ON AN INTEGRAL OPERATOR ON THE UNIT BALL IN \mathbb{C}^{n}

STEVO STEVIĆ
Received 23 December 2003

Let $H(B)$ denote the space of all holomorphic functions on the unit ball $B \subset \mathbb{C}^{n}$. In this paper, we investigate the integral operator $T_{g}(f)(z)=\int_{0}^{1} f(t z) \Re g(t z)(d t / t), f \in H(B)$, $z \in B$, where $g \in H(B)$ and $\Re g(z)=\sum_{j=1}^{n} z_{j}\left(\partial g / \partial z_{j}\right)(z)$ is the radial derivative of g. The operator can be considered as an extension of the Cesàro operator on the unit disk. The boundedness of the operator on a-Bloch spaces is considered.

1. Introduction

Let U be the unit disc in the complex plane \mathbb{C} and $H(U)$ the space of all analytic functions in U.

For each complex γ with $\operatorname{Re} \gamma>-1$ and k nonnegative integer, let A_{k}^{γ} be defined as the k th coefficient in the expression

$$
\begin{equation*}
\frac{1}{(1-x)^{\gamma+1}}=\sum_{k=0}^{\infty} A_{k}^{\gamma} x^{k}, \tag{1.1}
\end{equation*}
$$

so that $A_{k}^{\gamma}=(\gamma+1) \cdots(\gamma+k) / k!$.
For an analytic function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ on U, the generalized Cesàro operator is defined by

$$
\begin{equation*}
\mathscr{C}^{\gamma}(f)(z)=\sum_{n=0}^{\infty}\left(\frac{1}{A_{n}^{\gamma+1}} \sum_{k=0}^{n} A_{n-k}^{\gamma} a_{k}\right) z^{n} . \tag{1.2}
\end{equation*}
$$

For $\gamma=0$ we obtain the Cesàro operator on U. The boundedness of the operator on some spaces of analytic functions was considered by a number of authors, see, for example, $[8,10,13]$, and the references therein.

The integral form of $\mathscr{C}^{0}=\mathscr{C}$ is

$$
\begin{equation*}
\mathscr{C}(f)(z)=\frac{1}{z} \int_{0}^{z} f(\zeta) \frac{1}{(1-\zeta)} d \zeta=\frac{1}{z} \int_{0}^{z} f(\zeta)\left(\ln \frac{1}{(1-\zeta)}\right)^{\prime} d \zeta \tag{1.3}
\end{equation*}
$$

or, taking simply as a path the segment joining 0 and z,

$$
\begin{equation*}
\mathscr{C}(f)(z)=\left.\int_{0}^{1} f(t z)\left(\ln \frac{1}{(1-\zeta)}\right)^{\prime}\right|_{\zeta=t z} d t \tag{1.4}
\end{equation*}
$$

On most holomorphic function spaces the boundedness of the previous operator is equivalent to the boundedness of the operator

$$
\begin{equation*}
z \mathscr{C}(f)(z)=\int_{0}^{z} \frac{f(\zeta)}{1-\zeta} d \zeta \tag{1.5}
\end{equation*}
$$

Hence, Aleman and Siskakis [2] have introduced and investigated the following natural generalization of operator (1.5):

$$
\begin{equation*}
T_{g} f(z)=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) d \zeta \tag{1.6}
\end{equation*}
$$

In $[1,2,3]$ were investigated the boundedness and the compactness of the operator on Hardy and Bergman spaces. A natural question is to define a similar integral operator which acts on $H(B)$ (the space of all holomorphic functions in the unit ball B).

Let $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ be points in complex vector space \mathbb{C}^{n} and

$$
\begin{equation*}
\langle z, w\rangle=z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n} . \tag{1.7}
\end{equation*}
$$

Let $d V_{N}$ stand for the normalized Lebesgue measure on \mathbb{C}^{n}. For a holomorphic function f we denote

$$
\begin{equation*}
\nabla f=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right) \tag{1.8}
\end{equation*}
$$

Let $\mathfrak{R} f(z)=\sum_{j=1}^{n} z_{j}\left(\partial f / \partial z_{j}\right)(z)$ stand for the radial derivative of $f \in H(B)$ (see [7]). It is easy to see that if $f \in H(B), f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}$, where α is a multi-index, then

$$
\begin{equation*}
\mathfrak{R} f(z)=\sum_{\alpha}|\alpha| a_{\alpha} z^{\alpha} \tag{1.9}
\end{equation*}
$$

