hand, we have
e (=127 _(1-1zP)
(1-1z1%) | R fu(2)| < =z < T wl 0, (3.6)
as |z| — 1. Hence f,, € B, for each w € B.
By Lemma 2.1 we have
(1 - Iwl?) [ RgOw) | 1n = | Fuw)Rglw)| (1 - IwP)
—I% Te fu) W) | (1= w]2) (3.7)
<||Tg fullg < 2/ Tl.

Taking supremum in (3.7) over w € B, we obtain that conditions (a) and (b) imply (c).
Assume that (¢) holds. Since | f(0)| < || fll, and by Lemma 2.2, we have

[£@] =Cllfla(1+1n 1= ). (3.8)

for some C > 0.
Hence

IRIT(N@)] (1= 12P) = | £2)] [ Bg(@)] (1 - |2I?)
< Cllf (1410 1= ) [ %g(2) | (1 I2P)

<Clfllg sup (1+1n1%|z|2) 1Re(2)| (1 1212)

lz1<1/2 (3.9)
1
+Cllfllgs sup <1+ln72)|s)ag(z)|(1_|z|z)
1/2<|z|<1 _| |
<G ||f||qasup1n S Rg(2) [ (1= 121%),
z€B | |
since (c) implies
sup [Rg(2) | (1 - |2|?) < eo. (3.10)
z€B

From (3.9) and since T,(f)(0) = 0, (a) follows.
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We now prove that (c) implies (b). Since In1/(1 — |z]) — oo as |z| — 1, we have that
g € By. Hence, by Lemma 2.1, we have that for each polynomial p(z),

(1-12) | R[Te(p)] @) | = (1= 12P) | p(2) | | Rg(@)| = My (1 - 121 | Rg(2)], (3.11)
where M, = sup,. | p(2)|. Since M, < o and g € %, we obtain that for each polynomial

P> Te(p) € Bo. The set of polynomials is dense in %By, thus for every f € Ry there is a
sequence of polynomials (p,) such that || p, — fllg — 0. Hence

I Tepn = Tefllgy < 1 Telll[pn = fllg — 0, asn— oo, (3.12)

since the operator Ty is bounded. Hence T, (%Bo) C By, since By is closed subset of 7.
Finally, from (3.7) and (3.9) it follows that

1
1—|z[?

(3.13)

I Tell = sup [Rg(2)| (1 -2 In
zeB 0

Proof of Theorem 1.3. Let Ty be bounded on %°. Let w € B,and f,(z) = 1/(1 - (z,w))* L,
It is clear that f, € B¢ and that || f,, |33« < (a —1)2%. The boundedness of Ty implies

(1= 1w R Ty (fu)]w) | = (1= [wl*)* | Rg(w) | | fu(w)]
=(1-|wl*) | Rg(w)]

< 1 Tll1] firllpe
= (a—1)2%| Ty|| < oo.

(3.14)

Hence sup,,.5(1 — |w|2)|?’\g(w)| < 00, as desired.
Assume now that g € &B. Then, by Lemma 2.2 we have

(1= 1z R[Te(NH]@) | = (1-1z1)°| f(2)] | Rg(2) |
N fllge )
<b — 3.15
@a-= el ) o)
< 2Cbi ()]l flIgpe.

Hence

I Te(f)l

g = 2Cb1 (@)l fligs, (3.16)

and consequently || T, || < 2Cb,(g), as desired.
Form (3.14) and (3.16) it follows that || Tg[| < sup,. |Rg(2)[(1 — |z]2). O
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