Let $a>0$. The a-Bloch space $\mathscr{B}^{a}=\mathscr{F}^{a}(B)$ is the space of all $f \in H(B)$ such that

$$
\begin{equation*}
b_{a}(f)=\sup _{z \in B}\left(1-|z|^{2}\right)^{a}|\Re f(z)|<\infty . \tag{1.10}
\end{equation*}
$$

The little a-Bloch space $\mathscr{S}_{0}^{a}=\mathscr{B}_{0}^{a}(B)$ consists of all $f \in H(B)$ such that

$$
\begin{equation*}
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{a}|\Re f(z)|=0 \tag{1.11}
\end{equation*}
$$

On \mathscr{B}^{a} the norm is introduced by

$$
\begin{equation*}
\|f\|_{\mathscr{B}^{a}}=|f(0)|+b_{a}(f) \tag{1.12}
\end{equation*}
$$

With this norm \mathscr{B}^{a} is a Banach space and \mathscr{B}_{0}^{a} is a closed subspace of \mathscr{B}^{a}. If $a=1$, we denote \mathscr{B}^{a} and \mathscr{B}_{0}^{a} simply by \mathscr{B} and \mathscr{B}_{0}.

The aim of this paper is to investigate the boundedness of the following operator:

$$
\begin{equation*}
T_{g}(f)(z)=\int_{0}^{1} f(t z) \mathfrak{R} g(t z) \frac{d t}{t}, \quad f \in H(B), z \in B \tag{1.13}
\end{equation*}
$$

where $g \in H(B)$, on the a-Bloch spaces. This operator can be considered as a natural extension of operator (1.6) on $H(B)$ (when $n=1$ we indeed obtain (1.6)). Operator (1.13) has appeared, for the first time, in [6] where its boundedness and compactness are investigated.

Closely related operators to the above mentioned on the unit polydisc were investigated in $[4,5,9,11,12]$.

In this paper, we prove the following results.
Theorem 1.1. Let $g \in H(B)$ and $a \in(0,1)$. Then the following statements are equivalent:
(a) T_{g} is bounded on \mathscr{B}^{a};
(b) $\sup _{z \in B}|\Re g(z)|\left(1-|z|^{2}\right)^{a}<\infty$.

Moreover $\left\|T_{g}\right\| \asymp \sup _{z \in B}|\Re g(z)|\left(1-|z|^{2}\right)^{a}$.
Theorem 1.2. Let $g \in H(B)$. Then the following statements are equivalent:
(a) T_{g} is bounded on \mathscr{B};
(b) T_{g} is bounded on \mathscr{B}_{0};
(c) $\sup _{z \in B}|\Re g(z)|\left(1-|z|^{2}\right) \ln 1 /\left(1-|z|^{2}\right)<\infty$;
and the relationship $\left\|T_{g}\right\| \asymp \sup _{z \in B}|\Re g(z)|\left(1-|z|^{2}\right) \ln 1 /\left(1-|z|^{2}\right)$ holds.
Theorem 1.3. Let $g \in H(B)$ and $a>1$. Then the following statements are equivalent:
(a) T_{g} is bounded on \mathscr{B}^{a};
(b) $\sup _{z \in B}|\Re g(z)|\left(1-|z|^{2}\right)<\infty$.

Moreover $\left\|T_{g}\right\| \asymp \sup _{z \in B}|\mathfrak{R} g(z)|\left(1-|z|^{2}\right)$.

2. Auxiliary results

In order to prove our results, we need some auxiliary results which are incorporated in the following lemmas.

Lemma 2.1. For every $f, g \in H(B)$, it holds that

$$
\begin{equation*}
\mathfrak{R}\left[T_{g}(f)\right](z)=f(z) \Re g(z) . \tag{2.1}
\end{equation*}
$$

Proof. Assume that the holomorphic function $f \Re g$ has the expansion $\sum_{\alpha} a_{\alpha} z^{\alpha}$. Then

$$
\begin{equation*}
\mathfrak{R}\left[T_{g}(f)\right](z)=\mathfrak{R} \int_{0}^{1} \sum_{\alpha} a_{\alpha}(t z)^{\alpha} \frac{d t}{t}=\mathfrak{R}\left(\sum_{\alpha} \frac{a_{\alpha}}{|\alpha|} z^{\alpha}\right)=\sum_{\alpha} a_{\alpha} z^{\alpha}, \tag{2.2}
\end{equation*}
$$

which is what we wanted to prove.

84 On an integral operator on the unit ball in \mathbb{C}^{n}
Lemma 2.2. Let $f \in \mathscr{B}^{a}(B), 0<a<\infty$. Then

$$
|f(z)| \leq C \begin{cases}|f(0)|+\|f\|_{\mathscr{F}^{a} a}, & a \in(0,1), \tag{2.3}\\ |f(0)|+\|f\|_{\mathscr{B}^{a}} \ln \frac{e}{1-|z|^{2}}, & a=1 \\ |f(0)|+\frac{\|f\|_{\mathfrak{F}} a}{\left(1-|z|^{2}\right)^{a-1}}, & a>1\end{cases}
$$

for some $C>0$ independent of f.
Proof. Let $|z|>1 / 2, z=r \zeta$, and $\zeta \in \partial B$. We have

$$
\begin{align*}
\left|f(z)-f\left(\frac{r \zeta}{2}\right)\right| & =\left|\int_{1 / 2}^{1}\langle\nabla f(t z), z\rangle d t\right| \leq \int_{1 / 2}^{1}\left|\frac{\Re f(t z)}{t}\right| d t \\
& \leq 4\|f\|_{\mathscr{B}^{a}} \int_{0}^{1} \frac{|z| d t}{\left(1-t^{2}|z|^{2}\right)^{a}} . \tag{2.4}
\end{align*}
$$

Let $I_{a}=\int_{0}^{1}\left(|z| d t /\left(1-t^{2}|z|^{2}\right)^{a}\right)$. If $a \in(0,1)$, then

$$
\begin{equation*}
I_{a} \leq \int_{0}^{1} \frac{|z| d t}{(1-t|z|)^{a}}=\frac{1-(1-|z|)^{1-a}}{1-a} \leq \frac{1}{1-a} \tag{2.5}
\end{equation*}
$$

If $a=1$, then

$$
\begin{equation*}
\int_{0}^{1} \frac{|z| d t}{\left(1-t^{2}|z|^{2}\right)^{a}}=\frac{1}{2} \ln \frac{1+|z|}{1-|z|} \leq \frac{1}{2} \ln \frac{4}{1-|z|^{2}} \tag{2.6}
\end{equation*}
$$

Finally, if $a>1$, then

$$
\begin{equation*}
I_{a} \leq \int_{0}^{1} \frac{|z| d t}{(1-t|z|)^{a}}=\frac{1}{a-1}\left(\frac{1}{(1-|z|)^{a-1}}-1\right) \leq \frac{2^{a-1}}{(a-1)\left(1-|z|^{2}\right)^{a-1}} \tag{2.7}
\end{equation*}
$$

From all of the above we have

$$
|f(z)| \leq \begin{cases}M\left(\frac{1}{2}\right)+\frac{4\|f\|_{\mathscr{F}^{a}}}{1-a}, & a \in(0,1) \tag{2.8}\\ M\left(\frac{1}{2}\right)+2\|f\|_{\mathscr{F}^{a}} \ln \frac{4}{1-|z|^{2}}, & a=1, \\ M\left(\frac{1}{2}\right)+\frac{2^{a+1}\|f\|_{\mathscr{B}^{a}}}{(a-1)\left(1-|z|^{2}\right)^{a-1}}, & a>1\end{cases}
$$

where $M(1 / 2)=\max _{|z| \leq 1 / 2}|f(z)|$.

Let $|z| \leq 1 / 2$, then, by the mean value property of the function $f(z)-f(0)$ (see [7]), and Jensen's inequality, we obtain

$$
\begin{align*}
\max _{|z| \leq 1 / 2}|f(z)-f(0)|^{2} & \leq 4^{n} \int_{|z| \leq 3 / 4}|f(w)-f(0)|^{2} d V_{N}(w) \\
& \leq 4^{n} \int_{|z| \leq 3 / 4}|\Re f(w)|^{2} d V_{N}(w) \tag{2.9}\\
& \leq 3^{n} \max _{|z| \leq 3 / 4}|\Re f(z)|^{2} .
\end{align*}
$$

The second inequality can be easily proved by using the homogeneous expansion of f. Hence,

$$
\begin{equation*}
M\left(\frac{1}{2}\right) \leq|f(0)|+(\sqrt{3})^{n} \max _{|z| \leq 3 / 4}|\Re f(z)| \leq|f(0)|+\frac{2^{4 a}(\sqrt{3})^{n}}{7^{a}}\|f\|_{\mathfrak{F}^{a} .} \tag{2.10}
\end{equation*}
$$

From (2.8) and (2.10), the result follows easily when $a \neq 1$. If $a=1$, then we have

$$
\begin{align*}
|f(z)| & \leq|f(0)|+\frac{16(\sqrt{3})^{n}}{7}\|f\|_{\mathscr{B}}+2\|f\|_{\mathscr{B}} \ln \frac{4}{1-|z|^{2}} \\
& \leq\left(\frac{16(\sqrt{3})^{n}}{7}+\ln 16\right)\left(|f(0)|+\|f\|_{\mathscr{B}} \ln \frac{e}{1-|z|^{2}}\right), \tag{2.11}
\end{align*}
$$

thus finishing the proof.

3. Proofs of the main results

Proof of Theorem 1.1. Assume that T_{g} is bounded on \mathscr{B}^{a}. Choose $f_{0}(z) \equiv 1$. It is clear that $f_{0} \in \mathscr{P}_{0}^{a}$ and that $\left\|f_{0}\right\|_{\mathscr{B}^{a}}=1$. The boundedness of T_{g} implies

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{a}\left|\Re\left[T_{g}\left(f_{0}\right)\right](z)\right|=\left(1-|z|^{2}\right)^{a}|\Re g(z)| \leq\left\|T_{g}\right\|\left\|f_{0}\right\|_{\mathscr{B}^{a}}=\left\|T_{g}\right\|<\infty . \tag{3.1}
\end{equation*}
$$

Hence $g \in \mathscr{F}^{a}$, as desired.
Assume now that $g \in \mathscr{B}^{a}$. Then, by Lemma 2.2 we have

$$
\begin{align*}
\left(1-|z|^{2}\right)^{a}\left|\Re\left[T_{g}(f)\right](z)\right| & =\left(1-|z|^{2}\right)^{a}|f(z)||\Re g(z)| \\
& \leq\|g\| \mathscr{F}^{a} C\left(|f(0)|+\|f\|_{\mathscr{F}^{a}}\right) \tag{3.2}\\
& \leq 2 C\|g\|_{\mathscr{F}^{a}}\|f\|_{\mathscr{B}^{a}} .
\end{align*}
$$

Taking supremum $z \in B$ in (3.2), we obtain

$$
\begin{equation*}
\left\|T_{g}(f)\right\|_{\mathscr{F}^{a}} \leq 2 C\|g\|_{\mathscr{F}^{a}}\|f\|_{\mathscr{F}^{a}} \tag{3.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|T_{g}\right\| \leq 2 C\|g\|_{\mathfrak{F}} a, \tag{3.4}
\end{equation*}
$$

as desired.

86 On an integral operator on the unit ball in \mathbb{C}^{n}
Proof of Theorem 1.2. First, assume that T_{g} is bounded on \mathscr{B}. From the proof which follows we will see that we also consider the case when T_{g} is bounded on \mathscr{B}_{0}. For $w \in B$, put $f_{w}(z)=\ln 1 /(1-\langle z, w\rangle)$. Since

$$
\begin{align*}
\left(1-|z|^{2}\right)\left|\Re f_{w}(z)\right| & \leq\left(1-|z|^{2}\right)\left|\nabla f_{w}(z)\right|=\left(1-|z|^{2}\right)\left|\frac{w}{1-\langle z, w\rangle}\right| \\
& \leq \frac{\left(1-|z|^{2}\right)}{|1-\langle z, w\rangle|} \leq 2, \tag{3.5}
\end{align*}
$$

we have $\left\|f_{w}\right\|_{\mathscr{B}} \leq 2$, for each $w \in B$. On the other hand, we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\Re f_{w}(z)\right| \leq \frac{\left(1-|z|^{2}\right)}{|1-\langle z, w\rangle|} \leq \frac{\left(1-|z|^{2}\right)}{1-|w|} \longrightarrow 0 \tag{3.6}
\end{equation*}
$$

as $|z| \rightarrow 1$. Hence $f_{w} \in \mathscr{H}_{0}$, for each $w \in B$.
By Lemma 2.1 we have

$$
\begin{align*}
\left(1-|w|^{2}\right)|\Re g(w)| \ln \frac{1}{1-|w|^{2}} & =\left|f_{w}(w) \Re g(w)\right|\left(1-|w|^{2}\right) \\
& =\left|\Re\left(T_{g} f_{w}\right)(w)\right|\left(1-|w|^{2}\right) \tag{3.7}\\
& \leq\left\|T_{g} f_{w}\right\|_{\mathscr{B}} \leq 2| | T_{g} \| .
\end{align*}
$$

Taking supremum in (3.7) over $w \in B$, we obtain that conditions (a) and (b) imply (c).
Assume that (c) holds. Since $|f(0)| \leq\|f\|_{\mathscr{B}}$, and by Lemma 2.2, we have

$$
\begin{equation*}
|f(z)| \leq C\|f\|_{\mathscr{B}}\left(1+\ln \frac{1}{1-|z|^{2}}\right) \tag{3.8}
\end{equation*}
$$

for some $C>0$.
Hence

$$
\begin{align*}
\left|\mathfrak{R}\left[T_{g}(f)\right](z)\right|\left(1-|z|^{2}\right)= & |f(z)||\Re g(z)|\left(1-|z|^{2}\right) \\
\leq & C\|f\|_{\mathscr{B}}\left(1+\ln \frac{1}{1-|z|^{2}}\right)|\Re g(z)|\left(1-|z|^{2}\right) \\
\leq & C\|f\|_{\mathscr{B}} \sup _{|z| \leq 1 / 2}\left(1+\ln \frac{1}{1-|z|^{2}}\right)|\Re g(z)|\left(1-|z|^{2}\right) \tag{3.9}\\
& +C\|f\|_{\mathscr{B}} \sup _{1 / 2<|z|<1}\left(1+\ln \frac{1}{1-|z|^{2}}\right)|\Re g(z)|\left(1-|z|^{2}\right) \\
\leq & C_{1}\|f\|_{\mathscr{B}} \sup _{z \in B} \ln \frac{1}{1-|z|^{2}}|\Re g(z)|\left(1-|z|^{2}\right),
\end{align*}
$$

since (c) implies

$$
\begin{equation*}
\sup _{z \in B}|\mathfrak{R} g(z)|\left(1-|z|^{2}\right)<\infty . \tag{3.10}
\end{equation*}
$$

From (3.9) and since $T_{g}(f)(0)=0$, (a) follows.

We now prove that (c) implies (b). Since $\ln 1 /(1-|z|) \rightarrow \infty$ as $|z| \rightarrow 1$, we have that $g \in \mathscr{B}_{0}$. Hence, by Lemma 2.1, we have that for each polynomial $p(z)$,

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\Re\left[T_{g}(p)\right](z)\right|=\left(1-|z|^{2}\right)|p(z)||\Re g(z)| \leq M_{p}\left(1-|z|^{2}\right)|\Re g(z)| \tag{3.11}
\end{equation*}
$$

where $M_{p}=\sup _{z \in B}|p(z)|$. Since $M_{p}<\infty$ and $g \in \mathscr{B}_{0}$, we obtain that for each polynomial $p, T_{g}(p) \in \mathscr{B}_{0}$. The set of polynomials is dense in \mathscr{B}_{0}, thus for every $f \in \mathscr{B}_{0}$ there is a sequence of polynomials $\left(p_{n}\right)$ such that $\left\|p_{n}-f\right\|_{\mathscr{B}} \rightarrow 0$. Hence

$$
\begin{equation*}
\left\|T_{g} p_{n}-T_{g} f\right\|_{\mathscr{B}} \leq\left\|T_{g}\right\|\left\|p_{n}-f\right\|_{\mathscr{B}} \longrightarrow 0, \quad \text { as } n \longrightarrow \infty, \tag{3.12}
\end{equation*}
$$

since the operator T_{g} is bounded. Hence $T_{g}\left(\mathscr{P}_{0}\right) \subset \mathscr{B}_{0}$, since \mathscr{B}_{0} is closed subset of \mathscr{B}.
Finally, from (3.7) and (3.9) it follows that

$$
\begin{equation*}
\left\|T_{g}\right\| \asymp \sup _{z \in B}|\Re g(z)|\left(1-|z|^{2}\right) \ln \frac{1}{1-|z|^{2}} . \tag{3.13}
\end{equation*}
$$

Proof of Theorem 1.3. Let T_{g} be bounded on \mathscr{B}^{a}. Let $w \in B$, and $f_{w}(z)=1 /(1-\langle z, w\rangle)^{a-1}$. It is clear that $f_{w} \in \mathscr{B}^{a}$ and that $\left\|f_{w}\right\|_{\mathscr{B}^{a}} \leq(a-1) 2^{a}$. The boundedness of T_{g} implies

$$
\begin{align*}
\left(1-|w|^{2}\right)^{a}\left|\mathfrak{R}\left[T_{g}\left(f_{w}\right)\right](w)\right| & =\left(1-|w|^{2}\right)^{a}|\mathfrak{R} g(w)|\left|f_{w}(w)\right| \\
& =\left(1-|w|^{2}\right)|\mathfrak{R} g(w)| \\
& \leq\left\|T _ { g } \left|\|\mid\| f_{w} \|_{\Re^{a}}\right.\right. \tag{3.14}\\
& =(a-1) 2^{a}\left\|T_{g}\right\|<\infty .
\end{align*}
$$

Hence $\sup _{w \in B}\left(1-|w|^{2}\right)|\Re g(w)|<\infty$, as desired.
Assume now that $g \in \mathscr{B}$. Then, by Lemma 2.2 we have

$$
\begin{align*}
\left(1-|z|^{2}\right)^{a}\left|\mathfrak{R}\left[T_{g}(f)\right](z)\right| & =\left(1-|z|^{2}\right)^{a}|f(z)||\mathfrak{R} g(z)| \\
& \leq b_{1}(g)\left(1-|z|^{2}\right)^{a-1} C\left(|f(0)|+\frac{\|f\|_{\mathscr{F}^{a}}}{\left(1-|z|^{2}\right)^{a-1}}\right) \tag{3.15}\\
& \leq 2 C b_{1}(g)\|f\|_{\mathscr{F}^{a}} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\left\|T_{g}(f)\right\|_{\mathscr{F} a} \leq 2 C b_{1}(g)\|f\|_{\mathscr{F}^{a}}, \tag{3.16}
\end{equation*}
$$

and consequently $\left\|T_{g}\right\| \leq 2 C b_{1}(g)$, as desired.
Form (3.14) and (3.16) it follows that $\left\|T_{g}\right\| \asymp \sup _{z \in B}|\mathfrak{R} g(z)|\left(1-|z|^{2}\right)$.

References

[1] A. Aleman and J. A. Cima, An integral operator on H^{p} and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176.
[2] A. Aleman and A. G. Siskakis, An integral operator on H^{p}, Complex Variables Theory Appl. 28 (1995), no. 2, 149-158.
[3] , Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337356.
[4] D.-C. Chang and S. Stević, Estimates of an integral operator on function spaces, Taiwanese J. Math. 7 (2003), no. 3, 423-432.
[5] , The generalized Cesàro operator on the unit polydisk, Taiwanese J. Math. 7 (2003), no. 2, 293-308.
[6] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2171-2179.
[7] W. Rudin, Function Theory in the Unit Ball of \mathbf{C}^{n}, Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, New York, 1980.
[8] K. Stempak, Cesàro averaging operators, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 1, 121-126.
[9] S. Stević, Cesàro averaging operators, Math. Nachr. 248/249 (2003), 185-189.
[10] , The generalized Cesàro operator on Dirichlet spaces, Studia Sci. Math. Hungar. 40 (2003), no. 1-2, 83-94.
[11] , The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit polydisc, Z. Anal. Anwendungen 22 (2003), no. 1, 179-186.
[12] , Hilbert operator on the polydisk, Bull. Inst. Math. Acad. Sinica 31 (2003), no. 2, 135142.
[13] J. Xiao, Cesàro-type operators on Hardy, BMOA and Bloch spaces, Arch. Math. (Basel) 68 (1997), no. 5, 398-406.

Stevo Stević: Mathematical Institute of Serbian Academy of Sciences and Arts, Knez Mihailova 35/I, 11000 Beograd, Serbia

E-mail addresses: sstevo@matf.bg.ac.yu; sstevic@ptt.yu

